JPH0985442A - Controller for setting droplet transfer state in arc welding - Google Patents
Controller for setting droplet transfer state in arc weldingInfo
- Publication number
- JPH0985442A JPH0985442A JP24140695A JP24140695A JPH0985442A JP H0985442 A JPH0985442 A JP H0985442A JP 24140695 A JP24140695 A JP 24140695A JP 24140695 A JP24140695 A JP 24140695A JP H0985442 A JPH0985442 A JP H0985442A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- voltage
- current
- droplet transfer
- short
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 252
- 238000012546 transfer Methods 0.000 title claims abstract description 93
- 239000007921 spray Substances 0.000 claims abstract description 28
- 239000010953 base metal Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 abstract description 12
- 238000012937 correction Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 238000005507 spraying Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002789 length control Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シールドガスを使
用した消耗電極式のアーク溶接において、溶滴移行形態
を一つの工作物の溶接継手毎に指定できるようにしたア
ーク溶接の溶滴移行形態設定管理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a consumable electrode type arc welding using a shield gas, in which the droplet transfer mode can be designated for each welded joint of one workpiece. Regarding the setting management device.
【0002】[0002]
【従来の技術】一つの溶接工作物を溶接する場合、ビー
ド外観が要求される継手、強度が要求される継手及びこ
れらの両方が要求される継手が混在しており、実際の溶
接に際して、作業者は、仕様書や経験等により、これら
の継手に応じて溶滴移行形態、即ち、主に電磁力による
溶滴離脱現象の形態を選択している。2. Description of the Related Art When welding one welded work piece, there are mixed joints that require bead appearance, joints that require strength, and joints that require both of these. Based on specifications, experience, etc., the person selects the droplet transfer mode, that is, the mode of the droplet separation phenomenon mainly due to electromagnetic force, according to these joints.
【0003】とりわけ、大きな径の溶滴が継手に溶着す
る短絡移行型、溶滴がスプレー化して溶着するスプレー
移行型、1滴1滴の溶滴離脱動作に同期して制御できる
1パルス1溶滴移行型のパルス溶接等は、電気、機械製
造工場の比較的小規模工作物の溶接現場で使用されてい
る。因みに、短絡移行型は薄板の溶接に適し、スプレー
移行型は厚板の溶接、パルス溶接は外観(スパッタの低
減)を重視した溶接継手に適するとされている。In particular, a short-circuit transfer type in which droplets having a large diameter are welded to the joint, a spray transfer type in which droplets are sprayed and welded, and one pulse / one melt controllable in synchronization with the droplet detachment operation of one drop Drop transfer type pulse welding and the like are used in welding sites of relatively small-scale workpieces in electric and machine manufacturing plants. By the way, it is said that the short-circuit transfer type is suitable for welding thin plates, the spray transfer type is suitable for welding thick plates, and the pulse welding is suitable for welded joints where importance is placed on appearance (reduction of spatter).
【0004】[0004]
【発明が解決しようとする課題】上記溶滴移行形態の選
択動作を自動溶接(半自動溶接)プログラムに組込む場
合、本溶接前の継手毎に溶滴移行形態を仕様入力により
指定し、本溶接中に電流及び電圧の溶接条件を切替え設
定することが考えられるが、継手毎のチップ母材間距離
(トーチ先端のチップと母材との距離)に応じて上記溶
接条件が異なるので、同じ溶滴移行形態だからといって
チップ母材間距離が異なる二つの継手に対し同じ溶接条
件を設定することはできない。とりわけ、消耗電極式の
アーク溶接の場合、チップ母材間距離が異なればアーク
長も変化し溶接電流も変わるので、溶滴移行形態を維持
する最適電圧も変わってくる。When incorporating the above-mentioned operation of selecting a droplet transfer form into an automatic welding (semi-automatic welding) program, the droplet transfer form is specified by inputting specifications for each joint before the main welding, and during the main welding. It is conceivable to switch and set the welding conditions of current and voltage for the same droplet, but the welding conditions differ depending on the distance between the tip base metal (distance between the tip of the torch and the base metal) of each joint. The same welding condition cannot be set for two joints having different distances between the tip base metals even if they are in the transition form. Particularly, in the case of consumable electrode type arc welding, if the distance between the tip base materials is different, the arc length is changed and the welding current is also changed, so that the optimum voltage for maintaining the droplet transfer form also changes.
【0005】そこで、自動溶接プログラムに溶滴移行形
態の選択動作を組込むためには、同じ溶滴移行形態でも
継手毎に異なるチップ母材間距離と最適電圧の変化に対
して適正な電流と電圧の溶接条件を設定する必要がある
が、従来はこのような継手毎に異なる溶接条件を設定す
る考えがない。また、溶滴移行形態の変化は、電流が大
きいほどスプレー移行型となるが、消耗電極式のアーク
溶接の場合、ワイヤ送給速度を一定としてもチップ母材
間距離が溶接中変動するとエネルギーのバランスが崩れ
電流も変動するので、スプレー移行型の最適条件から外
れてしまう。これは短絡移行型の場合も同様である。Therefore, in order to incorporate the droplet transfer mode selection operation into the automatic welding program, even if the same droplet transfer mode is selected, appropriate currents and voltages are applied to different tip base metal distances and optimum voltage changes for each joint. However, conventionally, there is no idea to set different welding conditions for each joint. Also, the change of droplet transfer form becomes spray transfer type as the current increases, but in the case of consumable electrode type arc welding, if the wire feed rate is constant and the distance between the tip base metal fluctuates during welding, Since the balance is lost and the current also fluctuates, it deviates from the optimum conditions of the spray transfer type. This also applies to the short-circuit transfer type.
【0006】従って、自動溶接プログラムに溶滴移行形
態の選択動作を組込むためには、目的とする溶滴移行形
態の溶接条件の適正な設定と、溶接中の溶滴移行形態の
維持のための溶接条件の制御が必要になる。本発明は、
上記従来の問題点に鑑みなされたもので、溶接電流項と
チップ母材間距離項と電圧定数項とからなる多項式にて
溶接電圧を定義し、該多項式によって継手に応じた電流
と電圧の関係を自在に設定し得るようにするとともに、
溶接中のチップ母材間距離の変動に対して溶滴移行形態
の最適状況を管理し得るようにすることを解決すべき課
題とする。Therefore, in order to incorporate the droplet transfer mode selection operation into the automatic welding program, it is necessary to properly set the welding conditions for the target droplet transfer mode and to maintain the droplet transfer mode during welding. It is necessary to control the welding conditions. The present invention
In view of the above conventional problems, a welding voltage is defined by a polynomial consisting of a welding current term, a distance between tip base metals and a voltage constant term, and the relationship between the current and the voltage according to the joint is defined by the polynomial. It is possible to freely set
The problem to be solved is to be able to control the optimum state of droplet transfer morphology with respect to variations in the distance between tip base materials during welding.
【0007】[0007]
【課題を解決するための手段】上記課題を解決した請求
項1の発明の要旨は、(a)溶接トーチ先端のチップを
介してワイヤに与える溶接電流をパルス化するパルスモ
ードと直流化若しくは交流化する通常モードに切替え可
能な溶接電源と、(b)継手毎に要求される溶接品質項
目を満足すべく仕様入力時にオペレータが指定する溶滴
移行形態に応じて上記溶接電源に溶接中、上記パルスモ
ードと通常モードとに切替えるモード切替信号を送出す
る溶接コントローラとを具備し、上記溶接コントローラ
が、(c)上記溶接電源から上記ワイヤに与える溶接電
圧を溶接電流項とチップ母材間距離項と電圧定数項とか
らなる多項式で定義し、初期設定時、仕様入力に基づい
て上記多項式を決定することによりパルス溶接、マグ溶
接のスプレー移行型及び短絡移行型の各溶滴移行形態の
溶接条件を設定したことにある。The gist of the invention of claim 1 which has solved the above-mentioned problems is (a) a pulse mode for converting a welding current applied to a wire through a tip of a welding torch tip to a pulse mode and a direct current or an alternating current. The welding power source that can be switched to the normal mode, and (b) the welding power source is being welded to the welding power source in accordance with the droplet transfer mode specified by the operator at the time of inputting specifications to satisfy the welding quality items required for each joint. A welding controller that sends a mode switching signal for switching between a pulse mode and a normal mode, wherein the welding controller (c) gives a welding voltage applied to the wire from the welding power source to a welding current term and a tip base metal distance term. Is defined by a polynomial consisting of the voltage constant term and the voltage constant term, and at the time of initial setting, the above polynomial is determined based on the specification input. And there to the setting of the welding condition of each droplet transfer form of short circuit transfer type.
【0008】請求項2の発明の要旨は、上記溶接コント
ローラが、上記溶接コントローラは、パルス溶接設定の
溶接中、上記ワイヤの先端が母材に接触する短絡現象の
回数が予め設定した回数となるように該短絡現象の回数
を検出して溶接電圧を制御することにある。請求項3の
発明の要旨は、上記溶接コントローラが、スプレー移行
型又は短絡移行型設定の溶接中、検出ワイヤ送給速度と
検出溶接電流より求めたチップ母材間距離を上記多項式
に代入して溶接電圧を制御することにある。The gist of the invention of claim 2 is that, in the welding controller, the number of short-circuiting phenomena in which the tip of the wire comes into contact with the base metal during welding in the pulse welding setting is a preset number. Thus, the welding voltage is controlled by detecting the number of times of the short circuit phenomenon. The gist of the invention of claim 3 is that the welding controller substitutes the distance between the tip base metal obtained from the detected wire feeding speed and the detected welding current into the polynomial during the welding of the spray transfer type or the short circuit transfer type. It is to control the welding voltage.
【0009】請求項4の発明の要旨は、上記溶接コント
ローラが、(a)スプレー移行型設定の場合も、上記ワ
イヤの先端が母材に接触する短絡現象の回数が予め設定
した回数となるように該短絡現象の回数を検出して溶接
電圧を制御することにある。The gist of the invention of claim 4 is that, even when the welding controller is set to (a) the spray transfer type, the number of short circuits in which the tip of the wire comes into contact with the base metal is a preset number. First, the number of times of the short circuit phenomenon is detected to control the welding voltage.
【0010】[0010]
【発明の実施の形態】以下、本発明のアーク溶接の溶滴
移行形態設定管理装置を図面を参照して詳細に説明す
る。図1に示すように、本発明のアーク溶接の溶滴移行
形態設定管理装置を適用した設備は、溶接トーチ(以
下、トーチと略す)1を保持した多関節ロボット2と、
出力端子3a,3bの溶接電力出力に基づいて上記トー
チ先端のチップ16へ給電する溶接電源3と、上記溶接
電力出力の電流Iと電圧Vを上記溶接電源3から出力さ
せるべく該溶接電源3へ指令する各指令パラメータ
PI ,PV を自動設定してその各指令信号i,vを送出
する溶接コントローラ4と、上記多関節ロボット2を溶
接速度の指令信号を含むティーチングデータTDに基づ
いて制御するロボットコントローラ5と、ドラム6に充
填された消耗電極としてのワイヤ7を上記トーチ1へ送
給するワイヤ送給装置8と、溶接品が載置される治具9
とから構成されている。ここで、溶接電源3は、上記チ
ップ16を介してワイヤ7に与える溶接電流をパルス化
するパルスモードと直流化若しくは交流化する通常モー
ドに切替えることができる。BEST MODE FOR CARRYING OUT THE INVENTION A droplet transfer mode setting control device for arc welding according to the present invention will be described below in detail with reference to the drawings. As shown in FIG. 1, the equipment to which the droplet transfer mode setting control device for arc welding according to the present invention is applied includes an articulated robot 2 holding a welding torch (hereinafter abbreviated as torch) 1,
Based on the welding power output of the output terminals 3a, 3b, the welding power source 3 for supplying power to the tip 16 of the torch tip, and the welding power source 3 for outputting the current I and voltage V of the welding power output. A welding controller 4 that automatically sets command parameters P I and P V to be commanded and sends out the command signals i and v, and controls the articulated robot 2 based on teaching data TD including a command signal of welding speed. Robot controller 5, a wire feeder 8 for feeding the wire 7 as a consumable electrode filled in the drum 6 to the torch 1, and a jig 9 on which a welded article is placed.
It is composed of Here, the welding power source 3 can be switched between a pulse mode in which the welding current applied to the wire 7 via the tip 16 is pulsed and a normal mode in which the welding current is converted into a direct current or an alternating current.
【0011】なお、多関節ロボット2には、ティーチン
グデータTDを溶接速度に基づいて実際のロボット軸部
を作動させる駆動信号の形式に変換する波形操作回路が
付加されているものとする。上記多関節ロボット2に組
付けられた上記ワイヤ送給装置8は、曲げ矯正器11、
エンコーダ12、ワイヤ7を挟持した一対の送給ローラ
13a,13b、該ローラ13a,13bを駆動する回
転アクチュエータ14及びワイヤ7をトーチ1にガイド
するトーチケーブ1aを有し、ワイヤ7をトーチ1にお
けるノズル部15内のチップ16より突出させるように
している。そして、回転アクチュエータ14は、ロボッ
トコントローラ4から溶接電流iの大きさ(平均値)に
比例した送り速度の駆動信号で制御されてワイヤ7を繰
出すようになっており、そのときの検出ワイヤ送給速度
MRa はエンコーダ12より溶接コントローラ4に送出
される。It is assumed that the articulated robot 2 is provided with a waveform operation circuit for converting the teaching data TD into a drive signal format for activating the actual robot shaft based on the welding speed. The wire feeding device 8 assembled in the articulated robot 2 includes a bending straightener 11,
An encoder 12, a pair of feed rollers 13a and 13b sandwiching the wire 7, a rotary actuator 14 that drives the rollers 13a and 13b, and a torch cable 1a that guides the wire 7 to the torch 1, and the wire 7 is a nozzle in the torch 1. The tip 16 in the portion 15 is projected. Then, the rotary actuator 14 is controlled by the drive signal of the feed rate proportional to the magnitude (average value) of the welding current i from the robot controller 4 to feed out the wire 7, and the detection wire feed at that time is fed. The feed rate MR a is sent from the encoder 12 to the welding controller 4.
【0012】しかして、溶接コントローラ4は、溶接条
件(電流、電圧及び速度)の自動設定と外乱に対する溶
接条件の自動修正とを行うもので、そのハードウエアを
概念的に表した図2に示すように、継手形状、姿勢、溶
接法(パルス溶接、マグ溶接の場合のスプレー移行型及
び短絡移行型)、脚長、チップ母材間距離及び板厚又は
必要な場合に溶接速度若しくはすみ肉溶接以外の溶着断
面積等の基本仕様が、例えば一つの製品におけるN個の
継手毎に入力される仕様入力手段41と、該仕様入力手
段41に入力された基本仕様より溶接条件を演算にて設
定する初期条件設定手段42と、該初期条件設定手段4
2の演算に用いる各演算式が格納された演算式メモリ4
3と、上記初期条件設定手段42によって設定された溶
接条件を格納する条件ファイル45と、上記初期条件設
定手段42で設定した溶接条件のうち初期電流指令パラ
メータPI 及び初期電圧指令パラメータPV を外乱に応
じた修正電流指令パラメータPI ′及び修正電圧指令パ
ラメータPV ′とする条件自動管理補正手段44とを主
体に構成される。The welding controller 4 automatically sets the welding conditions (current, voltage and speed) and automatically corrects the welding conditions with respect to disturbance, and its hardware is conceptually shown in FIG. , Joint shape, posture, welding method (spray transfer type and short circuit transfer type in the case of pulse welding and mag welding), leg length, tip base metal distance and plate thickness, or welding speed or fillet welding if necessary The basic specifications such as the welding cross-sectional area of (1) are set, for example, by the specification inputting means 41 which is input for every N joints in one product, and the welding conditions are calculated from the basic specifications input to the specification inputting means 41. Initial condition setting means 42 and the initial condition setting means 4
Calculation formula memory 4 storing each calculation formula used for calculation 2
3, the condition file 45 for storing the welding conditions set by the initial condition setting means 42, and the initial current command parameter P I and the initial voltage command parameter P V among the welding conditions set by the initial condition setting means 42. It is mainly composed of a condition automatic management correcting means 44 for setting a corrected current command parameter P I ′ and a corrected voltage command parameter P V ′ according to disturbance.
【0013】デジタル信号形式の上記修正電流指令パラ
メータPI ′及び修正電圧指令パラメータPV ′は、D
/A変換器によってアナログ形式の電流指令信号i及び
電圧指令信号vに変換されて溶接電源3に入力され、出
力端子3a,3bより導出すべき電流及び電圧を指令す
るようになっている。また、溶接コントローラ4は、溶
接電源3に溶接電流をパルス化するパルスモードと直流
化若しくは交流化する通常モードに切替えるためのモー
ド切替信号4aを送出するようになっている。The correction current command parameter P I ′ and the correction voltage command parameter P V ′ in digital signal form are D
The / A converter converts the analog current command signal i and the voltage command signal v into the welding power source 3, and commands the current and voltage to be derived from the output terminals 3a and 3b. Further, the welding controller 4 sends to the welding power source 3 a mode switching signal 4a for switching between a pulse mode in which the welding current is pulsed and a normal mode in which the welding current is turned into a direct current or an alternating current.
【0014】更に、溶接コントローラ4には、溶接電源
3から出力している電流及び電圧の検出溶接電流I
a (パルス溶接時はパルス電流の平均電流)及び検出溶
接電圧Va がサンプリングされるようになっている。こ
こで、上記初期電流指令パラメータPI 及び修正電流指
令パラメータPI ′と溶接電流Iとの関係並びに初期電
圧指令パラメータPV 及び修正電圧指令パラメータ
PV ′と溶接電圧Vとの関係は、溶接電源3の特性を補
正した関係に設定される。即ち、溶接コントローラ4内
で演算した溶接電流と溶接電圧が溶接電源が変わっても
出力するように、各電流指令パラメータPI ,PI ′及
び各電圧指令パラメータPV ,PV ′は溶接電源毎に補
正される。Furthermore, the welding controller 4 detects the welding current I and the voltage output from the welding power source 3 by the welding current I.
The a (average current of pulse current during pulse welding) and the detected welding voltage V a are sampled. Here, the relationship between the initial current command parameter P I and the modified current command parameter P I ′ and the welding current I and the relationship between the initial voltage command parameter P V and the modified voltage command parameter P V ′ and the welding voltage V are as follows. The relationship is set such that the characteristics of the power supply 3 are corrected. That is, the current command parameters P I and P I ′ and the voltage command parameters P V and P V ′ are set so that the welding current and the welding voltage calculated in the welding controller 4 are output even if the welding power source changes. It is corrected every time.
【0015】一方、ロボットコントローラ5は、継手毎
のティーチングデータメモリをもつ電子制御装置であ
り、実際の溶接にあたって、該ロボットコントローラ5
は各メモリのデータを順次に読出して多関節ロボット2
の各軸を駆動するとともに、一つのメモリを読出す毎に
条件呼出し信号5aを溶接コントローラ4に送出して条
件ファイル45をアクセスする。これにより、ティーチ
ングデータTDに同期して継手毎の溶接条件(PI ,P
V 、I,V及び溶接速度WS)が読出される。On the other hand, the robot controller 5 is an electronic control device having a teaching data memory for each joint, and the robot controller 5 is used for actual welding.
Reads the data in each memory in order and reads the articulated robot 2
Each of the axes is driven and a condition calling signal 5a is sent to the welding controller 4 every time one memory is read out to access the condition file 45. As a result, the welding conditions (P I , P I) for each joint are synchronized with the teaching data TD.
V , I, V and welding speed WS) are read.
【0016】なお、演算式メモリ43に格納する各演算
式の組は、継手毎の実験によって予め求めている。ま
た、本溶接開始と停止を意味するアークON/OFF信
号は、ロボットコントローラ5より溶接コントローラ4
に送出される。次に上記構成により本発明の溶滴移行形
態の設定及び溶接中の溶滴移行形態の維持管理がいかに
行われるかを図3〜図6を参照して説明する。The set of arithmetic expressions stored in the arithmetic expression memory 43 is obtained in advance by an experiment for each joint. Further, the arc ON / OFF signal, which means start and stop of main welding, is sent from the robot controller 5 to the welding controller 4
Sent to Next, how to set the droplet transfer form of the present invention and maintain and manage the droplet transfer form during welding according to the above configuration will be described with reference to FIGS.
【0017】全体のプログラムの流れは、図3及び図4
に示すように、ステップS1 〔基本仕様入力〕及びステ
ップS2 〔最適溶接条件の自動設定〕からなる準備処理
と、ステップS4 〔本溶接開始〕、ステップS18〔条件
自動管理〕及び溶接終了判断(ステップS14)とを含む
本溶接処理とからなり、準備処理は仕様入力手段41及
び初期条件設定手段42が行う処理、本溶接は条件自動
管理補正手段44が行う処理である。ただし、上記準備
処理と本溶接処理との間には、溶接継手にギャップ(ス
キ間)があるか否かの判断ステップS3 が挿入されてお
り、ギャップが有る場合はステップS17〔ギャップ部の
自動管理〕に進む。なお、このギャップが有る場合の自
動管理と、本溶接における処理とは本発明と直接関係が
ないため説明を省略する。The overall program flow is shown in FIGS. 3 and 4.
As shown in step S 1 [Basic specifications input] and a preparation process consisting of steps S 2 [Auto setting of the optimum welding condition] Step S 4 [the welding start], step S 18 [Requirement automatic management] and welding The main welding process includes a termination judgment (step S 14 ). The preparation process is a process performed by the specification input unit 41 and the initial condition setting unit 42, and the main welding is a process performed by the condition automatic management correction unit 44. However, between the preparation process and the welding process, the welded joint and is determined whether the step S 3 there is a gap (between the ski) is inserted into, if the gap is there a step S 17 [gap Automatic management]. Note that the automatic management when there is this gap and the processing in the main welding are not directly related to the present invention, and therefore the description thereof is omitted.
【0018】本発明の溶滴移行形態の設定は、上記ステ
ップS2 で行われ、基本仕様入力時に指定される継手毎
の溶滴移行形態に応じた条件設定がなされ、溶接中の溶
滴移行形態の維持管理はステップS18でなされている。
即ち、図3のステップS2 では、ステップS21〔脚長設
定〕(一層盛りか多層盛りかの決定等)で脚長を決定し
た後、溶接速度を自動設定するのか、溶接速度を手動設
定するのかを判断(ステップS22)し、溶接速度自動設
定及び溶接速度手動設定のそれぞれについて、パルス溶
接が指定された場合の条件設定(ステップS23,ステッ
プS24)と、マグ溶接におけるスプレー移行型溶接が指
定された場合の条件設定(ステップS25,ステップ
S27)及びマグ溶接における短絡移行型の溶接が指定さ
れた場合の条件設定(ステップS26,ステップS28)と
が実行される。The setting of the droplet transfer form of the present invention is performed in the above step S 2 , and the condition setting is made according to the droplet transfer form of each joint specified at the time of inputting the basic specifications. The maintenance of the form is performed in step S 18 .
That is, in step S 2 of FIG. 3, whether the welding speed is automatically set or the welding speed is manually set after the leg length is determined in step S 21 [leg length setting] (determination of one-layer pile or multi-layer pile etc.). the determination (step S 22) and, for each of the welding speed automatically set and the welding speed manual configuration, condition setting when pulse welding is specified (step S 23, step S 24), spray transfer type welding in MAG welding There condition setting if specified (step S 25, step S 27) and the and conditions set when the short-circuit transfer type welding in MAG welding is specified (step S 26, step S 28) is executed.
【0019】上記各ステップS23〜S28では、先ず、ス
テップS21で決定した脚長若しくは脚長と手動入力の溶
接速度に基づき上記溶接電源3からワイヤ7に与える溶
接電流Iを決定する。パルス溶接の場合は、パルス電流
の平均値を決定している。実際のパルス電流は、ベース
電流と臨界電流を超えたピーク電流とからなる。この
後、溶接電圧Vを次の多項式で定義している。[0019] In the above steps S 23 to S 28, first, determines the welding current I supplied from said welding power source 3 based on the welding speed of the determined leg or leg and manual input in step S 21 to the wire 7. In the case of pulse welding, the average value of pulse current is determined. The actual pulse current consists of a base current and a peak current that exceeds the critical current. After this, the welding voltage V is defined by the following polynomial.
【0020】[0020]
【数式1】 V=Ka ・I+Kb ・EXT+Kc Iは溶接電流、EXTはチップ母材間距離、Ka ,
Kb ,Kc は使用ガス、ワイヤ、電源等によって決まる
定数であり、特にKcはスプレー移行型と短絡移行型を
決める定数である。本発明では、各定数Ka ,Kb ,K
c をチップ母材間距離を変えた各溶滴移行形態毎の実験
により予め決定し、これら決定した各定数の各多項式が
演算式メモリ43中に用意されている。そして基本仕様
入力時に継手毎にチップ母材間距離と溶滴移行形態が指
定されると、それに応じた多項式を選出し、溶接電圧V
を決定する。[Equation 1] V = K a · I + K b · EXT + K c I the welding current, EXT chip base distance, K a,
K b, K c is a constant determined by using gas, wire, power supply, etc., particularly Kc is a constant that determines the shorted transitional spray transfer type. In the present invention, the constants K a, K b, K
c is determined in advance by an experiment for each droplet transfer mode in which the distance between the tip base materials is changed, and each polynomial of the determined constants is prepared in the arithmetic expression memory 43. When the distance between the tip base metal and the droplet transfer form is specified for each joint at the time of inputting the basic specifications, a polynomial is selected according to the specified distance and the welding voltage V
To determine.
【0021】ここで、スプレー移行型の場合と短絡移行
型の場合の上記多項式における各定数は、Ka 及びKb
をほぼ等しく、Kc を短絡移行型よりスプレー移行型を
大きくする。短絡移行型はアーク電圧VA (アーク長)
をほぼ決める溶接電圧Vがスプレー移行型より小さい溶
接だからである。このように溶接電圧Vを溶接電流項と
チップ母材間距離項と電圧定数項とからなる多項式で定
義することにより、継手毎の任意のチップ母材間距離に
応じた溶接条件での各溶滴移行形態を設定することがで
きる。なお、設定された電流と電圧を出力させる溶接電
源3への指令は、これらの各指令パラメータPI ,PV
を求めて各指令信号v,iを溶接電源3に指令する。Here, the constants in the above polynomial for the spray transfer type and the short circuit transfer type are K a and K b, respectively.
Substantially equal, to increase the spray transfer type from short circuiting transfer-type K c. Short circuit transfer type has arc voltage V A (arc length)
This is because the welding voltage V that substantially determines the welding is smaller than the spray transfer type welding. In this way, the welding voltage V is defined by a polynomial consisting of a welding current term, a tip base metal distance term, and a voltage constant term, so that each welding under welding conditions according to an arbitrary tip base metal distance for each joint. The droplet transfer mode can be set. The commands to the welding power source 3 for outputting the set current and voltage are the command parameters P I and P V, respectively.
For each command signal v and i to the welding power source 3.
【0022】こうして目的とする溶滴移行形態の適正な
溶接条件を継手に応じて設定した後本溶接では、指定さ
れた溶滴移行形態の維持のための溶接条件の制御が行わ
れる。本溶接における溶滴移行形態の維持のための溶接
条件の制御は、ロボットコントローラ5からアークON
信号が出力されると、これを受けて溶接コントローラ4
がステップS5 〔溶接パラメータ(Ia ,Va ,Sa M
Ra )のサンプリング〕〜ステップS14〔アークOFF
信号入力?〕の制御ループを実行することである。In this way, after the proper welding conditions of the target droplet transfer form are set according to the joint, in the main welding, the welding condition control for maintaining the specified droplet transfer form is performed. The welding condition for maintaining the droplet transfer form in the main welding is controlled by turning on the arc from the robot controller 5.
When a signal is output, the signal is received and the welding controller 4 receives it.
Step S 5 [Welding parameters (I a , V a , S a M
Sampling of R a )] to Step S 14 [Arc OFF
Signal input? ] Executing the control loop.
【0023】上記溶接パラメータのサンプリングでは、
検出ワイヤ送給速度 MRa 、検出溶接電流Ia 、検出
溶接電圧Va 及び検出短絡回数Sa (制御インターバル
当たりの短絡回数で1未満の小数も含む)をサンプリン
グしている。ここで、検出短絡回数Sa は、検出溶接電
圧Va (短絡時の電圧)が所定のしきい値より低下する
制御インターバル当たりの回数とする。In sampling the above welding parameters,
The detection wire feeding speed MR a , the detection welding current I a , the detection welding voltage V a, and the number of detected short-circuits S a (including the fraction of less than 1 in the number of short-circuits per control interval) are sampled. Here, the number of detected short circuits S a is the number of times per control interval at which the detected welding voltage V a (voltage at the time of short circuit) falls below a predetermined threshold value.
【0024】上記制御ループは、基本仕様入力時に決定
するステップS6 〔電流一定制御か〕の判断でステップ
S7 〔電流一定制御〕の溶接を行うか、ステップS
8 〔脚長一定制御〕及びステップS9 〔溶込み深さ確保
制御〕を相補的に行う溶接かに分岐する。電流一定制御
の溶接とは、電流を一定とすることを優先させ、溶込み
深さを一定に維持するもので、薄板の溶接に適し、溶接
強度の確保は勿論、溶接電流の増大による抜けの発生を
防止する。The control loop performs the welding in step S 7 [constant current control] depending on the determination in step S 6 [constant current control] determined at the time of inputting the basic specifications, or step S 6.
8 [leg constant control] and Step S 9 [penetration depth ensures control] branches to or complementarily performed welding. Welding with constant current control gives priority to keeping the current constant and keeps the penetration depth constant.It is suitable for welding thin plates and not only secures the welding strength, but also eliminates the loss due to the increase in welding current. Prevent occurrence.
【0025】脚長一定制御と規定溶込み深さ確保制御と
を相補的に行う溶接とは、ワイヤ送給速度一定を優先し
て脚長一定制御を行う間に、電流の変動、特に低下して
もある値以下になると溶接電流を増大させて規定溶込み
深さを確保するものであり、厚板の溶接に適する。規定
溶込み深さの値は基本仕様入力時に設定する。更に、溶
接コントローラ4は、上記電流の制御を行いつつ、パル
ス溶接の場合はステップS10〔短絡回数・アーク長一定
制御〕を実行し、マグ溶接の場合はステップS11〔スプ
レー有〕の判断の後、ステップS12〔スプレー移行型制
御〕かステップS13〔短絡移行型制御〕を実行する。Welding in which the constant leg length control and the control for ensuring the specified penetration depth are complementarily performed means that even if the current fluctuations, in particular, decrease during the constant leg length control by giving priority to the constant wire feeding speed. When it is below a certain value, the welding current is increased to secure the specified penetration depth, which is suitable for welding thick plates. The specified penetration depth value is set when entering the basic specifications. Further, the welding controller 4 executes step S 10 [short-circuit count / arc length constant control] in the case of pulse welding while controlling the above current, and determines step S 11 [with spray] in the case of mag welding. After that, step S 12 [spray transfer type control] or step S 13 [short circuit transfer type control] is executed.
【0026】上記パルス溶接の場合の短絡回数・アーク
長一定制御とは、基本仕様入力時に設定した短絡回数に
検出短絡回数Sa がほぼ等しく(具体的には下限値S1
と上限値S2 の範囲内にあり)、安定するように電圧を
制御するもので、スパッタ発生量を抑制するとともに、
アーク長を最小(一定)に保って、アンダーカット及び
ブローホール等の発生を未然に防止するものである。The short-circuit count / arc length constant control in the above-mentioned pulse welding means that the detected short-circuit count Sa is substantially equal to the short-circuit count set at the time of inputting the basic specifications (specifically, the lower limit value S 1
And within the range of the upper limit S 2 ), the voltage is controlled so as to be stable, and the spatter generation amount is suppressed and
The arc length is kept to a minimum (constant) to prevent undercuts and blow holes from occurring.
【0027】上記マグ溶接の場合のスプレー移行型制御
とは、初期条件設定手段42で演算により設定したスプ
レー移行型溶接の最適電圧(スプレー化電圧という)を
常に維持する機能で、もし、外乱によりチッブ母材間距
離EXTが変化した場合にも、それに応じてスプレー化
電圧を演算補正し、検出溶接電圧Va がスプレー化電圧
とほぼ等しくなるように電圧を制御し、最適ビード外観
を保つものである。The spray transfer type control in the case of the above-mentioned MAG welding is a function of always maintaining the optimum voltage (called spraying voltage) of the spray transfer type welding set by the calculation in the initial condition setting means 42, if the disturbance causes disturbance. Even if the distance between the chip base materials EXT changes, the spraying voltage is calculated and corrected accordingly, and the voltage is controlled so that the detected welding voltage V a becomes almost equal to the spraying voltage, and the optimum bead appearance is maintained. Is.
【0028】上記マグ溶接の場合の短絡移行型制御と
は、初期条件設定手段42で演算により設定した短絡移
行型溶接の最適電圧を常に維持する機能で、もし、外乱
によりチップ母材間距離EXTが変化した場合にもこれ
に応じて短絡移行型電圧を演算補正し、検出溶接電圧V
a が短絡移行型の最適電圧とほぼ等しくなるように電圧
を制御し、最適ビード外観を保つものである。The short-circuit transition type control in the case of the above-mentioned mag welding is a function of always maintaining the optimum voltage of the short-circuit transition type welding set by the calculation in the initial condition setting means 42. When the voltage changes, the short-circuit transfer type voltage is calculated and corrected accordingly, and the detected welding voltage V
The voltage is controlled so that a is approximately equal to the optimum voltage of the short-circuit transfer type, and the optimum bead appearance is maintained.
【0029】また、上記制御ループと並列に処理される
ステップS15〔EXT演算〕及びステップS16〔表示
(警告)〕は、チップ母材間距離を演算して、この距離
が短か過ぎる場合と長過ぎる場合に警告するものである
が、この処理で求めたチップ母材間距離はマグ溶接の場
合の制御に用いている。具体的にパルス溶接の制御で
は、1パルス1溶滴移行型を維持するため、図5におけ
るステップS42〔パルス有〕の判断がパルス有(Y)と
なり(この時、溶接コントローラ4からパルスモードと
するモード切替信号4aが溶接電源3に指令される)、
ステップS43〔アーク長aの演算〕以降の処理(図4の
ステップS10〔短絡回数・アーク長一定制御〕に相当)
に進む。このアーク長aは、チップ母材間距離EXT,
溶接電圧V,パルス溶接電流のピーク電流Ia ,ベース
電流Ib 及び平均電流Iavをパラメータとする演算式で
求めることができる。Further, in step S 15 [EXT calculation] and step S 16 [display (warning)] which are processed in parallel with the control loop, the distance between the chip base materials is calculated, and if this distance is too short, If it is too long, a warning is given, but the distance between the chip base materials obtained in this process is used for control in the case of mag welding. Specifically, in the pulse welding control, since the one pulse / one droplet transfer type is maintained, the determination in step S42 [with pulse] in FIG. 5 is with pulse (Y) (at this time, from the welding controller 4 to the pulse mode). The mode switching signal 4a is commanded to the welding power source 3),
Step S 43 [arc length calculating a] subsequent processing (corresponding to Step S 10 of FIG. 4 [number of short circuits, the arc length constant control])
Proceed to. This arc length a is the distance between the chip base materials EXT,
It can be obtained by an arithmetic expression using the welding voltage V, the peak current I a of the pulse welding current, the base current I b, and the average current I av as parameters.
【0030】得られた演算アーク長aは、続くステップ
S44〔aO ≦a〕で最大許容アーク長a0 と比較し、演
算アーク長aが最大許容アーク長ao より大きい場合、
ステップS47〔PV ′=PV −K146 〕の演算を行って
(K146 は単位変化量)、ステップS50〔PV ′→D/
A変換〕に進み、続くステップS51〔PV ′アナロク信
号出力〕により、修正電圧指令パラメータPV ′に基づ
く電圧指令信号vで溶接電源3を指令する。The obtained calculated arc length a is compared with the maximum allowable arc length a 0 in the following step S 44 [a O ≤a]. If the calculated arc length a is larger than the maximum allowable arc length a o ,
Step S 47 [P V ′ = P V −K 146 ] is performed (K 146 is a unit change amount), and step S 50 [P V ′ → D /
Then, the welding power source 3 is commanded by the voltage command signal v based on the corrected voltage command parameter P V ′ in step S 51 [P V ′ analog signal output].
【0031】次に、ステップS44で演算アーク長aが最
大許容アーク長ao より小さい場合、ステップS45〔S
a ≦S1 〕に進んで、サンプリング時に得られた検出短
絡回数Sa を短絡回数の下限値S1 と比較する。そして
検出短絡回数Sa が短絡回数の下限値S1 以下の場合、
ステップS48〔PV ′=PV −ΔPV 〕の演算を行っ
て、ステップS50〔PV ′→D/A変換〕に進む。これ
により、短絡回数が下限値S1 より減少したときに修正
電圧指令パラメータPV ′を減少させて(短絡回数とア
ーク長(アーク電圧)の関係は反比例の関係にある)短
絡回数を増加させる。Next, if the operation arc length a maximum allowable arc length a o is smaller than in step S 44, step S 45 [S
a ≦ S 1 ], the detected short circuit frequency S a obtained at the time of sampling is compared with the lower limit value S 1 of the short circuit frequency. When the number of detected short circuits S a is less than or equal to the lower limit value S 1 of the number of short circuits,
The calculation of step S 48 [P V ′ = P V −ΔP V ] is performed, and the process proceeds to step S 50 [P V ′ → D / A conversion]. As a result, when the number of short circuits decreases below the lower limit S 1 , the correction voltage command parameter P V ′ is decreased (the relationship between the number of short circuits and the arc length (arc voltage) is inversely proportional) and the number of short circuits is increased. .
【0032】また、演算アーク長aが最大許容アーク長
a0 より小さい場合において、ステップS45の判断が
「検出短絡回数Sa が短絡回数の下限値S1 より大き
い」の場合、ステップS46〔Sa ≦S2 〕に進んで、検
出短絡回数Sa を短絡回数の上限値S2 と比較する。そ
して、検出短絡回数Sa が短絡回数の上限値S2 より大
きい場合、ステップS49〔PV ′=PV +ΔPV 〕の演
算を行って、ステップS50〔PV ′→D/A変換〕に進
む。これにより、短絡回数が上限値S2 より大きいとき
に修正電圧指令パラメータPV ′を増大させて短絡回数
を減少させる。If the calculated arc length a is smaller than the maximum allowable arc length a 0 and the judgment in step S 45 is “the detected short circuit count S a is larger than the lower limit S 1 of the short circuit count”, step S 46 is executed. Proceed to [S a ≤ S 2 ] and compare the detected short circuit count S a with the upper limit S 2 of the short circuit count. When the detected number of short circuits S a is larger than the upper limit value S 2 of the number of short circuits, the calculation of step S 49 [P V ′ = P V + ΔP V ] is performed and step S 50 [P V ′ → D / A conversion ] To proceed. As a result, when the number of short circuits is larger than the upper limit value S 2 , the correction voltage command parameter P V ′ is increased and the number of short circuits is reduced.
【0033】更に、ステップS46の判断が「検出短絡回
数Sa が短絡回数の上限値S1 以下」の場合、初期電圧
指令パラメータの修正を行うことなくステップS14に進
む。こうしてパルス溶接におけるスパッタ発生量を抑制
し、アーク長を最小に保って、アンダーカット及びブロ
ーホール等の発生を未然に防止した1パルス1溶滴移行
型の溶接条件が維持されることになる。Furthermore, if the determination of step S 46 is "detected number of short circuits S a is an upper limit values S 1 following short number", the flow proceeds to step S 14 without performing the correction of the initial voltage command parameters. In this way, the amount of spatter generated in pulse welding is suppressed, the arc length is kept to a minimum, and the one-pulse / one-droplet transfer type welding condition in which undercuts and blowholes are prevented from occurring is maintained.
【0034】次に基本仕様入力時にマグ溶接を設定した
場合は、図5におけるステップS42〔パルス有〕の判断
がマグ溶接(N)となり(この時、溶接コントローラ4
から通常モードとするモード切替信号4aが溶接電源3
に指令される)、図6のフローチャートに進む。図6で
は更に、ステップS11によってスプレー移行型溶接を行
うか短絡移行型溶接を行うか否かを判断する。スプレー
移行型溶接を行う場合は、ステップS52〔EXT=f
(MRa ,Ia )〕以降のPI制御に進み、短絡移行型
溶接を行う場合は、ステップS57以降のPI制御に進
む。Next, when the MAG welding is set at the time of inputting the basic specifications, the determination at step S42 [with pulse] in FIG. 5 is MAG welding (N) (at this time, the welding controller 4
From the welding power source 3 to the normal mode switching signal 4a
Command) to the flow chart of FIG. In FIG. 6, it is further determined in step S 11 whether spray transfer type welding or short circuit transfer type welding is performed. When performing spray transfer type welding, step S 52 [EXT = f
(MR a , I a )] and the following PI control. When short-circuit transfer type welding is performed, the PI control is performed after step S 57 .
【0035】スプレー移行型溶接及び短絡移行型溶接の
各PI制御の演算には、初期設定時に使用した数式1の
多項式が再び用いられ、先ず、ステップS5 で検出した
検出溶接電流Ia 及び検出ワイヤ送給速度MRa よりチ
ップ母材間距離EXTを演算し(ステップS52,ステッ
プS57)、ステップS53,ステップS58で数式1の多項
式に上記Ia 及びEXTを代入してスプレー化電圧Vsc
及び短絡移行型用の電圧VC を演算している。The polynomial expression of Formula 1 used at the initial setting is again used for the calculation of each PI control of the spray transfer type welding and the short circuit transfer type welding. First, the detected welding current I a and the detected welding current I a detected in step S 5 are detected. The inter-chip-base-material distance EXT is calculated from the wire feeding speed MR a (steps S 52 and S 57 ), and I a and EXT are substituted into the polynomial of Formula 1 in steps S 53 and S 58 to form a spray. Voltage V sc
And the voltage V C for the short-circuit transfer type is calculated.
【0036】次に、例えばスプレー移行型のPI制御
は、上記演算により求めたスプレー化電圧Vscと検出溶
接電圧Va との差分ΔVを求め(ステップS54)、続い
て上記差分ΔVがほぼ零となるまでの溶接電流の変化に
要する時間Ti+(積分項)をΔVを時間で積分して求め
(ステップS55)、更に初期電圧指令パラメータPV に
ΔV及びTi+による修正量を加減して修正電圧パラメー
タPV ′を算出(ステップS56)ものである。Next, for example, in the spray transfer type PI control, a difference ΔV between the spraying voltage V sc obtained by the above calculation and the detected welding voltage V a is obtained (step S 54 ), and then the difference ΔV is substantially obtained. The time T i + (integral term) required to change the welding current until it becomes zero is obtained by integrating ΔV with time (step S 55 ), and the initial voltage command parameter P V is adjusted by the correction amount by ΔV and T i +. Then, the corrected voltage parameter P V ′ is calculated (step S 56 ).
【0037】短絡移行型のPI制御も同様であり、ステ
ップS59は比例項VC −Va の、ステップS60は積分項
Ti+の、ステップS61は修正電圧指令パラメータPV ′
の算出である。このように本発明では溶接中も、チップ
母材間距離が変動してアーク長が変化しワイヤ送給速度
が変わっても、ワイヤ送給速度と検出溶接電流よりチッ
プ母材間距離を演算し、これら演算チップ母材間距離と
検出溶接電流を初期設定時の多項式に代入して溶接電圧
を求め、検出溶接電圧との差分がほぼ零になるように溶
接電圧を制御しているので、溶接中のチップ母材間距離
の変動にかかわらず、指定された溶滴移行形態を維持す
る最適電圧に修正することができる。The same applies to the PI control of the short-circuit transfer type. Step S 59 is the proportional term V C -V a , step S 60 is the integral term T i + , and step S 61 is the corrected voltage command parameter P V ′.
Is calculated. As described above, in the present invention, even during welding, even if the distance between the tip base metals changes and the arc length changes and the wire feeding speed changes, the distance between the tip base materials is calculated from the wire feeding speed and the detected welding current. , Welding voltage is calculated by substituting these calculated tip base metal distance and detected welding current into the polynomial at the time of initial setting, and the welding voltage is controlled so that the difference with the detected welding voltage becomes almost zero. It can be corrected to an optimum voltage that maintains the specified droplet transfer morphology regardless of the variation in the distance between the tip base materials.
【0038】他の実施の形態として、スプレー移行型の
場合、パルス溶接の場合と同様に、図5のプログラムに
より、アーク長と短絡回数を演算して検出溶接電圧より
溶接電圧の指令パラメータを修正してもよい。これによ
れば、スプレー移行型の場合も、パルス溶接と同様に、
アーク長を一定に保った溶滴移行形態の維持を図ること
ができる。As another embodiment, in the case of the spray transfer type, as in the case of pulse welding, the arc length and the number of short circuits are calculated by the program of FIG. 5 and the command parameter of the welding voltage is corrected from the detected welding voltage. You may. According to this, even in the case of spray transfer type, like pulse welding,
It is possible to maintain the droplet transfer form with the arc length kept constant.
【0039】なお、本発明の請求項ではパルス溶接とス
プレー移行型溶接の場合、アーク長を一定に保つことは
要件となっていないが、ステップS43、ステップS44及
びステップS47の要件を付加することも可能である。In the claims of the present invention, in the case of pulse welding and spray transfer type welding, keeping the arc length constant is not a requirement, but the requirements of step S 43 , step S 44 and step S 47 are satisfied. It is also possible to add.
【0040】[0040]
【発明の効果】以上述べたように本発明によれば、目的
とする溶滴移行形態の適正な溶接条件を継手に応じて設
定し、溶接中に継手毎に指定された溶滴移行形態を選択
動作して切替える機能を自動溶接プログラムに組込むこ
とができる。とりわけ、請求項2、請求項3及び請求項
4の態様では、溶接品質項目を満足しつつ指定された溶
滴移行形態を溶接中も維持する管理が可能となる。As described above, according to the present invention, proper welding conditions for the intended droplet transfer form are set according to the joint, and the droplet transfer form specified for each joint during welding is set. The function of selecting and switching can be incorporated into the automatic welding program. Particularly, in the modes of claims 2, 3, and 4, it is possible to perform management to maintain the designated droplet transfer mode while welding while satisfying the welding quality items.
【図1】 本発明を具体化した設備の全体を示す説明図
である。FIG. 1 is an explanatory diagram showing the entire equipment embodying the present invention.
【図2】 溶接コントローラをハードウエアで表した場
合の図1の概念図である。FIG. 2 is a conceptual diagram of FIG. 1 when the welding controller is represented by hardware.
【図3】 本発明の一実施の形態に係るアーク溶接の溶
滴移行形態設定管理装置の初期設定を中心とした全体の
動作を示すフローチャートである。FIG. 3 is a flowchart showing an overall operation centered on initial setting of a droplet transfer form setting management device for arc welding according to an embodiment of the present invention.
【図4】 本発明の一実施の形態に係るアーク溶接の溶
滴移行形態設定管理装置の溶接中の制御を中心とした全
体の動作を示すフローチャートである。FIG. 4 is a flowchart showing an overall operation centered on control during welding of the droplet transfer pattern setting management device for arc welding according to the embodiment of the present invention.
【図5】 パルス溶接の場合の本発明による電圧制御の
プログラムを示すフローチャートである。FIG. 5 is a flowchart showing a voltage control program according to the present invention in the case of pulse welding.
【図6】 マグ溶接の場合の本発明による電圧制御のプ
ログラムを示すフローチャートである。FIG. 6 is a flowchart showing a program for voltage control according to the present invention in the case of mag welding.
1は溶接トーチ、2はロボット、3は溶接電源、4は溶
接コントローラ、12はエンコーダ、14は回転アクチ
ュエータ、44は条件自動管理補正手段、EXTはチッ
プ母材間距離、Iは溶接電流、Vは溶接電圧、Iaは検
出溶接電流、Va は検出溶接電圧、MRa は検出ワイヤ
送給速度、iは電流指令信号、vは電圧指令信号であ
り、各図において同一の要素には共通の符号を付す。1 is a welding torch, 2 is a robot, 3 is a welding power source, 4 is a welding controller, 12 is an encoder, 14 is a rotary actuator, 44 is a condition automatic management correction means, EXT is a distance between chip base materials, I is a welding current and V welding voltage, I a is detected welding current, V a is detected welding voltage, MR a detection wire feed rate, i is the current command signal, v is the voltage command signal, common to the same elements in the drawings Is attached.
Claims (4)
に与える溶接電流をパルス化するパルスモードと直流化
若しくは交流化する通常モードに切替え可能な溶接電源
と、継手毎に要求される溶接品質項目を満足すべく仕様
入力時にオペレータが指定する溶滴移行形態に応じて上
記溶接電源に溶接中、上記パルスモードと通常モードと
に切替えるモード切替信号を送出する溶接コントローラ
とを具備し、 上記溶接コントローラは、上記溶接電源から上記ワイヤ
に与える溶接電圧を溶接電流項とチップ母材間距離項と
各溶滴移行形態によって定まる電圧定数項とからなる多
項式で定義し、初期設定時、仕様入力に基づいて上記多
項式を選定することによりパルス溶接、マグ熔接のスプ
レー移行型及び短絡移行型の各溶滴移行形態の溶接電圧
を設定することを特徴とするアーク溶接の溶滴移行形態
設定管理装置。1. A welding power source capable of switching between a pulse mode for pulsing a welding current applied to a wire through a tip of a welding torch and a normal mode for directing or alternating current, and a welding quality item required for each joint. The welding controller sends a mode switching signal for switching between the pulse mode and the normal mode during welding to the welding power source according to the droplet transfer mode specified by the operator at the time of inputting the specifications so as to satisfy Is defined by a polynomial consisting of a welding current term, a tip base metal distance term, and a voltage constant term determined by each droplet transfer mode from the welding power source to the wire. By selecting the above polynomial, the welding voltage for each droplet transfer type of pulse welding, MAG welding spray transfer type and short-circuit transfer type can be set. Droplet transfer mode setting management device of an arc welding, characterized by.
定の溶接中、上記ワイヤの先端が母材に接触する短絡現
象の回数が予め設定した回数となるように該短絡現象の
回数を検出して溶接電圧を制御することにより、パルス
溶接の溶滴移行形態を維持するようにしたことを特徴と
する請求項1記載のアーク溶接の溶滴移行形態設定管理
装置。2. The welding controller detects the number of short-circuit phenomena such that the number of short-circuit phenomena in which the tip of the wire comes into contact with the base metal is a preset number of times during welding in the pulse welding setting and performs welding. The droplet transfer form setting management device for arc welding according to claim 1, wherein the droplet transfer form for pulse welding is maintained by controlling the voltage.
型又は短絡移行型設定の溶接中、検出ワイヤ送給速度と
検出溶接電流より求めたチップ母材間距離を上記多項式
に代入して溶接電圧を制御することにより、各溶滴移行
形態を維持するようにしたことを特徴とする請求項1又
は2項記載のアーク溶接の溶滴移行形態設定管理装置。3. The welding controller controls the welding voltage by substituting the distance between the tip base metal obtained from the detected wire feeding speed and the detected welding current into the above polynomial during the welding of the spray transfer type or the short circuit transfer type setting. By doing so, each droplet transfer form is maintained, and the droplet transfer form setting management device for arc welding according to claim 1 or 2, characterized in that.
型設定の場合も、上記ワイヤの先端が母材に接触する短
絡現象の毎秒回数が予め設定した回数となるように該短
絡現象の回数を検出して溶接電圧を制御することを特徴
とする請求項2記載のアーク溶接の溶滴移行形態設定管
理装置。4. The welding controller detects the number of short-circuiting phenomena such that the number of short-circuiting phenomena in which the tip of the wire comes into contact with the base metal is a preset number of times even in the spray transfer type setting. The welding voltage setting control device for arc welding according to claim 2, wherein the welding voltage is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24140695A JP3186539B2 (en) | 1995-09-20 | 1995-09-20 | Drop welding mode setting management device for arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24140695A JP3186539B2 (en) | 1995-09-20 | 1995-09-20 | Drop welding mode setting management device for arc welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0985442A true JPH0985442A (en) | 1997-03-31 |
JP3186539B2 JP3186539B2 (en) | 2001-07-11 |
Family
ID=17073818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24140695A Expired - Fee Related JP3186539B2 (en) | 1995-09-20 | 1995-09-20 | Drop welding mode setting management device for arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3186539B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009262197A (en) * | 2008-04-25 | 2009-11-12 | Sumitomo Light Metal Ind Ltd | Manufacturing method of mig weld joint of steel material and aluminum material and mig weld joint of steel material and aluminum material |
US10625358B2 (en) | 2012-11-07 | 2020-04-21 | Panasonic Intellectual Property Management Co., Ltd. | Arc welder and method for controlling arc welding |
US20210402502A1 (en) * | 2019-12-25 | 2021-12-30 | Daihen Corporation | Arc Welding Method and Arc Welding Device |
CN114734121A (en) * | 2022-04-13 | 2022-07-12 | 北京工业大学 | Device and method for actively controlling and transitioning molten drop form |
CN115383260A (en) * | 2022-10-11 | 2022-11-25 | 湘潭大学 | A Control Method of Droplet Transfer Frequency in GTAW Process Based on Arc Sensing |
-
1995
- 1995-09-20 JP JP24140695A patent/JP3186539B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009262197A (en) * | 2008-04-25 | 2009-11-12 | Sumitomo Light Metal Ind Ltd | Manufacturing method of mig weld joint of steel material and aluminum material and mig weld joint of steel material and aluminum material |
US10625358B2 (en) | 2012-11-07 | 2020-04-21 | Panasonic Intellectual Property Management Co., Ltd. | Arc welder and method for controlling arc welding |
US20210402502A1 (en) * | 2019-12-25 | 2021-12-30 | Daihen Corporation | Arc Welding Method and Arc Welding Device |
CN113857628A (en) * | 2019-12-25 | 2021-12-31 | 株式会社达谊恒 | Arc welding method and arc welding device |
CN114734121A (en) * | 2022-04-13 | 2022-07-12 | 北京工业大学 | Device and method for actively controlling and transitioning molten drop form |
CN114734121B (en) * | 2022-04-13 | 2023-08-18 | 北京工业大学 | Device and method for actively controlling and transiting molten drop form |
CN115383260A (en) * | 2022-10-11 | 2022-11-25 | 湘潭大学 | A Control Method of Droplet Transfer Frequency in GTAW Process Based on Arc Sensing |
CN115383260B (en) * | 2022-10-11 | 2024-05-07 | 湘潭大学 | A method for controlling droplet transfer frequency in GTAW process based on arc sensing |
Also Published As
Publication number | Publication date |
---|---|
JP3186539B2 (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11638966B2 (en) | Short arc welding system | |
US9718142B2 (en) | Method and apparatus for welding with CV control | |
US6259059B1 (en) | Arc welder and torch for same | |
US9050677B2 (en) | Arc welding method and arc welding apparatus | |
CA2377266C (en) | System and method for controlling an electric arc welder | |
CN108290240B (en) | Pulse arc welding control method and pulse arc welding device | |
US10195681B2 (en) | Short arc welding system | |
KR20200118891A (en) | Gas shield arc welding control method and control device | |
US8575516B2 (en) | Arc welding power source | |
JPH0985442A (en) | Controller for setting droplet transfer state in arc welding | |
CA3068228C (en) | Systems and methods for controlled arc and short phase time adjustment | |
EP4501509A1 (en) | Control method of weld bead form, electric power source control method, additive manufacturing method, control device, electric power source device, welding system, and additive manufacturing system and program | |
JP3813732B2 (en) | Method and apparatus for controlling pulse arc welding | |
JP4211724B2 (en) | Arc welding control method and arc welding apparatus | |
JP3311403B2 (en) | Automatic arc welding control method and apparatus | |
JP2638401B2 (en) | Wire feeding speed control device for consumable electrode arc welding machine | |
US20220274196A1 (en) | Method and Device for Stabilizing a Transition between Various Welding-Process Phases of a Welding Process | |
JP2005074492A (en) | Automatic arc welding apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20110511 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |