JPH0987848A - Production of bismuth layer ferroelectric thin film - Google Patents
Production of bismuth layer ferroelectric thin filmInfo
- Publication number
- JPH0987848A JPH0987848A JP7281143A JP28114395A JPH0987848A JP H0987848 A JPH0987848 A JP H0987848A JP 7281143 A JP7281143 A JP 7281143A JP 28114395 A JP28114395 A JP 28114395A JP H0987848 A JPH0987848 A JP H0987848A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- raw material
- ferroelectric thin
- substrate
- bismuth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 22
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910052758 niobium Inorganic materials 0.000 claims abstract 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 7
- 229910052753 mercury Inorganic materials 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000001947 vapour-phase growth Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 19
- 239000010408 film Substances 0.000 abstract description 14
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 6
- 239000001301 oxygen Substances 0.000 abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000015654 memory Effects 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 108050003506 ABL interactor 2 Proteins 0.000 abstract 1
- 102100028221 Abl interactor 2 Human genes 0.000 abstract 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 abstract 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 abstract 1
- 229910052715 tantalum Inorganic materials 0.000 abstract 1
- DRFVTYUXJVLNLR-UHFFFAOYSA-N tris(2-methylbutan-2-yloxy)bismuthane Chemical compound CCC(C)(C)O[Bi](OC(C)(C)CC)OC(C)(C)CC DRFVTYUXJVLNLR-UHFFFAOYSA-N 0.000 abstract 1
- YREWUNQFLSJEEG-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]bismuthane Chemical compound CC(C)(C)O[Bi](OC(C)(C)C)OC(C)(C)C YREWUNQFLSJEEG-UHFFFAOYSA-N 0.000 abstract 1
- 150000004703 alkoxides Chemical class 0.000 description 15
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- NGCRLFIYVFOUMZ-UHFFFAOYSA-N 2,3-dichloroquinoxaline-6-carbonyl chloride Chemical compound N1=C(Cl)C(Cl)=NC2=CC(C(=O)Cl)=CC=C21 NGCRLFIYVFOUMZ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 bismuth alkoxide Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000005672 tetraenes Chemical class 0.000 description 1
- ZHXAZZQXWJJBHA-UHFFFAOYSA-N triphenylbismuthane Chemical compound C1=CC=CC=C1[Bi](C=1C=CC=CC=1)C1=CC=CC=C1 ZHXAZZQXWJJBHA-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Formation Of Insulating Films (AREA)
- Semiconductor Memories (AREA)
- Inorganic Insulating Materials (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ビスマス層状強誘電体
薄膜の製造方法に関する。さらに詳しくは、原料とし
て、特定のダブルアルコキシドおよびビスマスターシャ
リアルコキシドを用いて、紫外線照射により、気相成長
法で、該薄膜を製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bismuth layered ferroelectric thin film. More specifically, the present invention relates to a method for producing the thin film by vapor phase epitaxy by using a specific double alkoxide and a bis-master alkaryoxide as a raw material and irradiating with ultraviolet rays.
【0002】[0002]
【従来の技術】ビスマス層状強誘電体薄膜は、近年その
自発分極を利用した不揮発メモリーなどに使われる。特
にSrBi2Ta2O9は分極反転を繰り返すと膜の特
性が劣化してしまうというこれまでの強誘電体メモリー
の最大の問題点すなはち疲労(fatigue)を解決
した優れた薄膜である。2. Description of the Related Art In recent years, bismuth layered ferroelectric thin films have been used in non-volatile memories and the like which make use of their spontaneous polarization. In particular, SrBi 2 Ta 2 O 9 is an excellent thin film that has solved the biggest problem of the ferroelectric memory to date, that is, fatigue, that the characteristics of the film deteriorate when the polarization inversion is repeated.
【0003】該薄膜を通常の化学気相成長法(以下CV
D法と略す)で作る技術としては、1995年春季第4
2回応用物理学関係連合講演会講演予稿集p522「3
1a−D−1 MOCVD法によるBi層状強誘電体の
薄膜成長 ソニー中央研究所磯部千春ら」で初めて開示
された。この中では、タンタルエトキシドTa(OC2
H5)5とトリフェニルビスマスBi(C6H5)3と
ストロンチウムビス(ジピバロイルメタナート)テトラ
エン錯体Sr(dpm)2.tetraen2の三種の
原料を用い、酸素ガスを導入し、減圧CVD法により、
圧力、基板温度、ガス供給量などを最適化し、Pt/T
i/SiO2/Si基板上に、膜厚200nm、組成比
Sr/Bi/Ta=1/2.2/2.5なるSrBi2
Ta2O9膜を得ている。基板温度600−750℃で
分解堆積し、次いで800℃で酸素雰囲気中でアニール
している。該方法は三種原料の供給量を最適化し制御す
ることが必要である。The thin film is formed by an ordinary chemical vapor deposition method (hereinafter referred to as CV).
The technique created by the D method) is the 4th spring 1995.
Proceedings of the 2nd Joint Lecture on Applied Physics p522 "3
1a-D-1 Thin film growth of Bi layered ferroelectric by MOCVD method. Chiba Isobe et al., Sony Central Research Laboratories ”. Among them, tantalum ethoxide Ta (OC 2
H 5 ) 5 and triphenylbismuth Bi (C 6 H 5 ) 3 and strontium bis (dipivaloylmethanato) tetraene complex Sr (dpm) 2 . Using three kinds of raw materials of tetraen 2 , oxygen gas was introduced, and by the low pressure CVD method,
By optimizing the pressure, substrate temperature, gas supply amount, etc., Pt / T
SrBi 2 having a film thickness of 200 nm and a composition ratio Sr / Bi / Ta = 1 / 2.2 / 2.5 on an i / SiO 2 / Si substrate.
A Ta 2 O 9 film is obtained. It is decomposed and deposited at a substrate temperature of 600 to 750 ° C., and then annealed at 800 ° C. in an oxygen atmosphere. The method needs to optimize and control the feed rates of the three raw materials.
【0004】本発明者等は、該薄膜をMOCVD法で作
る場合、A,B二元素が、膜と同じ組成比からなる特定
のダブルアルコキシドを原料として用いる方法を発明し
特許出願した(特願平7−120350号)。その中で
は、Bi原料としてビスマスターシャリブトキシドある
いはビスマスターシャリペントキシドを用いることも開
示している。この前特許出願によれば二種原料の供給量
を制御すればよく、優れた性能の薄膜を作ることができ
る。The present inventors have invented a patent for a method of using a specific double alkoxide having the same composition ratio of A and B as the raw material as a raw material when the thin film is formed by the MOCVD method (patent application). No. 7-120350). It also discloses the use of Bismaster Chaributoxide or Bismaster Charipentoxide as the Bi raw material. According to this previous patent application, it suffices to control the supply amounts of the two kinds of raw materials, and it is possible to form a thin film having excellent performance.
【0005】[0005]
【発明が解決しようとする課題】前特許出願によって該
薄膜を製造するに際しては、原料として用いるダブルア
ルコキシドのA/B元素比と膜のA/B元素比が同じに
なるようにするには基板温度が500℃以下が好ましい
ことがわかった。温度が500℃より高いと原料ダブル
アルコキシドガスが基板に到達前に解離してしまうため
分解堆積のA/Bの比率が原料の比率と異なってしまう
と推定される。さらにもう一つの原料であるビスマスタ
ーシャリアルコキシドは、250−400℃で分解堆積
する。よって二つの原料とも、基板到達前に基板からの
熱により高温に加熱されることを避けるのが望ましい。
すなわちできるだけ基板の温度を低くしてCVD法を行
うことが好ましい。このために通常の熱CVD法よりさ
らに好都合なCVD法が望まれる。また、300℃付近
の低温でのCVD法では、残留炭素が多いのが普通であ
るので、この残留炭素を減らすことが求められる。In producing the thin film according to the prior patent application, the substrate should be made to have the same A / B element ratio of the double alkoxide used as the raw material and the A / B element ratio of the film. It was found that the temperature is preferably 500 ° C. or lower. If the temperature is higher than 500 ° C., it is estimated that the ratio of A / B in the decomposition and deposition differs from the ratio of the raw material because the raw material double alkoxide gas is dissociated before reaching the substrate. Yet another raw material, bis-master charialkoxide, decomposes and deposits at 250-400 ° C. Therefore, it is desirable to avoid heating the two raw materials to a high temperature due to heat from the substrate before reaching the substrate.
That is, it is preferable to perform the CVD method with the substrate temperature kept as low as possible. Therefore, a CVD method which is more convenient than the conventional thermal CVD method is desired. Further, in the CVD method at a low temperature of around 300 ° C., since a large amount of residual carbon is common, it is necessary to reduce this residual carbon.
【0006】本発明の目的は、ビスマス層状強誘電体薄
膜をCVD法で製造する方法を提供することである。An object of the present invention is to provide a method for producing a bismuth layered ferroelectric thin film by a CVD method.
【0007】[0007]
【課題を解決するための手段】本発明者等は、金属アル
コキシドの製法およびその物性ならびにCVD法による
ビスマス層状強誘電体薄膜の製法について鋭意検討して
きた。その結果、A,B二元素が膜と同じ組成比からな
る特定のダブルアルコキシドおよびビスマスターシャリ
アルコキシドが、紫外線を吸収し、その紫外線により分
解反応が促進されることを見いだし本発明を完成するに
至った。本発明の特徴は、特定のダブルアルコキシドと
特定のビスマスターシャリアルコキシドを用いて、CV
D法で強誘電体薄膜を作る場合に、原料ガスと基体の接
触部に紫外線を照射することである。DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied a method for producing a metal alkoxide and its physical properties, and a method for producing a bismuth layered ferroelectric thin film by a CVD method. As a result, it was found that the particular double alkoxide and bis-master alkali alkoxide in which the two elements A and B have the same composition ratio as the film absorbs ultraviolet rays, and the ultraviolet rays accelerate the decomposition reaction to complete the present invention. I arrived. The feature of the present invention is that a CV is obtained by using a specific double alkoxide and a specific bis-master alkoxide.
When the ferroelectric thin film is formed by the D method, the contact portion between the raw material gas and the substrate is irradiated with ultraviolet rays.
【0008】本発明のダブルアルコキシドとしては、S
r〔Ta(OEt)6〕2,Sr(Ta(OiP
r)6〕2,Sr〔Nb(OEt)6〕2,Sr〔Nb
(OiPr)6〕2,Ba〔Ta(OEt)6〕2,B
a〔Ta(OiPr)6〕2,Ba〔Nb(OE
t)6〕2,Ba〔Nb(OiPr)6〕2の8種とそ
れらの混合物である(上記において、OEtはエトキシ
基、OiPrはイソプロポキシ基を表す)。また、ビス
マスターシャリアルコキシドとしては、ビスマスターシ
ャリブトキシドあるいはビスマスターシャリペントキシ
ドである。The double alkoxide of the present invention includes S
r [Ta (OEt) 6 ] 2 , Sr (Ta (OiP
r) 6 ] 2 , Sr [Nb (OEt) 6 ] 2 , Sr [Nb
(OiPr) 6 ] 2 , Ba [Ta (OEt) 6 ] 2 , B
a [Ta (OiPr) 6 ] 2 , Ba [Nb (OE
t) 6 ] 2 , Ba [Nb (OiPr) 6 ] 2 and mixtures thereof (in the above, OEt represents an ethoxy group and OiPr represents an isopropoxy group). Further, the bismaster charialkoxide is bismaster chaributoxide or bismaster charipentoxide.
【0009】本発明者等は原料のアルコキシドとして、
Sr〔Ta(OiPr)6〕2,Bi(OtPen)3
の可視、紫外域における光の吸収特性を測定したので図
1に示す。248nmにおける分子吸収係数は、図1よ
り、Sr〔Ta(OiPr)6〕2が494(1・mo
l−1・cm−1)、Bi(OtPen)3が630
(1・mol−1・cm−1)と求められる。このよう
に各アルコキシドは紫外域に大きな吸収を有しており、
その分解反応が促進される可能性を示している。The present inventors, as the raw material alkoxide,
Sr [Ta (OiPr) 6 ] 2 , Bi (OtPen) 3
The absorption characteristics of light in the visible and ultraviolet regions were measured and are shown in FIG. As shown in FIG. 1, the molecular absorption coefficient at 248 nm is 494 (1 · mo) for Sr [Ta (OiPr) 6 ] 2.
l −1 · cm −1 ), Bi (OtPen) 3 is 630
It is calculated as (1 · mol −1 · cm −1 ). In this way, each alkoxide has a large absorption in the ultraviolet region,
This indicates that the decomposition reaction may be accelerated.
【0010】そこで本発明者等は、通常のCVD装置を
用いて、CVDを行いながら、254nmと185nm
のスペクトルを有する低圧水銀ランプ、あるいは193
nmのArFエキシマレーザー光、あるいは248nm
のKrFエキシマレーザー光を原料ガスと基体の接触部
に照射してみた。その結果、これらのアルコキシドは、
光の照射を行わなくとも300℃程度の低温でも熱分解
し、薄膜を形成するが、低圧水銀ランプの光あるいはエ
キシマレーザー光を照射した場合、膜の成長速度が照射
しない場合の数倍になり、そのため、より低温でも製膜
することを見いだし本発明を完成するに至った。Therefore, the inventors of the present invention performed 254 nm and 185 nm while performing CVD using an ordinary CVD apparatus.
Low-pressure mercury lamp with a spectrum of 193, or 193
nm ArF excimer laser light or 248 nm
The KrF excimer laser light of 1 was irradiated to the contact portion between the raw material gas and the substrate. As a result, these alkoxides
Even if it is not irradiated with light, it is thermally decomposed even at a low temperature of about 300 ° C to form a thin film, but when it is irradiated with light from a low-pressure mercury lamp or excimer laser light, the growth rate of the film is several times that when it is not irradiated. Therefore, they have found that a film can be formed even at a lower temperature, and have completed the present invention.
【0011】本発明によれば、分解堆積時の基板温度を
下げることができる。そのため原料ガスが基板到達前
に、基板の熱で加熱される温度が下がるので、原料ガス
が基板に到達前に解離したり熱分解するものが減り、基
板上で実質的にはじめて分解堆積するので、ダブルアル
コキシドのA,B二元素の比と形成された膜のA,B二
元素の組成比が等しくなる。According to the present invention, the substrate temperature during decomposition and deposition can be lowered. As a result, the temperature at which the source gas is heated by the heat of the substrate decreases before it reaches the substrate, so that the amount of the source gas that dissociates or thermally decomposes before reaching the substrate is reduced, and it is substantially decomposed and deposited on the substrate. , The ratio of the two elements A and B of the double alkoxide is equal to the composition ratio of the two elements A and B of the formed film.
【0012】原料の希釈混合のガスとしては、アルゴン
あるいは窒素あるいは酸素元素を有する酸化性ガスを含
んだアルゴンまたは窒素が用いられる。ここで酸素元素
を有する酸化性ガスとは、酸素、オゾン、亜酸化窒素N
2Oなどである。ただし、これらの酸化性ガスを含んだ
雰囲気で紫外線照射した場合は、それらを含まない雰囲
気で紫外線照射して場合に比べて、原料ガスの分解がよ
り促進されるが、気相中で均一核生成する確率も増え、
必ずしも基板上での分解堆積が増すとは限らない。よっ
て、最適な膜形成のためには、紫外線の波長、強度に加
え、酸化性ガスの分圧や基板温度などの操作因子を最適
化する必要がある。As a gas for diluting and mixing the raw materials, argon, nitrogen, or argon or nitrogen containing an oxidizing gas containing an oxygen element is used. Here, the oxidizing gas containing oxygen element means oxygen, ozone, nitrous oxide N
2 O and the like. However, when UV irradiation is performed in an atmosphere containing these oxidizing gases, decomposition of the raw material gas is promoted more than in the case where UV irradiation is performed in an atmosphere not containing them, but uniform nuclei in the gas phase The probability of generating increases,
Degradation and deposition on the substrate is not always increased. Therefore, in order to form an optimal film, it is necessary to optimize the operating factors such as the wavelength and intensity of ultraviolet rays, the partial pressure of the oxidizing gas, and the substrate temperature.
【0013】本発明の紫外線の光源としては、185n
mと254nmに輝線を有する低圧水銀ランプが用いら
れる。このランプの光の強度の大半は254nmにあ
る。As the ultraviolet light source of the present invention, 185n
A low pressure mercury lamp with emission lines at m and 254 nm is used. Most of the light intensity of this lamp is at 254 nm.
【0014】さらに本発明の紫外線の光源としては、1
93nmと248nmの範囲で発振するエキシマレーザ
ーが用いられる。例えば、193nmで発振するArF
エキシマレーザーまたは222nmで発振するKrCl
エキシマレーザーまたは248nmで発振するKrFエ
キシマレーザーなどである。Further, as the ultraviolet light source of the present invention, 1
An excimer laser that oscillates in the range of 93 nm and 248 nm is used. For example, ArF oscillating at 193 nm
Excimer laser or KrCl oscillating at 222 nm
Examples include an excimer laser or a KrF excimer laser that oscillates at 248 nm.
【0015】以下に本発明の実施例を説明する。なお当
然のことであるが、以下の実施例は本発明の一例を示す
ものであって、本発明はこの実施例にのみ限定されるも
のではない。Examples of the present invention will be described below. It should be understood that the following embodiments are examples of the present invention, and the present invention is not limited to these embodiments.
【0016】[0016]
【実施例1】減圧熱CVD装置系(全圧5Torr)の
原料容器にSr〔Ta(OiPr)6〕210gを充填
し、該容器を180℃の恒温に保ち、アルゴンを90m
l/min導入し、Sr〔Ta(OiPr)6〕2の昇
華した蒸気を同伴させ、熱分解炉に送った。同時に別の
原料容器にBi〔OC(CH3)2C2H5〕310g
を充填し、該容器を80℃の恒温に保ち、アルゴンを3
0ml/min導入し、昇華した蒸気を同伴させ、熱分
解炉に送った。熱分解炉中では、Pt/SiO2/Si
基板を280℃に加熱しており、この基板上に上記の二
種のガスを混合して導き、基板表面に低圧水銀ランプか
らの主として185nmおよび254nmの紫外線を照
射し、20分間分解堆積をおこさしめた。最後に酸素と
アルゴンの混合ガスを流しながら、750℃、30分間
の結晶化処理を施した。こうして基板上に250nmの
厚さの薄膜を得た。この結晶構造をXRDで分析した結
果、SrBi2Ta2O9であった。Example 1 10 g of Sr [Ta (OiPr) 6 ] 2 was filled in a raw material container of a low pressure thermal CVD apparatus system (total pressure 5 Torr), the container was kept at a constant temperature of 180 ° C., and argon was kept at 90 m.
At 1 / min, the vapor was sublimated with Sr [Ta (OiPr) 6 ] 2 and was sent to a pyrolysis furnace. At the same time, 10 g of Bi [OC (CH 3 ) 2 C 2 H 5 ] 3 was placed in another raw material container.
And keep the container at a constant temperature of 80 ° C.
0 ml / min was introduced, and the sublimated vapor was entrained and sent to the pyrolysis furnace. In a pyrolysis furnace, Pt / SiO 2 / Si
The substrate is heated to 280 ° C., the above two kinds of gases are mixed and guided onto the substrate, and the substrate surface is irradiated with ultraviolet rays of mainly 185 nm and 254 nm from a low-pressure mercury lamp, and decomposed and deposited for 20 minutes. I tightened it up. Finally, crystallization treatment was performed at 750 ° C. for 30 minutes while flowing a mixed gas of oxygen and argon. Thus, a thin film having a thickness of 250 nm was obtained on the substrate. As a result of XRD analysis of this crystal structure, it was SrBi 2 Ta 2 O 9 .
【0017】[0017]
【実施例2】低圧水銀ランプの代わりに248nmの紫
外線を発振するKrFエキシマレーザーを用い、基板温
度を270℃とした他は、実施例1と同様な操作を行
い、250nmのSrBi2Ta2O9膜を得た。Example 2 using a KrF excimer laser that oscillates ultraviolet 248nm instead of the low-pressure mercury lamp, except that the substrate temperature of 270 ° C. performs the same operation as in Example 1, 250 nm SrBi 2 Ta 2 O of 9 films were obtained.
【0018】[0018]
【比較例】低圧水銀ランプを使用せずに、基板温度を3
20℃とした他は、実施例1と同様な操作を行い、厚さ
250nmのSrBi2Ta2O9膜を得た。同一条件
での実験を繰り返した場合の膜の元素比率Sr/Ta/
Biは比較例の方が実施例1、実施例2等に比べ、ばら
つきが多かった。[Comparative example] The substrate temperature was set to 3 without using the low-pressure mercury lamp.
The same operation as in Example 1 was performed except that the temperature was set to 20 ° C. to obtain a SrBi 2 Ta 2 O 9 film having a thickness of 250 nm. Element ratio Sr / Ta / of the film when the experiment under the same conditions is repeated
Bi had more variation in the comparative example than in the first and second examples.
【0019】[0019]
【発明の効果】本発明によれば、Bi層状強誘電体薄膜
を、原料として特定のダブルアルコキシドおよび特定の
ビスマスアルコキシドを用い、CVD法で製造する際、
原料ガスと基体の接触部に紫外線照射することにより、
良好な薄膜を得ることができる。この方法を用いること
により、膜の組成、結晶構造を制御しやすくなる。また
半導体装置製造において、歩どまりが向上するので大き
なメリットとなる。According to the present invention, when a Bi layered ferroelectric thin film is produced by a CVD method using a specific double alkoxide and a specific bismuth alkoxide as raw materials,
By irradiating the contact portion between the source gas and the substrate with ultraviolet rays,
A good thin film can be obtained. By using this method, the composition and crystal structure of the film can be easily controlled. Further, in semiconductor device manufacturing, the yield is improved, which is a great advantage.
【図1】本発明の原料として用いられるSr[Ta〔O
CH(CH3)2〕6]2とBi〔OC(CH3)2C
2H5〕3の光の吸収特性図FIG. 1 shows Sr [Ta [O used as a raw material of the present invention.
CH (CH 3 ) 2 ] 6 ] 2 and Bi [OC (CH 3 ) 2 C
2 H 5 ] 3 light absorption characteristics
A= Sr〔Ta(OiPr)6〕2 (5.0×10−3mol/1) B= Bi(OtPen)3 (3.0×10−3mol/1)A = Sr [Ta (OiPr) 6 ] 2 (5.0 × 10 −3 mol / 1) B = Bi (OtPen) 3 (3.0 × 10 −3 mol / 1)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/314 H01L 27/10 451 27/10 451 H01G 4/06 102 27/108 H01L 27/10 651 21/8242 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01L 21/314 H01L 27/10 451 27/10 451 H01G 4/06 102 27/108 H01L 27/10 651 21/8242
Claims (3)
r,Ba,B=Nb,Taのいずれかを表す)で表され
るビスマス層状強誘電体の薄膜を、AとBの原料として
A〔B(OR)6〕2(ここでRは、C2H5,CH
(CH3)2を表す)で表されるダブルアルコキシドを
用い、Biの原料としてビスマスターシャリブトキシド
あるいはビスマスターシャリペントキシドを用いて気相
成長法で製造する場合において、原料ガスと基体の接触
部に紫外線照射をすることを特徴とするビスマス層状強
誘電体薄膜の製造方法。1. ABi 2 B 2 O 9 (where A = S
A bismuth layered ferroelectric thin film represented by r, Ba, B = Nb, or Ta) is used as a raw material for A and B. A [B (OR) 6 ] 2 (where R is C 2 H 5 , CH
(CH 3 ) 2 ) and a bis-master charibtoxide or a bis-master charipentoxide as a raw material of Bi in the vapor phase growth method, the raw material gas is contacted with the substrate. A method for producing a bismuth layered ferroelectric thin film, which comprises irradiating a portion with ultraviolet light.
に輝線を有する低圧水銀ランプであることを特徴とする
請求項1のビスマス層状強誘電体薄膜の製造方法。2. The ultraviolet light sources are 185 nm and 254 nm
The method for producing a bismuth layered ferroelectric thin film according to claim 1, which is a low-pressure mercury lamp having a bright line at the bottom.
の範囲で発振するエキシマレーザーであることを特徴と
する請求項1のビスマス層状強誘電体薄膜の製造方法。3. The ultraviolet light sources are 193 nm and 248 nm.
The method of manufacturing a bismuth layered ferroelectric thin film according to claim 1, wherein the excimer laser oscillates in the range of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7281143A JPH0987848A (en) | 1995-09-22 | 1995-09-22 | Production of bismuth layer ferroelectric thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7281143A JPH0987848A (en) | 1995-09-22 | 1995-09-22 | Production of bismuth layer ferroelectric thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0987848A true JPH0987848A (en) | 1997-03-31 |
Family
ID=17634970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7281143A Pending JPH0987848A (en) | 1995-09-22 | 1995-09-22 | Production of bismuth layer ferroelectric thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0987848A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465260B1 (en) | 1999-06-28 | 2002-10-15 | Hyundai Electronics Industries Co., Ltd. | Semiconductor device having a ferroelectric capacitor and method for the manufacture thereof |
JP2004253680A (en) * | 2003-02-21 | 2004-09-09 | Hitachi Ltd | Metal oxide precursor solution and precursor thin film, method of forming the thin film, and capacitor using the same |
GB2429201A (en) * | 2003-02-05 | 2007-02-21 | Univ Cambridge Tech | The use of bismuth (methoxy methyl propanolate)3 as a precursor in forming a ferroelectric material |
-
1995
- 1995-09-22 JP JP7281143A patent/JPH0987848A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465260B1 (en) | 1999-06-28 | 2002-10-15 | Hyundai Electronics Industries Co., Ltd. | Semiconductor device having a ferroelectric capacitor and method for the manufacture thereof |
GB2429201A (en) * | 2003-02-05 | 2007-02-21 | Univ Cambridge Tech | The use of bismuth (methoxy methyl propanolate)3 as a precursor in forming a ferroelectric material |
JP2004253680A (en) * | 2003-02-21 | 2004-09-09 | Hitachi Ltd | Metal oxide precursor solution and precursor thin film, method of forming the thin film, and capacitor using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5138520A (en) | Methods and apparatus for material deposition | |
US4702936A (en) | Gas-phase growth process | |
EP1136588A2 (en) | MOCVD method of tantalum oxide film | |
KR20020064517A (en) | Thin Film Deposition Method | |
US20040022960A1 (en) | Method for preparing dielectric films at a low temperature | |
JPH11269652A (en) | Thin film manufacturing method | |
JP2002211924A (en) | Multiphase lead germanate film and method of depositing the same | |
JP3502504B2 (en) | Method for depositing silicon oxide layer | |
US5443030A (en) | Crystallizing method of ferroelectric film | |
JPH01500444A (en) | Photochemical vapor deposition method with increased oxide layer growth rate | |
JP3032416B2 (en) | CVD thin film forming method | |
JP2663471B2 (en) | Manufacturing method of insulating thin film | |
JP3488007B2 (en) | Thin film forming method, semiconductor device and manufacturing method thereof | |
JPH0987848A (en) | Production of bismuth layer ferroelectric thin film | |
JPS60245217A (en) | Thin film formation equipment | |
Bedoya et al. | MOCVD of lanthanum oxides from La (tmhd) 3 and La (tmod) 3 precursors: a thermal and kinetic investigation | |
JPH09110430A (en) | Production of thin film of bismuth-containing laminar ferroelectric | |
JPH09110429A (en) | Production of thin film of bismuth-containing laminar ferroelectric | |
KR100450366B1 (en) | Process for Preparing Bismuth Compounds | |
JPH0967197A (en) | Production of thin ferroelectric film of bismuth titanate | |
JPS61216449A (en) | Method and apparatus for forming pattern thin-film | |
AU636818B2 (en) | Methods and apparatus for material deposition | |
JP3823399B2 (en) | Method for producing tungsten bronze type oxide dielectric thin film | |
JPH0959089A (en) | Growing of chemical vapor phase | |
JPH04354879A (en) | Formation of metal oxide film |