[go: up one dir, main page]

JPH09899A - Apparatus for dissolving inert gas in material in liquid state - Google Patents

Apparatus for dissolving inert gas in material in liquid state

Info

Publication number
JPH09899A
JPH09899A JP17447495A JP17447495A JPH09899A JP H09899 A JPH09899 A JP H09899A JP 17447495 A JP17447495 A JP 17447495A JP 17447495 A JP17447495 A JP 17447495A JP H09899 A JPH09899 A JP H09899A
Authority
JP
Japan
Prior art keywords
liquid
inert gas
pressure
supply
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17447495A
Other languages
Japanese (ja)
Other versions
JP3776950B2 (en
Inventor
Yukio Yamaguchi
幸夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAE KK
Original Assignee
YAMAE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAE KK filed Critical YAMAE KK
Priority to JP17447495A priority Critical patent/JP3776950B2/en
Publication of JPH09899A publication Critical patent/JPH09899A/en
Application granted granted Critical
Publication of JP3776950B2 publication Critical patent/JP3776950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To make it possible to obtain a processing liquid which can remove oxygen (deoxidization) dissolved in water and various aqueous solutions by dissolving under a pressurized condition inert gas in the water and various aqueous solutions and can prevent oxygen from being redissolved in the water and various aqueous solutions from which the oxygen has been removed. CONSTITUTION: A supply passage 2 for water and various aqueous solutions to be processed and a discharge passage for a processing liquid are formed and a pressure vessel 4 is interposed between the supply passage 2 and the discharge passage 3, and an interior of the pressure vessel 4 is connected to communicate with a pressurized inert gas source 5 to allow inert gas to prevail in the interior of the pressure vessel 4, a liquid inlet hole for supplying the solutions to be processed and a discharge hole for discharging the processing solution allowed to fall into a bottom portion are opened to an upper portion of the interior of the pressure vessel 4, and a processing liquid pipe 3a communicating with the discharging hole is extended upward in order to be connected to the discharge passage 3. A dissolved oxygen detector 9 for detecting dissolved oxygen in the processing liquid is disposed in the discharge passage 3, and detectors 7a, 7b for detecting the liquid level of the processing liquid retained in the bottom portion, an exhaust valve 5c for discharging gas in the interior of the pressure vessel 4 and a supply regulating valve 5b for regulating the supply of the inert gas are arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は工業用水や飲料水など
の水や各種水溶液中の溶存酸素を除去(脱酸素)し、か
つ脱酸素処理した処理液中への酸素の再溶解を防止しう
る処理液を得ることができる液状物への不活性ガス溶解
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention removes (deoxygenates) dissolved oxygen in water such as industrial water and drinking water and various aqueous solutions, and prevents re-dissolution of oxygen in a deoxidized treatment liquid. The present invention relates to an apparatus for dissolving an inert gas in a liquid material, which is capable of obtaining a treatment liquid.

【0002】[0002]

【従来の技術】工業用水や飲料水などの水や各種水溶液
中の溶存酸素を除去する脱酸素方法として、従来、処
理液を真空ポンプによって減圧し、減圧による沸点降下
を利用して脱気させる方法、処理液を加熱、沸騰させ
て脱気させる方法、上記及びの方法を併用して脱
気の効率を高める方法、分離膜モジュール中に処理液
を通過させ、分離膜により気体分子を除去する方法、
亜硫酸ソーダ、ヒドラジン、タンニンなどの脱酸素剤
(還元剤)を添加し溶存酸素との化学反応により除去す
る方法などがある。
2. Description of the Related Art As a deoxidizing method for removing dissolved oxygen in water such as industrial water and drinking water and various aqueous solutions, conventionally, a treatment liquid is depressurized by a vacuum pump and degassed by utilizing a boiling point decrease due to the depressurization. Method, method for heating and boiling treatment liquid to degas, method for increasing degassing efficiency by using the above and methods together, passing treatment liquid through separation membrane module, and removing gas molecules by separation membrane Method,
There is a method in which a deoxidizing agent (reducing agent) such as sodium sulfite, hydrazine, and tannin is added and removed by a chemical reaction with dissolved oxygen.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記〜の
方法では、脱気された処理液は、大気中に曝した際、空
気中の酸素の再溶解を促進し、脱酸素状態を維持するの
が困難で、空気との遮断を必要とする。の方法では、
処理装置が大がかりとなりコスト高となる。の方法で
は、上記と同様の問題がある上に、薬剤の残留を招く等
の問題がある。
However, in the above methods (1) to (4), the degassed treatment liquid promotes the redissolution of oxygen in the air and maintains the deoxidized state when exposed to the atmosphere. Difficult to use, and needs to be shut off from the air. In the method,
The size of the processing device becomes large and the cost becomes high. The method (1) has the same problems as described above, and also has the problem of causing a residual drug.

【0004】そこで、本発明は、水や各種水溶液に加圧
下にて不活性ガスを溶解させることにより、液中の溶存
酸素を除去(脱酸素)し、かつ脱酸素処理した処理液中
への酸素の再溶解を防止しうる処理液を得ることができ
る液状物への不活性ガス溶解装置を提供することを目的
とする。
Therefore, according to the present invention, dissolved oxygen in the liquid is removed (deoxygenated) by dissolving an inert gas in water or various aqueous solutions under pressure, and the dissolved oxygen is added to the treated liquid. It is an object of the present invention to provide an apparatus for dissolving an inert gas in a liquid material, which is capable of obtaining a treatment liquid capable of preventing redissolution of oxygen.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の液状物への不活性ガス溶解装置は、水や
各種水溶液などの被処理液の供給路と処理液の排出路と
を設け、その供給路と排出路との間に耐圧容器を介在さ
せ、その耐圧容器内を加圧された不活性ガス源に接続し
て内部を不活性ガス雰囲気とし、前記耐圧容器内の上部
に被処理液を供給する入液口と底部に落下した処理液を
排出する排出口とを開口させ、排出口に連続する処理液
パイプを上方へ延長させて排出路へ接続し、該排出路に
処理液の溶存酸素量検出器を設けると共に、底部に溜ま
った処理液の液位を検出する検出器と、耐圧容器内のガ
スを排出する排気弁と、不活性ガスの供給を調節する供
給調節弁とを設けた点に特徴がある。
In order to solve the above problems, an apparatus for dissolving an inert gas in a liquid material according to the present invention is provided with a supply path for a liquid to be processed such as water or various aqueous solutions and a discharge path for the processing liquid. And a pressure-resistant container interposed between the supply passage and the discharge passage, and the inside of the pressure-resistant container is connected to a pressurized inert gas source to create an inert gas atmosphere, The inlet for supplying the liquid to be treated to the top and the outlet for discharging the treatment liquid dropped to the bottom are opened, the treatment liquid pipe continuous to the outlet is extended upward and connected to the discharge path, and the discharge is performed. A detector for detecting the dissolved oxygen amount of the processing liquid is provided in the passage, and a detector for detecting the liquid level of the processing liquid accumulated at the bottom, an exhaust valve for discharging the gas in the pressure vessel, and the supply of the inert gas are adjusted. It is characterized in that a supply control valve is provided.

【0006】また、本発明の好ましい態様において、前
記耐圧容器内に拡散板を複数段設けることができる。本
発明の好ましい他の態様において、前記入液口に接続し
前記耐圧容器内の最上部に被処理液を供給する給液パイ
プに逆止弁を設けることができる。
Further, in a preferred aspect of the present invention, a plurality of diffusion plates can be provided in the pressure vessel. In another preferred aspect of the present invention, a check valve may be provided in the liquid supply pipe connected to the liquid inlet and supplying the liquid to be treated to the uppermost portion of the pressure vessel.

【0007】[0007]

【作用】被処理液は供給路と排出路との間に介装された
耐圧容器4内へ導かれる。被処理液は耐圧容器内の上部
に開口した入液口から雫状になって落下しつゝ、その容
器内を満たす不活性ガスと接触しそれを吸収すると同時
に溶存酸素を放出させる。不活性ガスを吸収して底部へ
落下した処理液は耐圧容器内の底へ溜まり、供給路に設
けた供給ポンプの吐出圧を受けて排出口に連なる処理液
パイプ3aを上昇して外部へ排出される。底部の液へ作
用する圧力の大きさは、排出路に設けたバルブ13によ
って制御される。そして、排出路に設けた溶存酸素量検
出器により処理液中の溶存酸素量を検出し、設定値を越
えた場合、耐圧容器内の不活性ガスの入替えをする。
The liquid to be treated is introduced into the pressure resistant container 4 interposed between the supply passage and the discharge passage. The liquid to be treated drops in a drop shape from a liquid inlet opening in the upper part of the pressure-resistant container, comes into contact with an inert gas filling the container, absorbs it, and simultaneously releases dissolved oxygen. The processing liquid that has absorbed the inert gas and dropped to the bottom is collected at the bottom in the pressure resistant container, receives the discharge pressure of the supply pump provided in the supply path, and ascends the processing liquid pipe 3a connected to the discharge port to be discharged to the outside. To be done. The magnitude of the pressure acting on the bottom liquid is controlled by the valve 13 provided in the discharge passage. Then, the dissolved oxygen amount detector provided in the discharge passage detects the amount of dissolved oxygen in the treatment liquid, and when the amount exceeds the set value, the inert gas in the pressure vessel is replaced.

【0008】また、耐圧容器内に設けた複数段の拡散板
が、容器上部に開口した入液口から落下する被処理液を
容器内に拡散させて不活性ガスとの接触面積を増大させ
て不活性ガスの吸収効率を高めるとともに溶存酸素の放
出効率を高める。給液パイプに設けた逆止弁は、たとえ
ば、供給ポンプを停止した場合に被処理液の逆流を防止
して耐圧容器内の不活性ガスが給液パイプを逆流して外
に抜けてしまうことを防止する。
Further, a plurality of diffusion plates provided in the pressure-resistant container diffuses the liquid to be treated falling from the liquid inlet opening in the upper part of the container into the container to increase the contact area with the inert gas. It improves the efficiency of absorbing inert gas and the efficiency of releasing dissolved oxygen. The check valve provided in the liquid supply pipe prevents, for example, backflow of the liquid to be treated when the supply pump is stopped, and the inert gas in the pressure resistant container flows back through the liquid supply pipe and escapes to the outside. Prevent.

【0009】[0009]

【実施例】以下、図示の実施例によってこの発明を説明
する。不活性ガス溶解装置1は被処理液の供給路2(給
液パイプ2a)と排出路3(処理液パイプ3a)との間
に介在させた耐圧容器4と、この耐圧容器4へ不活性ガ
スを供給する不活性ガス供給源5とを備えている。この
実施例において不活性ガス供給源5は高圧窒素ガスボン
ベである。なお、不活性ガス供給源5は窒素ガスに限ら
ず、アルゴン、ヘリウムなどでもよい。6は、給液パイ
プに設けた被処理液の供給ポンプである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. The inert gas dissolving device 1 includes a pressure resistant container 4 interposed between a liquid supply path 2 (liquid supply pipe 2a) and a discharge path 3 (processing liquid pipe 3a) for a liquid to be processed, and an inert gas to the pressure resistant container 4. And an inert gas supply source 5 for supplying. In this embodiment, the inert gas supply source 5 is a high pressure nitrogen gas cylinder. The inert gas supply source 5 is not limited to nitrogen gas, and may be argon, helium, or the like. Reference numeral 6 is a supply pump for the liquid to be treated provided on the liquid supply pipe.

【0010】耐圧容器4はステンレスや硬質合成樹脂な
ど酸化し難い耐食性材料によって縦形円筒形に作られて
いる。勿論、廉価な鋼板製の容器に耐食塗装やメッキを
施して用いるものを除外するものではない。耐圧容器4
の上部には窒素ガスボンベその他の不活性ガス供給源5
に連なる不活性ガスパイプ5aと前記供給路をなす給液
パイプ2a、および前記排出路をなす処理液パイプ3a
が接続されている。
The pressure-resistant container 4 is formed in a vertical cylindrical shape by a corrosion-resistant material such as stainless steel or hard synthetic resin which is difficult to oxidize. Of course, it does not exclude an inexpensive container made of a steel plate and used by applying corrosion-resistant coating or plating. Pressure container 4
In the upper part of the tank, a nitrogen gas cylinder and other inert gas source 5
Of the inert gas pipe 5a, the liquid supply pipe 2a forming the supply passage, and the processing liquid pipe 3a forming the discharge passage.
Is connected.

【0011】不活性ガスパイプ5aには供給調節弁5b
と排気弁5cが設けられている。これら各弁5b,5c
は電磁弁からなる。また、耐圧容器4の側壁外面の上部
と下部の所定の上下位置に液面レベルセンサー7a,7
bを設け、処理液パイプ3aにはバルブ8を、その下流
側に溶存酸素量検知センサー9を設けてある。運転開始
時、被処理液を供給ポンプ6で耐圧容器4内に送り、容
器内を充たして容器内の空気を抜く。次いで、排気弁5
cを閉じた状態で供給調節弁5bを開いて容器内に不活
性ガスを供給すると液面が下がり、下液面レベルセンサ
ー7bが液面を検知したとき供給調節弁5bを閉じて定
常運転となる。耐圧容器4内の圧力は、目的に応じ約
0.3〜3kgf/cm2 (ゲージ圧)程度となるよう
にバルブ8の開度を調整する。ヘンリードルトンの法則
により、圧力が高い程、処理液中への不活性ガス溶解量
が増し、溶存酸素量が減少する。なお、5dは耐圧容器
4内の圧力を表示する圧力計、10は耐圧容器4の底部
近傍に設けた排液、汚泥除去のためのドレインバルブで
あり、通常はバルブを閉じておく。11は耐圧容器内の
様子を確認するための覗窓であり、12は耐圧容器内部
を洗浄するための洗浄用開閉蓋である。
A supply control valve 5b is provided on the inert gas pipe 5a.
And an exhaust valve 5c. These valves 5b and 5c
Consists of a solenoid valve. The liquid level sensors 7a, 7a are provided at predetermined upper and lower positions on the outer surface of the side wall of the pressure vessel 4.
b, a valve 8 is provided in the treatment liquid pipe 3a, and a dissolved oxygen amount detection sensor 9 is provided downstream thereof. At the start of the operation, the liquid to be treated is fed into the pressure resistant container 4 by the supply pump 6 to fill the inside of the container to remove air from the container. Next, exhaust valve 5
When the supply control valve 5b is opened with c closed and the inert gas is supplied into the container, the liquid level drops, and when the lower liquid level sensor 7b detects the liquid level, the supply control valve 5b is closed to perform normal operation. Become. The opening of the valve 8 is adjusted so that the pressure inside the pressure vessel 4 is about 0.3 to 3 kgf / cm 2 (gauge pressure) depending on the purpose. According to Henry Doleton's law, the higher the pressure, the more the amount of the inert gas dissolved in the treatment liquid increases and the amount of dissolved oxygen decreases. In addition, 5d is a pressure gauge for displaying the pressure in the pressure vessel 4, and 10 is a drain valve for removing drainage and sludge provided near the bottom of the pressure vessel 4, and the valve is normally closed. Reference numeral 11 is a viewing window for confirming the inside of the pressure resistant container, and 12 is an opening / closing lid for cleaning for cleaning the inside of the pressure resistant container.

【0012】次に耐圧容器4の内部構造を図2によって
説明する。耐圧容器4の内部は上部に拡散板13が設け
られ、内部が上下に二分されている。拡散板13の上方
には前記給液パイプ2aに通じる入液口が開口してお
り、供給ポンプ6により給液パイプ2aを通じて送られ
る被処理液が拡散板13の上面へ放出される。拡散板1
3には多数の穴13aが穿設されており、拡散板13の
上面へ放出された液はその穴13aの縁を伝って無数の
雫となって下方へ滴下する。
Next, the internal structure of the pressure vessel 4 will be described with reference to FIG. A diffusion plate 13 is provided in the upper part of the pressure-resistant container 4, and the inside is divided into upper and lower parts. A liquid inlet opening to the liquid supply pipe 2a is opened above the diffusion plate 13, and the liquid to be treated sent by the supply pump 6 through the liquid supply pipe 2a is discharged to the upper surface of the diffusion plate 13. Diffuser 1
3 has a large number of holes 13a formed therein, and the liquid discharged onto the upper surface of the diffusion plate 13 travels along the edge of the hole 13a and becomes an infinite number of drops, which are dripped downward.

【0013】拡散板13から滴下する被処理液は、雰囲
気をなす不活性ガスを吸収するとともに液中の溶存酸素
を放出させつゝ落下し、底部へ溜まる。すなわち、拡散
板13から重力で落下する液は滴状あるいは粒状となっ
て表面積が増しているので、雰囲気をなす不活性ガスと
の接触機会が増す上に、耐圧容器4内は大気圧より高い
不活性ガス雰囲気となっているから不活性ガスの吸収と
溶存酸素の放出が一層促進される。なお、この拡散板1
3は耐圧容器4の内面に固定的に設置されているが、回
転する翼状とすることもできる。それによって、被処理
液を一層、微細化することができ液の表面積を一段と増
加させる可能性がある。また、その他にも拡散板13に
代えて、或いは拡散板13と共に給液パイプ2aの開口
部にノズルや噴霧器を設けることも可能である。上記の
ように、拡散板を設けることにより、給液パイプ2aに
通じる入液口と拡散板との高さの違いにより処理液が拡
散板に衝突して跳ね返り、処理液の落下行程距離をかせ
ぐことができる。拡散板を複数段、たとえば図3に示す
ように上下2段に拡散板13,13’を設置すれば、処
理液の落下行程距離をさらにかせぐことができるととも
に、処理液の複数回の拡散板への衝突により液滴の微粒
化をさらに促進することができるので、不活性ガスの吸
収効率と溶存酸素の放出効率のさらなる向上を図ること
ができる。なお、このような効果を得るために、上下2
段に設けられた拡散板13及び13’に穿設された多数
の穴13aの位置が上段の拡散板のそれと下段の拡散板
のそれとで同一とならないようにして、上段の拡散板の
穴から落下した液滴が下段の拡散板に衝突するようにす
る。なお、拡散板13,13’は支持棒13bにより耐
圧容器に取り付けられる。
The liquid to be treated dropped from the diffusing plate 13 absorbs the inert gas forming the atmosphere, releases the dissolved oxygen in the liquid, and drops to the bottom. That is, since the liquid falling by gravity from the diffusion plate 13 is in the form of drops or particles and has an increased surface area, the chances of contact with the inert gas forming the atmosphere are increased, and the pressure vessel 4 is higher than atmospheric pressure. Since the atmosphere is an inert gas atmosphere, absorption of the inert gas and release of dissolved oxygen are further promoted. In addition, this diffusion plate 1
Although 3 is fixedly installed on the inner surface of the pressure-resistant container 4, it may be in the shape of a rotating wing. Thereby, the liquid to be treated can be further miniaturized, and the surface area of the liquid may be further increased. In addition, instead of the diffusion plate 13, or together with the diffusion plate 13, a nozzle or a sprayer may be provided at the opening of the liquid supply pipe 2a. As described above, by providing the diffusion plate, the treatment liquid collides with the diffusion plate and bounces back due to the difference in height between the liquid inlet opening to the liquid supply pipe 2a and the diffusion plate, thereby increasing the fall distance of the treatment liquid. be able to. If the diffusion plates 13 and 13 'are installed in a plurality of stages of diffusion plates, for example, as shown in FIG. Since it is possible to further promote atomization of the liquid droplets by the collision with, it is possible to further improve the inert gas absorption efficiency and the dissolved oxygen release efficiency. In addition, in order to obtain such an effect,
Make sure that the positions of the multiple holes 13a formed in the diffusing plates 13 and 13 'provided in the step are not the same as those of the upper diffusing plate and that of the lower diffusing plate, and Make the dropped droplets collide with the lower diffusion plate. The diffusion plates 13 and 13 'are attached to the pressure resistant container by the support rod 13b.

【0014】このようにして、耐圧容器4の底部へ落下
した処理液は、供給ポンプ6からの圧力によって排出口
をなす処理液パイプ3aの下端部へ押し込まれ、上昇し
て外部へ溢れ出し、排出路3へ流れ出す。
In this way, the processing liquid that has dropped to the bottom of the pressure-resistant container 4 is pushed by the pressure from the supply pump 6 into the lower end of the processing liquid pipe 3a that forms the discharge port, rises and overflows to the outside, It flows into the discharge path 3.

【0015】上記の処理中、処理液中から溶存酸素が放
出されてくるに従い、耐圧容器4内の酸素ガス濃度(酸
素ガス分圧)が上昇し、それに伴い脱酸素能力が低下し
てくる。このため、処理液中の溶存酸素量の上限を目的
に応じ適宜設定し(例えば0.5ppm)、処理液パイ
プに設けた溶存酸素量検知センサー9で処理液中の溶存
酸素量を検出し、設定値を越えた場合、排気弁5cを開
いて耐圧容器4内のガスを排気する。すると、液面は上
昇を開始し、上液面レベルセンサー7aが液面を検知し
たとき排気弁5cを閉じ、同時に供給調節弁5bを開
き、不活性ガスを耐圧容器4内に供給する。そして、液
面は下降しはじめ、下液面レベルセンサー7bが液面を
検知したとき供給調節弁5bを閉じる。かかる操作の繰
り返しにより、処理液中の溶存酸素と不活性ガスとのガ
ス交換を連続的に行う。なお、上記した各種の制御は制
御部14を介して行う。
During the above treatment, as the dissolved oxygen is released from the treatment liquid, the oxygen gas concentration (oxygen gas partial pressure) in the pressure vessel 4 rises, and the deoxygenating ability decreases accordingly. Therefore, the upper limit of the dissolved oxygen amount in the treatment liquid is appropriately set according to the purpose (for example, 0.5 ppm), and the dissolved oxygen amount detection sensor 9 provided in the treatment liquid pipe detects the dissolved oxygen amount in the treatment liquid, When the set value is exceeded, the exhaust valve 5c is opened to exhaust the gas in the pressure resistant container 4. Then, the liquid level starts rising, and when the upper liquid level sensor 7a detects the liquid level, the exhaust valve 5c is closed, and at the same time, the supply control valve 5b is opened to supply the inert gas into the pressure resistant container 4. Then, the liquid level starts to descend, and when the lower liquid level sensor 7b detects the liquid level, the supply control valve 5b is closed. By repeating this operation, gas exchange between the dissolved oxygen and the inert gas in the treatment liquid is continuously performed. The various controls described above are performed via the control unit 14.

【0016】なお、給液パイプ2a中に逆止弁15を介
在させれば、たとえば供給ポンプ6を停止したとき処理
液が逆流し、それに伴い耐圧容器4内の不活性ガスが給
液パイプ2a内を逆流して流出してしまうことを防止す
ることができるので、好ましい。
If the check valve 15 is provided in the liquid supply pipe 2a, the processing liquid flows back when the supply pump 6 is stopped, for example, so that the inert gas in the pressure resistant container 4 is supplied with the inert gas. It is preferable because it can be prevented from flowing backward and flowing out.

【0017】かくて、脱酸素処理は、不活性ガスの加圧
下で行うため、処理液中の不活性ガス濃度はその圧力下
での飽和状態になっている。かかる処理液を大気中に曝
した際、処理液中の不活性ガス濃度が高い状態にあるた
め、大気中の酸素ガスの再溶解を妨げ、その結果脱酸素
状態を長く維持できることになる。
Since the deoxidation treatment is performed under the pressure of the inert gas, the concentration of the inert gas in the treatment liquid is saturated under the pressure. When such a treatment liquid is exposed to the atmosphere, the concentration of the inert gas in the treatment liquid is high, so that re-dissolution of oxygen gas in the atmosphere is prevented, and as a result, the deoxidized state can be maintained for a long time.

【0018】かかる処理装置を貯留槽を介して又は介さ
ずして2基、3基と複数直列に連結することにより脱酸
素性能を向上させることができる。
The deoxidizing performance can be improved by connecting a plurality of such treatment devices in series with two or three treatment devices with or without a storage tank.

【0019】なお、被処理液としては、ボイラー用水、
冷却設備の冷却用水、電子部品や半導体製造用の洗浄用
水、金属加工、表面処理、製鉄、パルプ、化学工業など
における各種処理加工用水、食品加工、薬品製造、醸
造、製糖などの原料用水、高架水槽や一般上水道の貯水
槽用の飲料水、コンピューターやハイテク設備などの冷
却水などあらゆる産業分野に亘る。
The liquid to be treated is boiler water,
Cooling water for cooling equipment, water for cleaning electronic parts and semiconductors, metal processing, surface treatment, iron, pulp, chemical processing, etc., various processing water, food processing, chemical manufacturing, brewing, sugar manufacturing, etc. It covers all industrial fields such as drinking water for water tanks and water tanks for general waterworks, and cooling water for computers and high-tech equipment.

【0020】本装置を用いて処理された処理液によれ
ば、従来問題となっていた溶存酸素による酸化反応に伴
う貯留槽や配管設備の腐食防止やスケール生成防止、処
理液保存中の酸化分解変質防止など処理液の品質特性の
維持、劣化防止を図ることができる。
According to the treatment liquid treated using this apparatus, the corrosion prevention and scale formation prevention of the storage tank and the piping equipment associated with the oxidation reaction due to dissolved oxygen, which has been a problem in the past, and the scale decomposition, and the oxidative decomposition during the preservation of the treatment liquid are carried out. It is possible to maintain the quality characteristics of the processing liquid such as alteration prevention and prevent deterioration.

【0021】[0021]

【発明の効果】この発明の装置によれば、被処理液を加
圧不活性ガス雰囲気下で処理するだけであるので、被処
理液の種類や性状に左右されないで処理できる。また、
被処理液の温度条件を問わず、加熱や薬剤投与などの必
要がないため、処理液の変質や分解などを生じない。脱
酸素処理を不活性ガスの加圧下で行うため、処理液中の
不活性ガス濃度はその圧力下での飽和状態になってい
る。かかる処理液を大気中に曝した際、処理液中の不活
性ガス濃度が過飽和状態にあるため、大気中の酸素ガス
の再溶解を妨げ、また徐々に脱気していく不活性ガスが
空気中の酸素との遮断の役割を果たし、その結果脱酸素
状態を長く維持できることになる。
According to the apparatus of the present invention, since the liquid to be processed is only processed in a pressurized inert gas atmosphere, the liquid can be processed without being affected by the type or property of the liquid to be processed. Also,
Regardless of the temperature condition of the liquid to be treated, there is no need to heat or administer a drug, so that the treatment liquid is not deteriorated or decomposed. Since the deoxidation treatment is performed under the pressure of the inert gas, the concentration of the inert gas in the treatment liquid is saturated under the pressure. When such a treatment liquid is exposed to the atmosphere, the concentration of the inert gas in the treatment liquid is in a supersaturated state, which hinders the re-dissolution of oxygen gas in the atmosphere, and the inert gas that is gradually degassed is air. It acts as a barrier to the oxygen in it, and as a result, it can maintain the deoxidized state for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐圧容器の外面図である。FIG. 1 is an external view of a pressure resistant container.

【図2】その一部を破断して示す図2相当の外観図であ
る。
FIG. 2 is an external view corresponding to FIG. 2 with a part thereof broken away.

【図3】本発明の他の実施例における耐圧容器の一部を
破断して示す外観図である。
FIG. 3 is an external view showing a pressure-resistant container according to another embodiment of the present invention with a part thereof cut away.

【符号の説明】[Explanation of symbols]

1 不活性ガス溶解装置 2 供給路 2a 給液パイプ 3 排出路 3a 処理液パイプ 4 耐圧容器 5 不活性ガス供給源 5a 不活性ガスパイプ 5b 供給調節弁 5c 排気弁 6 供給ポンプ 7a,7b 液面レベルセンサー 8 バルブ 9 溶存酸素量検知センサー 13,13’ 拡散板 15 逆止弁 DESCRIPTION OF SYMBOLS 1 Inert gas dissolving device 2 Supply path 2a Liquid supply pipe 3 Discharge path 3a Process liquid pipe 4 Pressure vessel 5 Inert gas supply source 5a Inert gas pipe 5b Supply control valve 5c Exhaust valve 6 Supply pump 7a, 7b Liquid level sensor 8 Valve 9 Dissolved oxygen amount detection sensor 13, 13 'Diffusion plate 15 Check valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水や各種水溶液などの被処理液の供給路
と処理液の排出路とを設け、その供給路と排出路との間
に耐圧容器を介在させ、その耐圧容器内を加圧された不
活性ガス源に接続して内部を不活性ガス雰囲気とし、前
記耐圧容器内の上部に被処理液を供給する入液口と底部
に落下した処理液を排出する排出口とを開口させ、排出
口に連続する処理液パイプを上方へ延長させて排出路へ
接続し、該排出路に処理液の溶存酸素量検出器を設ける
と共に、底部に溜まった処理液の液位を検出する検出器
と、耐圧容器内のガスを排出する排気弁と、不活性ガス
の供給を調節する供給調節弁とを設けてなる液状物への
不活性ガス溶解装置。
1. A supply passage for a liquid to be treated such as water or various aqueous solutions and a discharge passage for a treatment liquid are provided, and a pressure container is interposed between the supply passage and the discharge passage, and the inside of the pressure container is pressurized. The inside of the pressure resistant container is connected to the above-mentioned inert gas source to create an inert gas atmosphere, and the inlet for supplying the liquid to be processed is opened at the upper part of the pressure vessel and the outlet for discharging the liquid to be processed dropped to the bottom is opened. Detecting the level of the processing liquid accumulated at the bottom, while the processing liquid pipe continuous to the discharge port is extended upward and connected to the discharge path, the dissolved oxygen amount detector for the processing liquid is provided in the discharge path. A device for dissolving an inert gas in a liquid material, which is provided with a container, an exhaust valve for discharging the gas in the pressure resistant container, and a supply control valve for controlling the supply of the inert gas.
【請求項2】 前記耐圧容器内に拡散板を複数段設けて
なる、請求項1又は2に記載の液状物への不活性ガス溶
解装置。
2. The apparatus for dissolving an inert gas in a liquid according to claim 1, wherein a plurality of diffusion plates are provided in the pressure vessel.
【請求項3】 前記入液口に接続し前記耐圧容器内の最
上部に被処理液を供給する給液パイプに逆止弁を設けて
なる、請求項1又は2のいずれか1項に記載の液状物へ
の不活性ガス溶解装置。
3. The check valve is provided in a liquid supply pipe which is connected to the liquid inlet and supplies a liquid to be treated to an uppermost portion in the pressure resistant container. Inert gas dissolving device for liquid substances.
JP17447495A 1995-06-15 1995-06-15 Inert gas dissolving device for liquids Expired - Fee Related JP3776950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17447495A JP3776950B2 (en) 1995-06-15 1995-06-15 Inert gas dissolving device for liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17447495A JP3776950B2 (en) 1995-06-15 1995-06-15 Inert gas dissolving device for liquids

Publications (2)

Publication Number Publication Date
JPH09899A true JPH09899A (en) 1997-01-07
JP3776950B2 JP3776950B2 (en) 2006-05-24

Family

ID=15979121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17447495A Expired - Fee Related JP3776950B2 (en) 1995-06-15 1995-06-15 Inert gas dissolving device for liquids

Country Status (1)

Country Link
JP (1) JP3776950B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395377B1 (en) * 1997-06-24 2003-12-18 오르가노 코포레이션 Method and device for preparing cleaning solution
JP2004033861A (en) * 2002-07-01 2004-02-05 Taisei Corp High oxygen water production apparatus and method for purifying sediment
JP2011245450A (en) * 2010-05-28 2011-12-08 Gastar Corp Pressurized container
JP2012152572A (en) * 1999-09-30 2012-08-16 Therox Inc Apparatus and method for blood oxygenation
JP2013111501A (en) * 2011-11-25 2013-06-10 Gastar Corp Pressurized container and device with fine bubble generating function including the same
CN111548522A (en) * 2020-06-08 2020-08-18 闽江学院 Device for plasma-initiated surface graft polymerization modification of polymer material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395377B1 (en) * 1997-06-24 2003-12-18 오르가노 코포레이션 Method and device for preparing cleaning solution
JP2012152572A (en) * 1999-09-30 2012-08-16 Therox Inc Apparatus and method for blood oxygenation
JP2004033861A (en) * 2002-07-01 2004-02-05 Taisei Corp High oxygen water production apparatus and method for purifying sediment
JP2011245450A (en) * 2010-05-28 2011-12-08 Gastar Corp Pressurized container
JP2013111501A (en) * 2011-11-25 2013-06-10 Gastar Corp Pressurized container and device with fine bubble generating function including the same
CN111548522A (en) * 2020-06-08 2020-08-18 闽江学院 Device for plasma-initiated surface graft polymerization modification of polymer material

Also Published As

Publication number Publication date
JP3776950B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JPH04500171A (en) Chemical agent supply device for swimming pool
KR19980703756A (en) Sedimentation apparatus for fluids containing liquids, gases and particulates, wastewater purification apparatus and method for purification
JPH01503765A (en) Gas purification method and device
JPS60216801A (en) Gas/liquid contact apparatus
US5931990A (en) Tank for removing unabsorbed gas from a mixture of unabsorbed gas and liquid
CN1306983C (en) Apparatus and method for degassing liquids
JPH09899A (en) Apparatus for dissolving inert gas in material in liquid state
JP5326377B2 (en) Nitrogen displacement deoxygenator
EP0592740B1 (en) Ultrasonic cleaning apparatus
US4084944A (en) Pure distillate recovery system
JPH0218153B2 (en)
KR20170138334A (en) Ballast water treatment apparatus
US3751231A (en) Apparatus for use in treating fluids
JP2701444B2 (en) Etchant regeneration equipment
US4518403A (en) Degasser-desurger unit
JP6737957B2 (en) Nuclear power plant with containment venting system with filter
JPH08108005A (en) Deaeration device
JP2002301305A (en) Deaeration unit and deaerator
JP3375348B2 (en) Oxygen replenishment equipment for wastewater purification equipment
JP3290385B2 (en) Resist processing method and resist processing apparatus
WO2007122452A1 (en) Apparatus for producing carbon monoxide by a chemical reaction process
KR101294975B1 (en) Device for removing bubble and system for circulating chemical liquid
JP4859457B2 (en) Liquid purification device
JP6895925B2 (en) Liquid flow meter
CN214139869U (en) Storage tank capable of preventing materials from volatilizing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150303

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees