[go: up one dir, main page]

JPH0982994A - Photovoltaic device and manufacture thereof - Google Patents

Photovoltaic device and manufacture thereof

Info

Publication number
JPH0982994A
JPH0982994A JP7258144A JP25814495A JPH0982994A JP H0982994 A JPH0982994 A JP H0982994A JP 7258144 A JP7258144 A JP 7258144A JP 25814495 A JP25814495 A JP 25814495A JP H0982994 A JPH0982994 A JP H0982994A
Authority
JP
Japan
Prior art keywords
conductive layer
layer
transparent conductive
opaque
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7258144A
Other languages
Japanese (ja)
Inventor
Azusa Iwai
梓 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7258144A priority Critical patent/JPH0982994A/en
Publication of JPH0982994A publication Critical patent/JPH0982994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost photovoltaic device which has high photoelectric conversion efficiency, low manufacturing facility cost and improved yield, and a method for manufacturing the same. SOLUTION: The photovoltaic device comprises a plurality of photovoltaic elements that insulator layers 12, 52, conductive layers 13, 53, semiconductor junction layers 14, 54 and transparent conductive layers 15, 55 are sequentially laminated on opaque conductive bases 11, 31 and connected in series via electrode connectors 17b, 57b made of metal, wherein the layers 13, 53 have a plurality of conductive layer defects not covering with the layers 13, 53, the bases 11, 31 are electrically brought into contact with the layers 15, 55 at the defects, and not electrically brought into contact with the region having no defect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池に代表され
る光起電力装置とその製造方法に関する。
TECHNICAL FIELD The present invention relates to a photovoltaic device represented by a solar cell and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光起電力素子の一つで、その半導体接合
層がアモルファスシリコンから構成されるものは、基体
をシリコンウエハーに限定せず、ガラス、ステンレス、
有機樹脂などの安価な基体も選択できる点が優れてい
る。特にステンレス、有機樹脂は、フィルムに加工する
ことで、ガラスにはない可撓性を備えることができる。
基体をフィルムにすることで、ロール状になったフィル
ム基体から、フィルム基体を薄膜形成室に引き出し薄膜
を形成し、薄膜が形成されたフィルム基体を、再びロー
ル状に巻き取るロール・ツー・ロール方式での薄膜形成
が可能となる。ロール・ツー・ロール方式の装置は、フ
ィルム基体を搬送しながら薄膜を形成することで、薄膜
形成室より大幅に長い基体に均一な薄膜を形成すること
が可能であり、また多重膜の連続形成も、基体搬送方向
にターゲットを並べることで、簡単に実現できるという
特徴を持っている。ロール・ツー・ロール方式で形成さ
れた、金属フィルムを基体として用いたアモルファスシ
リコン薄膜の製造方法は、米国特許第4,369,73
0号明細書に開示されている。可焼性に加え耐熱性にも
優れたステンレスフィルムを基体に用いた光起電力素子
では、基体が不透明であるために、光を半導体接合層へ
基体を透して入射させる基体・透明導電層・半導体接合
層・導電層の順に形成された構成ではなく、基体・導電
層・半導体接合層・透明導電層の順に形成された構成が
適している。またステンレスは導電性があり、基体自体
が半導体接合層の基体側電極としての機能を備えること
ができるため、基体に絶縁体を用いた構成では少なくと
も1層は必要となる基体側電極としての導電層を省略で
きる。基体・導電層・半導体接合層・透明導電層の順に
形成された構成の光起電力素子において、半導体接合層
の光入射側の集電は、透明導電層と、透明導電層上に形
成された導電性の高い物質からなる集電電極でなされて
きた。集電電極は透明導電層形成後に、所望の集電電極
パターンが繰り抜かれたマスクを介して金属を蒸着、あ
るいは金属ワイヤーを導電性の樹脂で接着することで形
成されてきた。こうして形成された光起電力素子を複数
個、直列接続及び並列接続することで、所望の電力を出
力する光起電力装置が形成される。ロール・ツー・ロー
ル方式で形成された、光起電力素子を複数個接続した光
起電力装置は、米国特許第4,410,558号明細書
に開示されている。光起電力装置の光電変換効率を高め
るためには、光起電力装置を構成する個々の光起電力素
子において、透明導電層と集電電極からなる光入射側電
極はできるだけ低抵抗にして、発熱による損失を小さく
する必要がある。太陽電池に用いられる可視光透過率が
90%以上の透明酸化物からなる透明導電層は、金属の
100倍程度の抵抗を有するため、光入射側電極の低抵
抗化のためには、電流が透明導電層内を流れる距離を短
くする手段が有効である。そのため、透明導電層上に集
電電極を稠密に配置し、透明導電層を電流が流れる距離
を短くすることで、光入射側電極の低抵抗化がなされて
きた。
2. Description of the Related Art One type of photovoltaic element whose semiconductor junction layer is made of amorphous silicon is not limited to a silicon wafer as a base, but may be made of glass, stainless steel,
The advantage is that inexpensive substrates such as organic resins can be selected. In particular, stainless steel and organic resin can be provided with flexibility that glass does not have, by processing them into a film.
A roll-to-roll process in which a film is formed by drawing the substrate into a thin film forming chamber by forming the film into a thin film by forming the substrate into a film, and winding the film substrate on which the thin film is formed into a roll again. A thin film can be formed by the method. The roll-to-roll system is capable of forming a thin film while transporting a film substrate to form a uniform thin film on a substrate that is significantly longer than the thin film forming chamber. Also, it has a feature that it can be easily realized by arranging the targets in the substrate transfer direction. A method for producing an amorphous silicon thin film using a metal film as a substrate formed by a roll-to-roll method is disclosed in US Pat. No. 4,369,73.
No. 0 discloses it. In a photovoltaic element using a stainless steel film, which has excellent heat resistance as well as calcinability, the base is opaque, so that light is transmitted through the base to the semiconductor bonding layer and the transparent conductive layer A suitable structure is not a structure in which a semiconductor junction layer and a conductive layer are formed in this order, but a structure in which a substrate, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer are formed in this order. Further, since stainless steel has conductivity, and the base itself can have a function as a base-side electrode of the semiconductor bonding layer, at least one layer is required in the structure using the insulator as the base-side electrode. Layers can be omitted. In a photovoltaic device having a structure in which a substrate, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer are formed in this order, current collection on the light incident side of the semiconductor bonding layer is formed on the transparent conductive layer and the transparent conductive layer. This has been done with a collecting electrode made of a highly conductive substance. The collector electrode has been formed by forming a transparent conductive layer and then vapor-depositing a metal through a mask in which a desired collector electrode pattern is cut out or bonding a metal wire with a conductive resin. By connecting a plurality of photovoltaic elements thus formed in series and in parallel, a photovoltaic device that outputs desired power is formed. A photovoltaic device formed by a roll-to-roll method and having a plurality of photovoltaic elements connected thereto is disclosed in US Pat. No. 4,410,558. In order to improve the photoelectric conversion efficiency of the photovoltaic device, in each photovoltaic element that constitutes the photovoltaic device, the light-incident side electrode consisting of the transparent conductive layer and the collecting electrode should have a resistance as low as possible to generate heat. It is necessary to reduce the loss due to. The transparent conductive layer made of a transparent oxide having a visible light transmittance of 90% or more used in a solar cell has a resistance that is about 100 times that of a metal. Means for shortening the distance flowing through the transparent conductive layer is effective. Therefore, the resistance of the light incident side electrode has been reduced by arranging the collecting electrodes densely on the transparent conductive layer and shortening the distance through which the current flows in the transparent conductive layer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、透明導
電層上に集電電極を稠密に配置するほど、集電電極が入
射光を遮ぎる面積は増加し、光電変換で得られる電力の
一部を損失する。一方、集電電極の幅を細くすること
で、集電電極が入射光を遮ぎる面積を小さくできるが、
この場合には、集電電極の抵抗が高まり発熱による電力
損失が大きくなる。このように光入射側電極の抵抗によ
る損失と、集電電極が入射光を遮ぎることによる損失
は、一方が小さくなれば他方が大きくなるという関係で
あり、従って、集電電極の配置パターンと集電電極の幅
を変化させた場合、光入射側電極の抵抗による損失と、
集電電極が入射光を遮ぎることによる損失の合計は、あ
る最小値以下にはならないという問題があった。本発明
者の設計した光電変換素子では、最小でも最適動作点出
力の3〜4%を占めるジュール熱の発生があった。ま
た、集電電極は透明導電層形成後に、所望の集電電極パ
ターンが繰り抜かれたマスクを介して金属を蒸着、ある
いは金属ワイヤーを導電性の高い樹脂で接着することで
形成されるが、金属蒸着は、蒸着粒子の衝突あるいは蒸
着時の加熱により半導体接合層を劣化させる問題があ
り、金属ワイヤーの接着は、全工程の機械化が困難な複
雑な工程であるため、製造コストを増大させる問題があ
った。こうした問題を解決する方法として、基体・導電
層・半導体接合層・透明導電層の順に形成された構成の
光起電力素子において、透明導電層上に集電電極を形成
することを取り止め、透明導電層の下層で集電する方法
がある。例えば、透明絶縁基体を用いることを前提にし
ている特開昭61−20371号公報は、透明絶縁体基
体・透明導電層・半導体接合層・裏面導電層がこの順で
形成された光起電力素子において、半導体接合層および
裏面導電層から絶縁された状態でこれらを貫通した金属
接続体を、透明導電層と接続することで、光入射側電極
の抵抗を低下させる方法が開示されている。また、絶縁
体基体を用いることを前提としている特開平2−118
1号公報には、絶縁体基体上に第2導電層・絶縁層・第
1導電層・半導体接合層・透明導電層の順に形成された
光起電力素子において、半導体接合層および第1導電層
から絶縁された状態でこれらを貫通し、透明導電層と第
2導電層が接続することで、光起電力側電極の抵抗を低
下させる方法が開示されている。ところで、このような
特開昭61−20371号公報で開示されたものにおい
ては、光を半導体接合層へ基体を透して入射させるため
に透明基体を用いている。このような装置においては、
ロール・ツー・ロール方式での大面積にわたる薄膜形成
と、有機樹脂フィルムでは困難な基体温度が300℃以
上での薄膜形成とが可能な、可撓性、耐熱性に優れたス
テンレスなどの金属フィルムからなる不透明導電基体を
用いる場合には、適用することができない。さらに双方
の特許で開示される方法は、半導体接合層が被膜されて
いない時点あるいは導電層で被膜された時点で、レー
ザ、ドライエッチング、ウエットエッチングなどの手段
で、透明導電層まで貫通する穴を開ける工程を含まずに
は成立しないが、この工程は、穴近傍における半導体接
合層の短絡、半導体接合層と導電層との合金化、あるい
は被膜されていない場合には半導体接合層が受ける物理
的損傷など、半導体接合層の特性すなわち光電変換効率
を低下させる問題があった。
However, as the collecting electrodes are densely arranged on the transparent conductive layer, the area where the collecting electrodes block the incident light increases, and a part of the electric power obtained by photoelectric conversion is reduced. To lose. On the other hand, by narrowing the width of the collecting electrode, the area where the collecting electrode blocks the incident light can be reduced,
In this case, the resistance of the collector electrode is increased and the power loss due to heat generation is increased. As described above, the loss due to the resistance of the light incident side electrode and the loss due to the current collecting electrode blocking the incident light have a relationship that the smaller one becomes, the larger the other becomes. When the width of the collector electrode is changed, the loss due to the resistance of the light incident side electrode,
There is a problem that the total loss due to the current collecting electrode blocking the incident light does not fall below a certain minimum value. In the photoelectric conversion element designed by the present inventor, Joule heat occupying 3 to 4% of the optimum operating point output was generated at the minimum. Further, the collector electrode is formed by forming a transparent conductive layer and then depositing a metal through a mask in which a desired collector electrode pattern is cut out or bonding a metal wire with a highly conductive resin. Vapor deposition has a problem of deteriorating the semiconductor bonding layer due to collision of vapor deposition particles or heating at the time of vapor deposition, and adhesion of metal wires is a complicated process in which it is difficult to mechanize the whole process, and therefore there is a problem of increasing manufacturing cost. there were. As a method of solving such a problem, in a photovoltaic element having a structure in which a substrate, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer are formed in this order, the formation of a collector electrode on the transparent conductive layer is stopped and the transparent conductive layer is removed. There is a method of collecting current in the lower layer. For example, Japanese Patent Application Laid-Open No. 61-20371, which is premised on the use of a transparent insulating substrate, discloses a photovoltaic element in which a transparent insulating substrate, a transparent conductive layer, a semiconductor bonding layer, and a back conductive layer are formed in this order. Discloses a method of lowering the resistance of the light incident side electrode by connecting a metal connecting body that penetrates the semiconductor junction layer and the back surface conductive layer in a state insulated from the semiconductor bonding layer and the back surface conductive layer to the transparent conductive layer. Moreover, it is premised that an insulating substrate is used.
Japanese Patent Laid-Open Publication No. 1-1990 discloses a photovoltaic element in which a second conductive layer, an insulating layer, a first conductive layer, a semiconductor bonding layer, and a transparent conductive layer are formed in this order on an insulating substrate, in which the semiconductor bonding layer and the first conductive layer are included. There is disclosed a method of lowering the resistance of the photovoltaic side electrode by penetrating these in an insulated state from the above and connecting the transparent conductive layer and the second conductive layer. By the way, in such a device disclosed in Japanese Patent Laid-Open No. 61-20371, a transparent substrate is used to allow light to enter the semiconductor bonding layer through the substrate. In such a device,
A metal film such as stainless steel with excellent flexibility and heat resistance that enables thin film formation over a large area by a roll-to-roll method and thin film formation at a substrate temperature of 300 ° C or higher, which is difficult with an organic resin film. It cannot be applied when an opaque conductive substrate made of is used. Further, the methods disclosed in both patents are such that when the semiconductor bonding layer is not coated or is coated with a conductive layer, a hole penetrating to the transparent conductive layer is formed by laser, dry etching, wet etching or the like. Although it does not apply without including the step of opening, this step is a short circuit of the semiconductor junction layer in the vicinity of the hole, alloying of the semiconductor junction layer and the conductive layer, or physical contact of the semiconductor junction layer when not coated. There is a problem that the characteristics of the semiconductor junction layer, that is, the photoelectric conversion efficiency is deteriorated, such as damage.

【0004】そこで、本発明は上記した従来装置の問題
点を解決し、光電変換効率が高く、製造設備費用の低減
と歩留まりが改善された製造コストの安価な光起電力装
置とその製造方法を提供することを目的とするものであ
る。
Therefore, the present invention solves the above-mentioned problems of the conventional device, and provides a photovoltaic device having a high photoelectric conversion efficiency, a reduced manufacturing facility cost, an improved yield, and a low manufacturing cost, and a manufacturing method thereof. It is intended to be provided.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、その個々の光起電力素子において、光入射
側の電極である透明電極層と、光入射側裏面の不透明導
電基体とを、導電層欠損部で電気的に接触させることに
よって、不透明導電基体に占める光電変換領域を減少さ
せずに、光入射側の抵抗を低くできるようにしたもので
ある。すなわち、本発明の光起電力装置は、不透明導電
基体の上に絶縁体層、導電層、半導体接合層、透明導電
層の順に積層して形成された複数の光起電力素子を、金
属からなる電極接続体を介して直列接続した光起電力装
置であって、前記導電層が絶縁体層を被覆しない導電層
欠損部を複数個備え、該導電層欠損部において前記不透
明導電基体と前記透明導電層とが電気的に接触し、該導
電層欠損部を備えない領域においてそれらが電気的に非
接触とされていることを特徴としている。本発明におい
て、この導電層欠損部は、円形としその相互の位置関係
は規則性を持つようにするか、真直ぐな溝としその相互
の位置関係を平行に構成することができる。また、前記
不透明導電基体と前記透明導電層との電気的接触は、前
記導電層欠損部において前記不透明導電基体の前記透明
導電層へ向う凹みと、前記透明導電層の前記不透明導電
基体へ向う凹みの、一方もしくは双方により行うことが
でき、またそれを前記導電層欠損部において複数層から
なる合金層を形成して行ってもよい。また、前記電極接
続体により、一方の光起電力素子の導電層と、他方の光
起電力素子の不透明導電基体もしくは透明導電層とを接
続し、それを一方の光起電力素子の透明導電層の領域を
構成する、該透明導電層がその下層に前記導電層欠損部
を備えた領域から分割され下層に前記導電層欠損部を備
えない領域で該透明導電層が導電層とは電気的に接触し
ているが不透明基体とは電気的に非接触の領域と、他方
の光起電力素子の不透明導電基体もしくは透明導電層と
に接触させ光起電力装置を構成することができる。さら
に、本発明の光起電力装置の製造方法は、不透明導電基
体の上に絶縁体層、導電層、半導体接合層、透明導電層
がこの順で形成された複数の光起電力素子を、金属から
なる電極接続体を介して直列接続した光起電力装置の製
造方法であって、不透明導電基体の上に絶縁層を形成す
る工程と、前記絶縁層の上に絶縁層を被覆しない導電層
欠損部を複数個有する導電層を形成する工程と、前記導
電層の上に半導体接合層を形成する工程と、前記半導体
接合層の上に透明導電層を形成する工程と、前記導電層
欠損部において前記不透明導電基体と前記透明導電層と
を電気的に接触させる工程とを有していることを特徴と
する。本発明の製造方法においては、前記導電層欠損部
はレーザ照射によって形成されることができる。そし
て、本発明の光起電力装置の製造方法においては前記不
透明導電基体と前記透明導電層とを電気的に接触させる
工程は、前記透明導電層を形成する工程の後に行われる
ことを特徴の一つとしている。また、前記不透明導電基
体と前記透明導電層との電気的接触は、前記導電層欠損
部において前記不透明導電基体を前記透明導電層へ向か
って凹ませる工程と、前記透明導電層を前記不透明導電
基体向かって凹ませる工程の、一方もしくは双方の工程
によって行うことができる。そして、前記不透明導電基
体と前記透明導電層の一方もしくは双方を凹ませる工程
は、鋭突なもので圧力を加える工程で行うようにしても
よい。また、前記導電層欠損部における前記不透明導電
基体と前記透明導電層との電気的接触は、前記導電層欠
損部において前記絶縁体層と前記半導体接合層を合金層
に変化させる工程によって行ってもよい。そして、前記
絶縁体層と前記半導体接合層を合金層に変化させる工程
は、レーザ照射を含む工程で行うことができる。また、
前記直列接続は、金属からなる電極接続体を一方の光起
電力素子の導電層と他方の光起電力素子の不透明導電基
体もしくは透明導電層とに接触させる工程によって行わ
れる。そして、その一方の光起電力素子の導電層に接触
させる工程、および他方の光起電力素子の不透明導電基
体もしくは透明導電層に接触させる工程の、双方または
一方は、レーザ照射を用いた溶着を含む工程によって行
うか、または樹脂を主成分とする物質を介在させる工
程、或は低融点合金の半田を用いた溶着を含む工程によ
って行ってもよい。本発明の製造方法においては、前記
電極接続体による直列接続は、金属からなる電極接続体
を、一方の光起電力素子の透明導電層の領域を構成す
る、該透明導電層がその下層に前記導電層欠損部を備え
た領域から分割され下層に前記導電層欠損部を備えない
領域で該透明導電層が導電層とは電気的に接触している
が不透明基体とは電気的に非接触の領域と、他方の光起
電力素子の不透明導電基体もしくは透明導電層とに、接
触させる工程によって行うことができる。そして、前記
透明導電層の、その下層に前記導電層欠損部を備えた領
域と下層に前記導電層欠損部を備えない領域との分割
は、レーザ照射を含む工程により行うことができる。ま
た、前記透明導電層の、導電層と電気的に接触し不透明
導電基体と電気的に非接触の領域は、レーザ照射を含む
工程により形成することができる。そして、 前記電極
接続体を、一方の光起電力素子の透明導電層の下層に前
記導電層欠損部を備えない領域に接続させる工程、およ
び他方の光起電力素子の不透明導電基体もしくは透明導
電層に接続させる工程の、双方または一方は、レーザを
用いた溶着を含む工程で行ってもよい。また、それらを
樹脂を主成分とする物質を介在させる工程、或は低融点
合金の半田を用いた溶着を含む工程により行ってもよ
い。
In order to achieve the above-mentioned object, the present invention provides, in each photovoltaic element thereof, a transparent electrode layer which is an electrode on the light incident side, and an opaque conductive substrate on the back surface on the light incident side. Is electrically contacted at the defective portion of the conductive layer so that the resistance on the light incident side can be lowered without reducing the photoelectric conversion region occupied in the opaque conductive substrate. That is, the photovoltaic device of the present invention comprises a plurality of photovoltaic elements made of metal, which are formed by laminating an insulating layer, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer on an opaque conductive substrate. A photovoltaic device connected in series via an electrode connecting body, wherein the conductive layer has a plurality of conductive layer defect portions that do not cover an insulator layer, and the opaque conductive substrate and the transparent conductive member are provided at the conductive layer defect portions. It is characterized in that it is in electrical contact with the layer, and they are not electrically contacted in a region not having the conductive layer defect portion. In the present invention, the conductive layer deficient portions may be circular so that their mutual positional relationship has regularity, or they may be straight grooves and their mutual positional relationship may be parallel. Further, the electrical contact between the opaque conductive base and the transparent conductive layer is such that the opaque conductive base has a recess facing the transparent conductive layer and the transparent conductive layer has a recess facing the opaque conductive base at the conductive layer defective portion. One or both of them may be performed, and it may be performed by forming an alloy layer composed of a plurality of layers in the conductive layer defect portion. Further, the electrode connection body connects the conductive layer of one photovoltaic element and the opaque conductive substrate or transparent conductive layer of the other photovoltaic element, and connects it to the transparent conductive layer of one photovoltaic element. In the region where the transparent conductive layer is divided from the region having the conductive layer deficient portion in the lower layer and does not have the conductive layer deficient portion in the lower layer, the transparent conductive layer is electrically separated from the conductive layer. A photovoltaic device can be configured by contacting a region that is in contact with but is not electrically contacted with the opaque substrate and the opaque conductive substrate or transparent conductive layer of the other photovoltaic element. Furthermore, the method for manufacturing a photovoltaic device of the present invention comprises a plurality of photovoltaic elements in which an insulating layer, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer are formed in this order on an opaque conductive substrate, A method for manufacturing a photovoltaic device connected in series via an electrode connecting body comprising: a step of forming an insulating layer on an opaque conductive substrate; and a conductive layer defect not covering the insulating layer on the insulating layer. A step of forming a conductive layer having a plurality of parts, a step of forming a semiconductor junction layer on the conductive layer, a step of forming a transparent conductive layer on the semiconductor junction layer, and the conductive layer defect portion. And a step of electrically contacting the opaque conductive substrate with the transparent conductive layer. In the manufacturing method of the present invention, the conductive layer defect portion can be formed by laser irradiation. In the photovoltaic device manufacturing method of the present invention, the step of electrically contacting the opaque conductive substrate and the transparent conductive layer is performed after the step of forming the transparent conductive layer. I am sorry. Further, the electrical contact between the opaque conductive substrate and the transparent conductive layer is performed by denting the opaque conductive substrate toward the transparent conductive layer at the conductive layer deficient portion, and setting the transparent conductive layer to the opaque conductive substrate. It can be carried out by one or both of the steps of making a depression. The step of recessing one or both of the opaque conductive substrate and the transparent conductive layer may be performed by applying pressure with a sharp object. Further, the electrical contact between the opaque conductive substrate and the transparent conductive layer in the conductive layer defective portion may be performed by the step of changing the insulator layer and the semiconductor bonding layer into an alloy layer in the conductive layer defective portion. Good. The step of changing the insulator layer and the semiconductor junction layer into an alloy layer can be performed by a step including laser irradiation. Also,
The series connection is performed by a step of bringing an electrode connection body made of metal into contact with a conductive layer of one photovoltaic element and an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element. Then, both or one of the step of bringing into contact with the conductive layer of the one photovoltaic element and the step of bringing into contact with the opaque conductive substrate or the transparent conductive layer of the other photovoltaic element, welding using laser irradiation is performed. It may be carried out by the step of including, or the step of interposing a substance having a resin as a main component, or the step of including welding using a low melting point alloy solder. In the manufacturing method of the present invention, the series connection by the electrode connecting body constitutes an electrode connecting body made of a metal, and constitutes a region of a transparent conductive layer of one photovoltaic element, the transparent conductive layer being a layer below the transparent conductive layer. The transparent conductive layer is in electrical contact with the conductive layer but is not in electrical contact with the opaque substrate in a region which is divided from the region having the conductive layer defect and does not have the conductive layer defect in the lower layer. This can be performed by the step of contacting the area with the opaque conductive substrate or transparent conductive layer of the other photovoltaic element. Then, the region of the transparent conductive layer having the conductive layer defect portion below it and the region not having the conductive layer defect portion below it can be divided by a step including laser irradiation. Further, the region of the transparent conductive layer that is in electrical contact with the conductive layer and is not in electrical contact with the opaque conductive substrate can be formed by a process including laser irradiation. And a step of connecting the electrode connection body to a region below the transparent conductive layer of one photovoltaic element without the conductive layer defect portion, and an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element. Both or one of the steps of connecting to the above may be performed in a step including welding using a laser. Further, they may be carried out by a step of interposing a substance containing a resin as a main component, or a step including welding using a solder of a low melting point alloy.

【0006】[0006]

【発明の実施の形態】本発明では、光起電力装置を構成
する個々の光起電力素子は、光入射側の電極である透明
導電層と、光入射側裏面の不透明導電基体とが、導電層
欠損部において電気的に接触されることによって、不透
明導電基体に占める光電変換領域を減少させずに、光入
射側電極の抵抗を低くできる。したがって集電電極が透
明導電層上に配置される構成の光電変換素子に比べ、高
い光電変換効率の光電変換素子を得ることができる。ま
た上記電気的接触は、絶縁層、導電層、半導体接合層、
透明導電層からなる全層形成後に、圧迫もしくはレーザ
照射によってなされる簡単な工程であるから、製造設備
費用の低減と歩留まりを改善し、製造コストを低減でき
る。また、基体にステンレスフィルムなどの可撓性、耐
熱性に優れた不透明導電基体を用いることで、ロール・
ツー・ロール方式での大面積にわたる薄膜形成と、有機
樹脂フィルムでは困難な基体温度が300℃以上での薄
膜形成が可能となり、さらに基体にこのようなステンレ
スフィルムを用いた場合には、透明導電層と接続された
光入射側電極としての機能を備えることで、絶縁基体を
用いた構成では少なくとも1層は必要となる、透明導電
層と接続された光入射側電極としての導電層を省略でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in each photovoltaic element that constitutes a photovoltaic device, a transparent conductive layer which is an electrode on the light incident side and an opaque conductive substrate on the back surface on the light incident side are electrically conductive. By making electrical contact at the layer defect portion, the resistance of the light incident side electrode can be lowered without reducing the photoelectric conversion region occupied in the opaque conductive substrate. Therefore, a photoelectric conversion element having a higher photoelectric conversion efficiency can be obtained as compared with a photoelectric conversion element having a structure in which the collecting electrode is arranged on the transparent conductive layer. Further, the electrical contact is an insulating layer, a conductive layer, a semiconductor bonding layer,
Since this is a simple process that is performed by pressing or laser irradiation after forming all the layers of the transparent conductive layer, it is possible to reduce the manufacturing equipment cost, improve the yield, and reduce the manufacturing cost. In addition, by using an opaque conductive substrate such as a stainless steel film, which has excellent flexibility and heat resistance, as a substrate,
It is possible to form a thin film over a large area with a two-roll method and to form a thin film at a substrate temperature of 300 ° C or higher, which is difficult with an organic resin film. Furthermore, when such a stainless film is used for the substrate, transparent conductive By providing the function as the light incident side electrode connected to the layer, at least one layer is required in the configuration using the insulating substrate, and the conductive layer as the light incident side electrode connected to the transparent conductive layer can be omitted. .

【0007】[0007]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。 [実施例1]図1は、本発明の実施例1における光起電
力装置を示した断面図であり、図5は、図1で示される
光起電力装置の平面図である。図9は、図1で示される
光起電力装置を構成する光起電力素子を示した断面図で
あり、図12は、図9で示される光起電力素子の製造工
程を示した説明図である。まず図9、図12に従って、
光起電力装置を構成する光起電力素子の製造方法を順次
説明する。不透明導電基体11として、縦10cm横5
cmの長方形で、厚さ0.2mmの鏡面研磨されたステ
ンレスSUS430の基体を用意し、アセトン中で超音
波洗浄を5分間、イソプロピルアルコール中で超音波洗
浄を1分間行い、油脂分を除去した。続いて窒素ガスで
希釈したシランガスとアンモニアガスを、RFで励起さ
れたプラズマ中で分解し、250℃に保った不透明導電
基体11上に、絶縁層12として厚さ2μmの窒化シリ
コン膜を形成した。続いて400℃に保った絶縁層12
上に、アルミニウムターゲットを用いたAr雰囲気中で
のDCスパツタリング法で、導電層13として厚さ50
00Åのアルミニウム膜を形成した。アルミニウム膜の
表面は、拡散反射が顕著な、微細な凹凸構造となった。
続いて波長1.06μm、パルス周波数4kHz、Qス
イッチパルス発振、TEM00モードのNd−YAGレーザ
を用いて、平均レーザ出力を0.4Wに調節したスポッ
ト径100μmのビームを、導電層13の所定位置に
0.1msec照射1することで、絶縁層12が露出する直
径0.8mmの導電層欠損部18を、縦と横が10mm
間隔の格子点25箇所に形成した。続いて水素ガスで希
釈されたSiH4ガス、SiF4ガス、PH3ガスを、
RFで励起されたプラズマ中で分解し、250℃に保っ
た導電層13上に、厚さ200Åのn型アモルファスシ
リコン層を形成し、このn型アモルファスシリコン層上
に、水素ガスで希釈されたSiH4ガス、SiF4ガス
を、RFで励起されたプラズマ中で分解し、厚さ400
0Åのi型アモルファスシリコン層を形成し、さらにi
型アモルファスシリコン層上に、続いて水素ガスで希釈
されたSiH4ガス、BF3ガスを、RFで励起された
プラズマ中で分解し、厚さ100Åのp型微結晶シリコ
ン層を形成することで、半導体接合層14を形成した。
続いてこの半導体接合層14上に、ITOターゲットを
用いた酸素雰囲気中DCスパッタリング法で、透明導電
層15として厚さ700ÅのITO膜を形成した。続い
て光学センサーを用いた方法で、レーザで導電層13に
形成した導電層欠損部18を見つけ、この部分をニード
ル状のステンレスSUS304製治具を用いて、透明導
電層15側、不透明導電基体11側の双方から同時に、
面に垂直に圧迫2を加えた。その結果膜表面では、透明
導電層15側、不透明導電基体11側両面に直径0.2
mmの凹みが形成され、膜内部では、不透明導電基体1
1と透明導電層15が接触する電気的接触部19が形成
された。圧迫の程度は、不透明導電基体11と透明導電
層15が、導電層12と接触することなく、電気的接触
部19を形成する大きさでなくてはならない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. [Embodiment 1] FIG. 1 is a sectional view showing a photovoltaic device according to Embodiment 1 of the present invention, and FIG. 5 is a plan view of the photovoltaic device shown in FIG. FIG. 9 is a cross-sectional view showing a photovoltaic element that constitutes the photovoltaic device shown in FIG. 1, and FIG. 12 is an explanatory diagram showing a manufacturing process of the photovoltaic element shown in FIG. is there. First, according to FIG. 9 and FIG.
A method of manufacturing a photovoltaic element that constitutes the photovoltaic device will be sequentially described. As the opaque conductive substrate 11, 10 cm in length and 5 in width
cm, a 0.2 mm thick mirror-polished stainless steel SUS430 substrate was prepared, and ultrasonic cleaning was performed in acetone for 5 minutes and in isopropyl alcohol for 1 minute to remove oil and fat. . Subsequently, silane gas and ammonia gas diluted with nitrogen gas were decomposed in plasma excited by RF, and a silicon nitride film having a thickness of 2 μm was formed as an insulating layer 12 on the opaque conductive substrate 11 kept at 250 ° C. . Subsequently, the insulating layer 12 kept at 400 ° C.
A conductive layer 13 having a thickness of 50 is formed on the upper surface by a DC sputtering method in an Ar atmosphere using an aluminum target.
An aluminum film of 00Å was formed. The surface of the aluminum film had a fine uneven structure in which diffuse reflection was remarkable.
Then, using a Nd-YAG laser of TEM00 mode, Qd switch pulse oscillation with a wavelength of 1.06 μm, a pulse frequency of 4 kHz, a beam with a spot diameter of 100 μm adjusted to an average laser output of 0.4 W was applied to a predetermined position of the conductive layer 13. By irradiating the insulating layer 12 with 0.1 msec for 1 m, the conductive layer deficient portion 18 with a diameter of 0.8 mm is exposed in the vertical and horizontal directions by 10 mm.
It was formed at 25 grid points at intervals. Then, SiH4 gas, SiF4 gas, and PH3 gas diluted with hydrogen gas
An n-type amorphous silicon layer having a thickness of 200 Å was formed on the conductive layer 13 which was decomposed in plasma excited by RF and kept at 250 ° C., and diluted with hydrogen gas on the n-type amorphous silicon layer. SiH4 gas and SiF4 gas are decomposed in plasma excited by RF to obtain a thickness of 400
A 0Å i-type amorphous silicon layer is formed, and i
By subsequently decomposing SiH4 gas and BF3 gas diluted with hydrogen gas in RF-excited plasma on the p-type amorphous silicon layer to form a p-type microcrystalline silicon layer having a thickness of 100Å, a semiconductor is obtained. The bonding layer 14 was formed.
Then, an ITO film having a thickness of 700 Å was formed as the transparent conductive layer 15 on the semiconductor bonding layer 14 by a DC sputtering method in an oxygen atmosphere using an ITO target. Subsequently, the conductive layer defect portion 18 formed on the conductive layer 13 by a laser is found by a method using an optical sensor, and the transparent conductive layer 15 side, the opaque conductive substrate is formed on this portion by using a needle-shaped jig made of stainless steel SUS304. From both 11 side at the same time,
Pressure 2 was applied perpendicular to the plane. As a result, on the film surface, a diameter of 0.2 is formed on both the transparent conductive layer 15 side and the opaque conductive substrate 11 side.
mm recesses are formed, and inside the film, the opaque conductive substrate 1
An electrical contact portion 19 was formed in which 1 and the transparent conductive layer 15 were in contact with each other. The degree of compression should be such that the opaque conductive substrate 11 and the transparent conductive layer 15 form the electrical contact portion 19 without contacting the conductive layer 12.

【0008】以上の工程で10個作成された光起電力素
子から光起電力装置を製造する方法を、図1、図5に従
って順次説明する。各々の光起電力素子の端部におい
て、透明導電層15、半導体接合層14をエッチング
し、長さ10mm幅4mmの導電層露出部10aを2箇
所形成した。続いて電極接続体17aとして厚さ0.1
mm長さ5mm幅2mmの銅箔を2個用意して、導電層
露出部10a上の透明導電層15に接触しない位置に、
金属粉を含有する導電性樹脂で接着した。次に、各々の
光起電力素子の電極接続体17aと不透明導電基体11
とを、厚さ0.1mm長さ10mm幅5mmの銅箔から
なる電極接続体17bによって、順次直列接続すること
で光起電力装置を作成した。電極接続体17bの不透明
導電基体11および電極接続体17aへの接着は、低融
点合金半田を用いた溶着でなされた。AM1.5(10
0mW/cm2)光照射下にて、作成された光起電力装
置の電流電圧特性を測定をしたところ、最適動作点にお
いて4.25W、14.4V、光電変換効率は8.5%
が得られた。透明導電層15、電気的接触部19、不透
明導電基体11、電極接続体17a、17bからなる抵
抗による損失電力を求めたところ、真性光電変換効率で
計算した出力電力の3%未満に抑えることができた。こ
こでの真性光電変換効率とは、それぞれの光起電力素子
について、下層に導電層欠損部18を含まない透明導電
層15のある数箇所で、外周をエッチングで取り除き周
囲と絶縁した直径3mmの円形の透明導電層15と、こ
の円外で透明導電層15、半導体接合層14をエッチン
グで取り除き露出させた導電層13とを電極とし、AM
1.5光照射下にて測定された最適動作点における光電
変換効率の平均である。
A method for manufacturing a photovoltaic device from 10 photovoltaic elements produced in the above steps will be sequentially described with reference to FIGS. At the end portion of each photovoltaic element, the transparent conductive layer 15 and the semiconductor bonding layer 14 were etched to form two conductive layer exposed portions 10a having a length of 10 mm and a width of 4 mm. Subsequently, the electrode connecting body 17a has a thickness of 0.1.
2 pieces of copper foil having a length of 5 mm and a width of 2 mm are prepared, and the copper foil is placed on the exposed portion 10a of the conductive layer at a position not contacting the transparent conductive layer 15.
Bonding was performed with a conductive resin containing metal powder. Next, the electrode connection body 17a of each photovoltaic element and the opaque conductive base 11
A photovoltaic device was produced by sequentially connecting and with the electrode connecting body 17b made of a copper foil having a thickness of 0.1 mm, a length of 10 mm, and a width of 5 mm. The electrode connecting body 17b was adhered to the opaque conductive substrate 11 and the electrode connecting body 17a by welding using a low melting point alloy solder. AM1.5 (10
The current-voltage characteristics of the produced photovoltaic device were measured under irradiation with light of 0 mW / cm 2 ) and found to be 4.25 W and 14.4 V at the optimum operating point, and the photoelectric conversion efficiency was 8.5%.
was gotten. When the power loss due to the resistance composed of the transparent conductive layer 15, the electrical contact portion 19, the opaque conductive substrate 11, and the electrode connectors 17a and 17b is calculated, it can be suppressed to less than 3% of the output power calculated by the intrinsic photoelectric conversion efficiency. did it. Intrinsic photoelectric conversion efficiency here means, for each photovoltaic element, at several places where the transparent conductive layer 15 does not include the conductive layer defect portion 18 in the lower layer, the outer circumference is removed by etching and the diameter is 3 mm, which is insulated from the surroundings. The circular transparent conductive layer 15 and the conductive layer 13 exposed by removing the transparent conductive layer 15 and the semiconductor bonding layer 14 outside the circle by etching are used as electrodes.
It is an average of photoelectric conversion efficiencies at the optimum operating point measured under 1.5 light irradiation.

【0009】[実施例2]図2は、本発明の実施例2に
おける光起電力装置を示した断面図であり、図6は、図
2で示される光起電力装置の平面図である。図10は、
図2で示される光起電力装置を構成する光起電力素子を
示した断面図である。まず図10に従って、光起電力装
置を構成する光起電力素子の製造方法を順次説明する。
不透明導電基体21として、縦10cm横5cmの長方
形で、厚さ0.2mmの鏡面研磨されたステンレスSU
S430の基体を用意し、アセトン中で超音波洗浄を5
分間、イソプロピルアルコール中で超音波洗浄を1分間
行い、油脂分を除去した。続いて酸化シリコンターゲッ
トを用いたAr雰囲気中でのRFスパッタリング法で、
不透明導電基体21上に、絶縁層22として厚さ2μm
の酸化シリコン膜を形成した。続いて400℃に保った
絶縁層22上に、アルミニウムターゲットを用いたAr
雰囲気中でのDCスパッタリング法で形成された厚さ5
000Åのアルミニウム膜と、酸化亜鉛ターゲットを用
いたAr雰囲気中でのDCスパッタリング法で形成され
た厚さl0000Åの酸化亜鉛膜からなる導電層23を
形成した。アルミニウム膜の表面および酸化亜鉛の表面
は、拡散反射が顕著な、微細な凹凸構造となった。続い
て波長1.06μm、パルス周波数4kHz、Qスイッ
チパルス発振、TEM00モードのNd−YAGレーザを用
いて、平均レーザ出力を0.4Wに調節したスポット径
100μmのビームを、導電層23の所定位置にlmsec
照射することで、絶縁層22が露出する直径0.8mm
の導電層欠損部28を、縦と横が10mm間隔の格子点
25箇所に形成した。続いて水素ガスで希釈されたSi
H4ガス、SiF4ガス、PH3ガスを、RFで励起さ
れたプラズマ中で分解し、250℃に保った導電層23
上に、厚さ200Åのn型アモルファスシリコン層を形
成し、このn型アモルファスシリコン層上に、水素ガス
で希釈されたSiH4ガス、SiF4ガスを、RFで励
起されたプラズマ中で分解し、厚さ4000Åのi型ア
モルファスシリコン層を形成し、さらにi型アモルファ
スシリコン層上に、続いて水素ガスで希釈されたSiH
4ガス、BF3ガスを、RFで励起されたプラズマ中で
分解し、厚さ100Åのp型微結晶シリコン層を形成す
ることで、半導体接合層24を形成した。続いてこの半
導体接合層24上に、ITOターゲットを用いた酸素雰
囲気中DCスパッタリング法で、透明導電層25として
厚さ700ÅのITO膜を形成した。続いて光学センサ
ーを用いた方法で、レーザで導電層23に形成した導電
層欠損部28を見つけ、この部分をニードル状のステン
レスSUS304製治具を用いて、透明導電層25側よ
り面に垂直に圧迫を加えた。その結果、透明導電層25
表面に直径0.2mmの凹みが形成され、膜内部では、
不透明導電基体21と透明導電層25が接触する電気的
接触部29が形成された。圧迫の程度は、不透明導電基
体21と透明導電層25が、導電層22と接触すること
なく、電気的接触部29を形成する大きさでなくてはな
らない。
[Second Embodiment] FIG. 2 is a sectional view showing a photovoltaic device according to a second embodiment of the present invention, and FIG. 6 is a plan view of the photovoltaic device shown in FIG. Figure 10
It is sectional drawing which showed the photovoltaic element which comprises the photovoltaic apparatus shown by FIG. First, referring to FIG. 10, a method of manufacturing a photovoltaic element that constitutes a photovoltaic device will be sequentially described.
As the opaque conductive substrate 21, a rectangular SU 10 cm × 5 cm, 0.2 mm thick mirror-polished stainless steel SU
Prepare the substrate of S430 and perform ultrasonic cleaning in acetone.
Ultrasonic cleaning was performed in isopropyl alcohol for 1 minute to remove oil and fat. Then, by an RF sputtering method in an Ar atmosphere using a silicon oxide target,
The thickness of the insulating layer 22 is 2 μm on the opaque conductive substrate 21.
A silicon oxide film was formed. Subsequently, Ar using an aluminum target was placed on the insulating layer 22 kept at 400 ° C.
Thickness 5 formed by DC sputtering method in atmosphere
A conductive layer 23 made of a 000Å aluminum film and a zinc oxide film having a thickness of 10000Å formed by a DC sputtering method in an Ar atmosphere using a zinc oxide target was formed. The surface of the aluminum film and the surface of zinc oxide had a fine uneven structure in which diffuse reflection was remarkable. Then, using a Nd-YAG laser of TEM00 mode, Qd switch pulse oscillation with a wavelength of 1.06 μm, a pulse frequency of 4 kHz, a beam with a spot diameter of 100 μm adjusted to an average laser output of 0.4 W was applied to a predetermined position on the conductive layer 23. Lmsec
The diameter of the insulating layer 22 exposed by irradiation is 0.8 mm
The conductive layer deficient portions 28 were formed at 25 grid points at 10 mm intervals in the vertical and horizontal directions. Then Si diluted with hydrogen gas
Conductive layer 23 in which H4 gas, SiF4 gas, and PH3 gas are decomposed in plasma excited by RF and kept at 250 ° C.
A 200 Å-thick n-type amorphous silicon layer is formed on top of this, and SiH4 gas and SiF4 gas diluted with hydrogen gas are decomposed in plasma excited by RF on this n-type amorphous silicon layer, Forming an i-type amorphous silicon layer having a thickness of 4000 Å, and further forming SiH diluted with hydrogen gas on the i-type amorphous silicon layer.
4 gas and BF3 gas were decomposed in plasma excited by RF to form a p-type microcrystalline silicon layer having a thickness of 100Å, thereby forming the semiconductor bonding layer 24. Subsequently, an ITO film having a thickness of 700 Å was formed as the transparent conductive layer 25 on the semiconductor bonding layer 24 by a DC sputtering method in an oxygen atmosphere using an ITO target. Then, the conductive layer defect portion 28 formed on the conductive layer 23 is found by laser with a method using an optical sensor, and this portion is perpendicular to the surface from the transparent conductive layer 25 side using a needle-shaped jig made of stainless steel SUS304. Added pressure to. As a result, the transparent conductive layer 25
A dent with a diameter of 0.2 mm is formed on the surface, and inside the film,
An electrical contact portion 29 where the opaque conductive substrate 21 and the transparent conductive layer 25 contact each other was formed. The degree of compression should be such that the opaque conductive substrate 21 and the transparent conductive layer 25 form the electrical contact portion 29 without contacting the conductive layer 22.

【0010】以上の工程で10個作成された光起電力素
子から光起電力装置を製造する方法を、図2、図6に従
って順次説明する。各々の光起電力素子の端部におい
て、透明導電層25、半導体接合層24をエッチング
し、長さ100mm幅4mmの導電層露出部20aを形
成し、導電層露出部20aとは反対側の光起電力素子の
端部においては、透明導電層25、半導体接合層24、
導電層23、絶縁層22をエッチングし、長さ100m
m幅4mmの基体露出部20bを形成した。続いて電極
接続体27aとして厚さ0.lmm長さ5mm幅2mm
の銅箔を2個用意して、導電層露出部20a上の透明導
電層25に接触しない位置に、前述と同じ性能のNd−
YAGレーザを照射することで溶着した。次に、各々の
光起電力素子の電極接続体27aと基体露出部20bと
を、厚さ0.lmm長さ10mm幅5mmの銅箔からな
る電極接続体27bによって、順次直列接続すること
で、光起電力装置を作成した。電極接続体27bの基体
露出部20bおよび電極接続体27aへの接着は、前述
と同じ性能のNd−YAGレーザを用いた溶着でなされ
た。AM1.5(100mW/cm2)光照射下にて、
作成された光起電力装置の電流電圧特性を測定をしたと
ころ、最適動作点において4.35W、14.6V、光
電変換効率は8.7%が得られた。透明導電層25、電
気的接触部29、不透明導電基体21、電極接続体27
a、27bからなる抵抗による損失電力を求めたとこ
ろ、真性光電変換効率で計算した出力電力の3%未満に
抑えることができた。ここでの真性光電変換効率とは、
それぞれの光起電力素子について、下層に導電層欠損部
28を含まない透明導電層25のある数箇所で、外周を
エッチングで取り除き周囲と絶縁した直径3mmの円形
の透明導電層25と、この円外で透明導電層25、半導
体接合層24をエッチングで取り除き露出させた導電層
23とを電極とし、AM1.5光照射下にて測定された
最適動作点における光電変換効率の平均である。
A method for manufacturing a photovoltaic device from 10 photovoltaic elements produced in the above steps will be sequentially described with reference to FIGS. At the end of each photovoltaic element, the transparent conductive layer 25 and the semiconductor bonding layer 24 are etched to form a conductive layer exposed portion 20a having a length of 100 mm and a width of 4 mm, and the light on the side opposite to the conductive layer exposed portion 20a is formed. At the end of the electromotive force element, the transparent conductive layer 25, the semiconductor bonding layer 24,
The conductive layer 23 and the insulating layer 22 are etched to a length of 100 m.
A base exposed portion 20b having a width of 4 mm was formed. Subsequently, the electrode connecting body 27a has a thickness of 0. 1mm length 5mm width 2mm
2 copper foils are prepared, and Nd- having the same performance as described above is placed at a position on the conductive layer exposed portion 20a that does not contact the transparent conductive layer 25.
It was welded by irradiating a YAG laser. Next, the electrode connection body 27a and the base body exposed portion 20b of each photovoltaic element are formed to a thickness of 0. A photovoltaic device was produced by sequentially connecting in series with an electrode connector 27b made of a copper foil having a length of 1 mm, a length of 10 mm, and a width of 5 mm. The electrode connecting body 27b was adhered to the exposed base portion 20b and the electrode connecting body 27a by welding using an Nd-YAG laser having the same performance as described above. Under AM1.5 (100 mW / cm 2 ) light irradiation,
When the current-voltage characteristics of the created photovoltaic device were measured, 4.35 W, 14.6 V and photoelectric conversion efficiency of 8.7% were obtained at the optimum operating point. Transparent conductive layer 25, electrical contact portion 29, opaque conductive substrate 21, electrode connection body 27
When the power loss due to the resistance composed of a and 27b was obtained, it was possible to suppress it to less than 3% of the output power calculated by the intrinsic photoelectric conversion efficiency. The intrinsic photoelectric conversion efficiency here is
In each photovoltaic element, a circular transparent conductive layer 25 with a diameter of 3 mm, which is insulated from the surrounding by removing the outer periphery by etching at several places where the transparent conductive layer 25 does not include the conductive layer defect portion 28 in the lower layer, and this circle This is the average of the photoelectric conversion efficiencies at the optimum operating point measured under AM1.5 light irradiation, using the transparent conductive layer 25 and the conductive layer 23 exposed by removing the semiconductor bonding layer 24 outside as electrodes.

【0011】[実施例3]図3は、本発明の実施例3に
おける光起電力装置を示した断面図であり、図7は、図
3で示される光起電力装置の平面図である。図11は、
図3で示される光起電力装置を構成する光起電力素子を
示した断面図であり、図13は、図11で示される光起
電力素子の製造工程を示した説明図である。まず図1
1、図13に従って、光起電力装置を構成する光起電力
素子の製造方法を順次説明する。不透明導電基体31と
して、縦l0cm横5cmの長方形で、厚さ0.2mm
の鏡面研磨されたステンレスSUS430の基体を用意
し、アセトン中で超音波洗浄を5分間、イソプロピルア
ルコール中で超音波洗浄を1分間行い、油脂分を除去し
た。続いて酸化シリコンターゲットを用いたAr雰囲気
中でのRFスパッタリング法で、不透明導電基体31上
に、絶縁層32として厚さ2μmの酸化シリコン膜を形
成した。続いて500℃に保った絶縁層32上に、銀タ
ーゲットを用いたAr雰囲気中でのDCスパッタリング
法で、導電層33として厚さ5000Åの銀膜を形成し
た。銀膜の表面は、拡散反射が顕著な、微細な凹凸構造
となった。続いて波長1.06μm、パルス周波数4k
Hz、Qスイッチパルス発振、TEM00モードのNd−Y
AGレーザを用いて、平均レーザ出力を0.5Wに調節
したスポット径100μmのビームを、導電層33の所
定位置にlmsec照射3することで、絶縁層32が露出す
る直径0.8mmの導電層欠損部38を、縦と横が10
mm間隔の格子点25箇所に形成した。続いて水素ガス
で希釈されたSiH4ガス、SiF4ガス、PH3ガス
を、RFで励起されたプラズマ中で分解し、250℃に
保った導電層33上に、厚さ200Åのn型アモルファ
スシリコン層を形成し、このn型アモルファスシリコン
層上に、水素ガスで希釈されたSiH4ガス、SiF4
ガスを、RFで励起されたプラズマ中で分解し、厚さ4
000Åのi型アモルファスシリコン層を形成し、さら
にi型アモルファスシリコン層上に、続いて水素ガスで
希釈されたSiH4ガス、BF3ガスを、RFで励起さ
れたプラズマ中で分解し、厚さ100Åのp型微結晶シ
リコン層を形成することで、半導体接合層34を形成し
た。続いてこの半導体接合層34上に、ITOターゲッ
トを用いた酸素雰囲気中DCスパッタリング法で、透明
導電層35として厚さ700ÅのITO膜を形成した。
続いて光学センサーを用いた方法で、レーザで導電層3
3に形成した導電層欠損部38を見つけ、この部分を前
述と同じ性能のNd−YAGレーザを用いて、透明導電
層35側より面に垂直に、平均レーザ出力をlWに調節
したスポット径100μmのビームを1msec照射4し
た。その結果、透明導電層と半導体接合層と絶縁層が混
在した、導電性が金属と同程度である直径0.2mmの
合金層36が形成された。合金層36の断面を観察する
と、レーザ照射前アモルファスシリコン半導体接合層で
あった部分と、酸化シリコンであった部分は一様なシリ
コン化合物を形成していたが、ITOはこれらから独立
した層を形成していた。レーザが与える熱量は、不透明
導電基体31と透明導電層35が、導電層32と接触す
ることなく、合金層36を形成する大きさでなくてはな
らない。
[Third Embodiment] FIG. 3 is a sectional view showing a photovoltaic device according to a third embodiment of the present invention, and FIG. 7 is a plan view of the photovoltaic device shown in FIG. FIG.
It is sectional drawing which showed the photovoltaic element which comprises the photovoltaic device shown in FIG. 3, and FIG. 13 is explanatory drawing which showed the manufacturing process of the photovoltaic element shown in FIG. Figure 1
1 and FIG. 13, a method of manufacturing a photovoltaic element that constitutes a photovoltaic device will be sequentially described. The opaque conductive substrate 31 is a rectangle having a length of 10 cm and a width of 5 cm and a thickness of 0.2 mm.
A mirror-polished stainless steel SUS430 substrate was prepared and subjected to ultrasonic cleaning in acetone for 5 minutes and ultrasonic cleaning in isopropyl alcohol for 1 minute to remove oil and fat. Then, a silicon oxide film having a thickness of 2 μm was formed as the insulating layer 32 on the opaque conductive substrate 31 by an RF sputtering method in an Ar atmosphere using a silicon oxide target. Subsequently, a 5000 Å thick silver film was formed as the conductive layer 33 on the insulating layer 32 kept at 500 ° C. by a DC sputtering method in an Ar atmosphere using a silver target. The surface of the silver film had a fine uneven structure with remarkable diffuse reflection. Then, wavelength 1.06μm, pulse frequency 4k
Hz, Q switch pulse oscillation, TEM00 mode Nd-Y
A conductive layer having a diameter of 0.8 mm where the insulating layer 32 is exposed by irradiating a predetermined position of the conductive layer 33 with a beam having a spot diameter of 100 μm and adjusting the average laser output to 0.5 W using an AG laser. The missing part 38 is 10 in length and width.
It was formed at 25 grid points at mm intervals. Subsequently, SiH4 gas, SiF4 gas, and PH3 gas diluted with hydrogen gas are decomposed in plasma excited by RF, and an n-type amorphous silicon layer having a thickness of 200 Å is formed on the conductive layer 33 kept at 250 ° C. SiH4 gas, SiF4, which is formed and diluted with hydrogen gas, is formed on the n-type amorphous silicon layer.
The gas is decomposed in a plasma excited by RF to a thickness of 4
A 000 Å i-type amorphous silicon layer is formed, and then SiH4 gas and BF3 gas diluted with hydrogen gas are decomposed in plasma excited by RF to form a 100 Å-thick layer on the i-type amorphous silicon layer. The semiconductor junction layer 34 was formed by forming the p-type microcrystalline silicon layer. Then, an ITO film having a thickness of 700 Å was formed as the transparent conductive layer 35 on the semiconductor bonding layer 34 by a DC sputtering method in an oxygen atmosphere using an ITO target.
Then, the conductive layer 3 is irradiated with a laser by a method using an optical sensor.
The conductive layer deficient portion 38 formed in No. 3 was found, and this portion was made perpendicular to the surface from the transparent conductive layer 35 side and the average laser output was adjusted to 1 W using an Nd-YAG laser having the same performance as described above, and the spot diameter was 100 μm. The beam was irradiated for 1 msec4. As a result, an alloy layer 36 having a diameter of 0.2 mm, in which the transparent conductive layer, the semiconductor bonding layer, and the insulating layer were mixed, and whose conductivity was about the same as that of a metal, was formed. When observing the cross section of the alloy layer 36, a uniform silicon compound was formed in the part that was the amorphous silicon semiconductor bonding layer before laser irradiation and the part that was silicon oxide, but ITO formed a layer independent of these. Had formed. The amount of heat given by the laser must be such that the opaque conductive substrate 31 and the transparent conductive layer 35 form the alloy layer 36 without coming into contact with the conductive layer 32.

【0012】以上の工程で10個作成された光起電力素
子から光起電力装置を製造する方法を、図3、図7に従
って順次説明する。各々の光起電力素子の、下層に導電
層欠損部38を備えない端部において、前述と同じ性能
のNd−YAGレーザを用いて、平均レーザ出力を1.
2Wに調節した、スボット径l00μmのビームをl0
0mm/secの走査速度で照射し、長さ100mm幅
0.5mmの透明導電層分割溝30bを形成した。これ
によって下層に導電層欠損部38がないために、透明導
電層が不透明導電基体31と絶縁された、長さ100m
m幅3mmの導電層接続部30aが形成された。続いて
導電層接続部30aにおいて、平均レーザ出力を0.7
Wに調節したスポット径100μmのビームを1msec照
射した。その結果、透明導電層と半導体接合層と導電層
が混在した、導電性が金属と同程度である直径0.3m
mの導電層接続層30cが形成された。導電層接続層3
0cの断面を観察すると、レーザ照射前アモルファスシ
リコン半導体接合層であった部分と、銀層であった部分
は一様な合金を形成していたが、ITOはこれらから独
立した層を形成していた。続いて電極接続体37aとし
て厚さ0.1mm長さ5mm幅2mmの銅箔を2個用意
して、導電層露出部30a上の透明導電層35に接触し
ない位置で、かつ導電層接続層30cを覆う位置に、金
属粉を含有する導電性樹脂で接着した。次に、各々の光
起電力素子の電極接続体37aと不透明導電基体31と
を、厚さ0.1mm長さ10mm幅5mmの銅箔からな
る電極接続体37bによって、順次直列接続することで
光起電力装置を作成した。電極接続体37bの不透明導
電基体31および電極接続体37aへの接着は、金属粉
を含有する導電性樹脂を介在させることでなされた。A
M1.5(100mW/cm2)光照射下にて、作成さ
れた光起電力装置の電流電圧特性を測定をしたところ、
最適動作点において4.3W、14.5V、光電変換効
率は8.6%が得られた。透明導電層35、電気的接触
部39、不透明導電基体31、電極接続体37a、37
bからなる抵抗による損失電力を求めたところ、真性光
電変換効率で計算した出力電力の3%未満に抑えること
ができた。ここでの真性光電変換効率とは、それぞれの
光起電力素子について、下層に導電層欠損部38を含ま
ない透明導電層35のある数箇所で、外周をエッチング
で取り除き周囲と絶縁した直径3mmの円形の透明導電
層35と、この円外で透明導電層35、半導体接合層3
4をエッチングで取り除き露出させた導電層33とを電
極とし、AMl.5光照射下にて測定された最適動作点
における光電変換効率の平均である。
A method of manufacturing a photovoltaic device from the photovoltaic elements manufactured by the above 10 steps will be sequentially described with reference to FIGS. 3 and 7. At the end of each photovoltaic element, which does not have the conductive layer defect portion 38 in the lower layer, an average laser output of 1. Nd-YAG laser having the same performance as described above was used.
A beam with a sbot diameter of 100 μm adjusted to 2 W
Irradiation was performed at a scanning speed of 0 mm / sec to form a transparent conductive layer dividing groove 30b having a length of 100 mm and a width of 0.5 mm. As a result, the transparent conductive layer is insulated from the opaque conductive substrate 31 because there is no conductive layer defect portion 38 in the lower layer, and the length is 100 m.
A conductive layer connecting portion 30a having an m width of 3 mm was formed. Then, in the conductive layer connecting portion 30a, the average laser output is 0.7
A beam with a spot diameter of 100 μm adjusted to W was irradiated for 1 msec. As a result, the transparent conductive layer, the semiconductor bonding layer, and the conductive layer are mixed, and the conductivity is about the same as that of the metal. The diameter is 0.3 m.
m conductive layer connecting layer 30c was formed. Conductive layer connection layer 3
Observing the cross section of 0c, a uniform alloy was formed in the portion that was the amorphous silicon semiconductor bonding layer before laser irradiation and the portion that was the silver layer, but ITO formed a layer independent of these. It was Subsequently, two copper foils each having a thickness of 0.1 mm, a length of 5 mm, and a width of 2 mm were prepared as the electrode connecting body 37a, and the conductive layer connecting layer 30c was provided at a position not contacting the transparent conductive layer 35 on the conductive layer exposed portion 30a. Was adhered to the position to cover with a conductive resin containing metal powder. Next, the electrode connection body 37a of each photovoltaic element and the opaque conductive substrate 31 are sequentially connected in series by an electrode connection body 37b made of a copper foil having a thickness of 0.1 mm, a length of 10 mm, and a width of 5 mm. An electromotive device was created. The electrode connecting body 37b was adhered to the opaque conductive substrate 31 and the electrode connecting body 37a by interposing a conductive resin containing metal powder. A
When the current-voltage characteristics of the photovoltaic device prepared were measured under irradiation with M1.5 (100 mW / cm 2 ) light,
At the optimum operating point, 4.3 W and 14.5 V were obtained, and the photoelectric conversion efficiency was 8.6%. Transparent conductive layer 35, electrical contact portion 39, opaque conductive substrate 31, electrode connection bodies 37a, 37
When the power loss due to the resistance consisting of b was obtained, it was possible to suppress it to less than 3% of the output power calculated by the intrinsic photoelectric conversion efficiency. Intrinsic photoelectric conversion efficiency here means, for each photovoltaic element, at several locations where there is a transparent conductive layer 35 that does not include the conductive layer defect portion 38 in the lower layer, the outer periphery is removed by etching and the diameter is 3 mm, which is insulated from the surroundings. The circular transparent conductive layer 35, and the transparent conductive layer 35 and the semiconductor bonding layer 3 outside the circle.
4 is removed by etching, and the exposed conductive layer 33 is used as an electrode. It is the average of the photoelectric conversion efficiencies at the optimum operating point measured under 5 light irradiation.

【0013】[実施例4]図4は、本発明の実施例4に
おける光起電力装置を示した断面図であり、図8は、図
4で示される光起電力装置の平面図である。図11は、
図4で示される光起電力装置を構成する光起電力素子を
示した断面図であり、図13は、図11で示される光起
電力素子の製造工程を示した説明図である。まず図1
1、図13に従って、光起電力装置を構成する光起電力
素子の製造方法を順次説明する。不透明導電基体41と
して、縦l0cm横5cmの長方形で、厚さ0.2mm
の鏡面研磨されたステンレスSUS430の基体を用意
し、アセトン中で超音波洗浄を5分間、イソプロピルア
ルコール中で超音波洗浄を1分間行い、油脂分を除去し
た。続いて窒素ガスで希釈したシランガスとアンモニア
ガスを、RFで励起されたプラズマ中で分解し、250
℃に保った不透明導電基体41上に、絶縁層42として
厚さ2μmの窒化シリコン膜を形成した。続いて400
℃に保った絶縁層42上に、アルミニウムターゲットを
用いたAr雰囲気中でのDCスパッタリング法で形成さ
れた厚さ5000Åのアルミニウム膜と、酸化亜鉛ター
ゲットを用いたAr雰囲気中でのDCスパッタリング法
で形成された厚さl0000Åの酸化亜鉛膜からなる導
電層43を形成した。アルミニウム膜の表面および酸化
亜鉛の表面は、拡散反射が顕著な、微細な凹凸構造とな
った。続いて波長1.06μm、パルス周波数4kH
z、Qスイッチパルス発振、TEM00モードのNd−YA
Gレーザを用いて、平均レーザ出力を0.5Wに調節し
たスポット径100μmのビームを、導電層43の所定
位置に100mm/secの走査速度で照射3すること
で、絶縁層42が露出する幅0.4mm長さ5mmの短
冊状の導電層欠損部48を、縦が18mm間隔で横が1
0mm間隔の格子点30箇所に形成した。続いて水素ガ
スで希釈されたSiH4ガス、SiF4ガス、PH3ガ
スを、RFで励起されたプラズマ中で分解し、250℃
に保った導電層43上に、厚さ200Åのn型アモルフ
ァスシリコン層を形成し、このn型アモルファスシリコ
ン層上に、水素ガスで希釈されたSiH4ガス、SiF
4ガスを、RFで励起されたプラズマ中で分解し、厚さ
4000Åのi型アモルファスシリコン層を形成し、さ
らにi型アモルファスシリコン層上に、続いて水素ガス
で希釈されたSiH4ガス、BF3ガスを、RFで励起
されたプラズマ中で分解し、厚さ100Åのp型微結晶
シリコン層を形成することで、半導体接合層44を形成
した。続いてこの半導体接合層44上に、ITOターゲ
ットを用いた酸素雰囲気中DCスパッタリング法で、透
明導電層45として厚さ700ÅのITO膜を形成し
た。続いて光学センサーを用いた方法で、レーザで導電
層43に形成した導電層欠損部48を見つけ、この部分
を前述と同じ性能のNd−YAGレーザを用いて、透明
導電層45側より面に垂直に、平均レーザ出力を1Wに
調節したスポット径100μmのビームをl00mm/
secの走査速度で照射4した。その結果、透明導電層
と半導体接合層と絶縁層が混在した、導電性が金属と同
程度である幅0.1mm長さ4mmの合金層46が形成
された。合金層46の断面を観察すると、レーザ照射前
アモルファスシリコン半導体接合層であった部分と、窒
化シリコンであった部分は一様なシリコン化合物を形成
していたが、ITOはこれらから独立した層を形成して
いた。レーザが与える熱量は、不透明導電基体41と透
明導電層45が、導電層42と接触することなく、合金
層46を形成する大きさでなくてはならない。
[Fourth Embodiment] FIG. 4 is a sectional view showing a photovoltaic device according to a fourth embodiment of the present invention, and FIG. 8 is a plan view of the photovoltaic device shown in FIG. FIG.
It is sectional drawing which showed the photovoltaic element which comprises the photovoltaic device shown in FIG. 4, and FIG. 13 is explanatory drawing which showed the manufacturing process of the photovoltaic element shown in FIG. Figure 1
1 and FIG. 13, a method of manufacturing a photovoltaic element that constitutes a photovoltaic device will be sequentially described. As the opaque conductive substrate 41, a rectangle having a length of 10 cm and a width of 5 cm and a thickness of 0.2 mm
A mirror-polished stainless steel SUS430 substrate was prepared and subjected to ultrasonic cleaning in acetone for 5 minutes and ultrasonic cleaning in isopropyl alcohol for 1 minute to remove oil and fat. Subsequently, silane gas and ammonia gas diluted with nitrogen gas are decomposed in plasma excited by RF, and 250
A silicon nitride film having a thickness of 2 μm was formed as an insulating layer 42 on the opaque conductive substrate 41 kept at ℃. Then 400
A 5000 Å-thick aluminum film formed by DC sputtering in an Ar atmosphere using an aluminum target and a DC sputtering method in an Ar atmosphere using a zinc oxide target on the insulating layer 42 kept at ℃. A conductive layer 43 made of the formed zinc oxide film having a thickness of 10000 Å was formed. The surface of the aluminum film and the surface of zinc oxide had a fine uneven structure in which diffuse reflection was remarkable. Next, wavelength 1.06 μm, pulse frequency 4 kHz
z, Q switch pulse oscillation, TEM00 mode Nd-YA
The width at which the insulating layer 42 is exposed by irradiating a predetermined position of the conductive layer 43 at a scanning speed of 100 mm / sec 3 with a beam having a spot diameter of 100 μm whose average laser output is adjusted to 0.5 W using a G laser. 0.4 mm long and 5 mm long strip-shaped conductive layer missing portions 48 are arranged at a length of 18 mm and a width of 1 mm.
It was formed at 30 grid points at 0 mm intervals. Subsequently, SiH4 gas, SiF4 gas, and PH3 gas diluted with hydrogen gas are decomposed in plasma excited by RF,
An n-type amorphous silicon layer having a thickness of 200 Å is formed on the conductive layer 43 kept at the above temperature, and SiH4 gas and SiF diluted with hydrogen gas are formed on the n-type amorphous silicon layer.
4 gas is decomposed in plasma excited by RF to form an i-type amorphous silicon layer having a thickness of 4000 Å, and further SiH4 gas and BF3 gas diluted with hydrogen gas are formed on the i-type amorphous silicon layer. Was decomposed in plasma excited by RF to form a p-type microcrystalline silicon layer having a thickness of 100Å, thereby forming the semiconductor bonding layer 44. Subsequently, an ITO film having a thickness of 700 Å was formed as the transparent conductive layer 45 on the semiconductor bonding layer 44 by a DC sputtering method in an oxygen atmosphere using an ITO target. Subsequently, a conductive layer defect portion 48 formed in the conductive layer 43 is found by a laser using a method using an optical sensor, and this portion is made to face the transparent conductive layer 45 side by using an Nd-YAG laser having the same performance as described above. Vertically, a beam with a spot diameter of 100 μm with the average laser power adjusted to 1 W was set to 100 mm /
Irradiation 4 was performed at a scanning speed of sec. As a result, an alloy layer 46 having a width of 0.1 mm and a length of 4 mm, in which the transparent conductive layer, the semiconductor bonding layer, and the insulating layer were mixed, and the conductivity of which was about the same as that of the metal, was formed. When observing the cross section of the alloy layer 46, a part of the amorphous silicon semiconductor bonding layer before laser irradiation and a part of silicon nitride formed a uniform silicon compound, but ITO formed a layer independent of these. Had formed. The amount of heat given by the laser should be such that the opaque conductive substrate 41 and the transparent conductive layer 45 form the alloy layer 46 without coming into contact with the conductive layer 42.

【0014】以上の工程で10個作成された光起電力素
子から光起電力装置を製造する方法を、図4、図8に従
って順次説明する。各々の光起電力素子の、下層に導電
層欠損部48を備えない端部において、前述と同じ性能
のNd−YAGレーザを用いて、平均レーザ出力を1.
2Wに調節した、スポット径l00μmのビームを10
0mm/secの走査速度で照射し、長さl00mm幅
0.5mmの透明導電層分割溝40bを形成した。これ
によって下層に導電層欠損部48がないために、透明導
電層が不透明導電基体41と絶縁された、長さ100m
m幅3mmの導電層接続部40aが形成された。続いて
導電層接続部40aにおいて、平均レーザ出力を0.7
Wに調節したスポット径100μmのビームを1msec照
射した。その結果、透明導電層と半導体接合層と導電層
が混在した、導電性が金属と同程度である直径0.3m
mの導電層接続層40cが形成された。導電層接続層4
0cの断面を観察すると、レーザ照射前アモルファスシ
リコン半導体接合層であった部分と、銀層であった部分
は一様な合金を形成していたが、ITOはこれらから独
立した層を形成していた。続いて電極接続体47aとし
て厚さ0.1mm長さ5mm幅2mmの銅箔を2個用意
して、導電層露出部40a上の透明導電層45に接触し
ない位置で、かつ導電層接続層40cを覆う位置に、金
属粉を含有する導電性樹脂で接着した。次に、各々の光
起電力素子の電極接続体47aと透明導電層45とを、
厚さ0.lmm長さ10mm幅5mmの銅箔からなる電
極接続体47bで順次接続することで、光起電力素子が
直列接続された光起電力装置を作成した。電極接続体4
7bの透明導電層45への接着は、金属粉を含有する導
電性樹脂を介在させることでなされ、電極接続体47b
の電極接続体47aへの接着は、低融点合金半田による
溶着でなされた。AM1.5(100mW/cm2)光
照射下にて、作成された光起電力装置の電流電圧特性を
測定をしたところ、最適動作点において4.40W、1
4.9V、光電変換効率は8.8%が得られた。透明導
電層45、電気的接触部49、不透明導電基体41、電
極接続体47a、47bからなる抵抗による損失電力を
求めたところ、真性光電変換効率で計算した出力電力の
3%未満に抑えることができた。ここでの真性光電変換
効率とは、それぞれの光起電力素子について、下層に導
電層欠損部48を含まない透明導電層45のある数箇所
で、外周をエッチングで取り除き周囲と絶縁した直径3
mmの円形の透明導電層45と、この円外で透明導電層
45、半導体接合層44をエッチングで取り除き露出さ
せた導電層43とを電極とし、AM1.5光照射下にて
測定された最適動作点における光電変換効率の平均であ
る。
A method of manufacturing a photovoltaic device from the photovoltaic elements produced by the above 10 steps will be sequentially described with reference to FIGS. 4 and 8. At the end of each photovoltaic element that does not have the conductive layer defect 48 in the lower layer, an average laser output of 1. Nd-YAG laser having the same performance as described above was used.
A beam with a spot diameter of 100 μm adjusted to 2 W
Irradiation was performed at a scanning speed of 0 mm / sec to form a transparent conductive layer dividing groove 40b having a length of 100 mm and a width of 0.5 mm. As a result, the transparent conductive layer is insulated from the opaque conductive substrate 41 because there is no conductive layer defect 48 in the lower layer, and the length is 100 m.
A conductive layer connecting portion 40a having an m width of 3 mm was formed. Then, in the conductive layer connecting portion 40a, the average laser output is 0.7
A beam with a spot diameter of 100 μm adjusted to W was irradiated for 1 msec. As a result, the transparent conductive layer, the semiconductor bonding layer, and the conductive layer are mixed, and the conductivity is about the same as that of the metal. The diameter is 0.3 m.
m conductive layer connecting layer 40c was formed. Conductive layer connection layer 4
Observing the cross section of 0c, a uniform alloy was formed in the portion that was the amorphous silicon semiconductor bonding layer before laser irradiation and the portion that was the silver layer, but ITO formed a layer independent of these. It was Subsequently, two copper foils each having a thickness of 0.1 mm, a length of 5 mm, and a width of 2 mm are prepared as the electrode connecting body 47a, and the conductive layer connecting layer 40c is provided at a position not contacting the transparent conductive layer 45 on the conductive layer exposed portion 40a. Was adhered to the position to cover with a conductive resin containing metal powder. Next, the electrode connecting body 47a and the transparent conductive layer 45 of each photovoltaic element are
Thickness 0. A photovoltaic device in which photovoltaic elements were connected in series was produced by sequentially connecting with an electrode connecting body 47b made of a copper foil having a length of 1 mm, a length of 10 mm, and a width of 5 mm. Electrode connector 4
7b is adhered to the transparent conductive layer 45 by interposing a conductive resin containing metal powder, and the electrode connecting body 47b
The electrode connection body 47a was bonded by welding with a low melting point alloy solder. The current-voltage characteristics of the photovoltaic device produced were measured under irradiation with AM1.5 (100 mW / cm 2 ) light and found to be 4.40 W and 1 at the optimum operating point.
4.9 V and a photoelectric conversion efficiency of 8.8% were obtained. When the power loss due to the resistance composed of the transparent conductive layer 45, the electrical contact portion 49, the opaque conductive substrate 41, and the electrode connectors 47a and 47b was calculated, it could be suppressed to less than 3% of the output power calculated by the intrinsic photoelectric conversion efficiency. did it. Intrinsic photoelectric conversion efficiency here means, for each photovoltaic element, a diameter of 3 at which the outer periphery is removed by etching and insulated from the surroundings at several locations where the transparent conductive layer 45 that does not include the conductive layer defect portion 48 is present in the lower layer.
Optimum measured under irradiation with AM1.5 light by using a circular transparent conductive layer 45 of mm and the conductive layer 43 exposed by removing the transparent conductive layer 45 and the semiconductor bonding layer 44 outside the circle by etching. It is the average of the photoelectric conversion efficiency at the operating point.

【0015】[実施例5]図1は、本発明の実施例5に
おける光起電力装置を示した断面図であり、図5は、図
1で示される光起電力装置の平面図である。図11は、
図1で示される光起電力装置を構成する光起電力素子を
示した断面図であり、図13は、図11で示される光起
電力素子の製造工程を示した説明図である。図16は、
図11および図13で示される構成の光起電力素子を製
造する装置の概略図である。まず図11、図13、図1
6に従って、光起電力装置を構成する光起電力素子の製
造方法を順次説明する。図16に示す薄膜形成装置は、
ロール状になったフィルム基体から、フィルム基体を薄
膜形成室に引き出し薄膜を形成し、薄膜が形成されたフ
ィルム基体を、再びロール状に巻き取るロール・ツー・
ロール方式の装置である。ロール・ツー・ロール方式の
装置は、フィルム基体を搬送しながら薄膜を形成するこ
とで、薄膜形成室より大幅に長い基体に均一な薄膜を形
成することが可能であり、また多重膜の違続形成も、基
体搬送方向にターゲットを並べることで、簡単に実現で
きるという特徴を持っている。不透明導電基体51とし
て、有機溶剤あるいはアルカリ溶剤で油脂分を除去し
た、厚さ0.1mm幅100mm長さ100mの鏡面研
磨されたステンレスSUS430製フイルム基体をロー
ル状で用意した。ロール状にされた不透明導電基体51
は、送り出し室100から引き出され、絶縁層堆積室1
01、導電層堆積室102、レーザ照射室103、n層
堆積室104、i層堆積室105、p層堆積室106、
透明導電層堆積室107、レーザ照射室108を搬送速
度500mm/minで通過することで、図5に示され
る構成の光起電力素子となった。前述の各真空室では以
下に示す工程が行われた。絶縁層堆積室101では、窒
素ガスで希釈したシランガスとアンモニアガスからなる
堆積ガス111を、電極121にRFを印加することで
励起されたプラズマ中で分解し、250℃に保った不透
明導電基体51上に、絶縁層52として厚さ2μmの窒
化シリコン膜を形成した。導電層堆積室102ではAr
からなる不活性ガス112中で、電極122上に設けら
れた銀ターゲットを用いた、DCスパッタリング法によ
り、導電層53として厚さ5000Åの銀膜を、500
℃に保った絶縁層52上に形成した。銀膜の表面は、拡
散反射が顕著な、微細な凹凸構造となった。レーザ照射
室103では、波長1.06μm、パルス周波数4kH
z、qスイッチパルス発振、TBM00モードのNd−
YAGレーザ123を用いて、平均レーザ出力を0.5
Wに調節したスポット径100μmのビームを、導電層
53の所定位置に1msec照射3することで、絶縁層
52が露出する直径0.8mmの導電層欠損部58を、
不透明導電基体51の幅方向にl0mm間隔で10箇所
形成する。これを不透明導電基体51が10mm搬送さ
れる毎に繰り返すことで、導電層欠損部58が、幅方向
に10列の10mm間隔の格子点として形成した。n層
堆積室104では、水素ガスで希釈されたSiH4ガ
ス、SiF4ガス、PH3ガスを、電極124にRFを
印加することで励起されたプラズマ中で分解し、250
℃に保った導電層53上に、厚さ200Åのn型アモル
ファスシリコン層を形成し、続いてi層堆積室105で
は、水素ガスで希釈されたSiH4ガス、SiF4ガス
を、電極125にRFを印加することで励起されたプラ
ズマ中で分解し、n型アモルファスシリコン層上に、厚
さ4000Åのi型アモルファスシリコン層を形成し、
続いてp層堆積室106では、水素ガスで希釈されたS
iH4ガス、BF3ガスを、電極126にRFを印加す
ることで励起されたプラズマ中で分解し、i型アモルフ
ァスシリコン層上に、厚さ100Åのp型微結晶シリコ
ン層を形成することで、半導体接合層54を形成した。
透明導電層堆積室107ではArと酸素からなる反応性
ガス117中で、電極127上に設けられたITOター
ゲットを用いた、DCスパッタリング法により、透明導
電層55として厚さ700ÅのITO膜を半導体接合層
54上に形成した。レーザ照射室108で、光学センサ
ー118を用いた方法で、レーザで導電層53に形成し
た導電層欠損部58を見つけ、この部分を前述と同じ性
能のNd−YAGレーザ128を用いて、透明導電層5
5側より面に垂直に、平均レーザ出力を1wに調節した
スポット径100μmのビームを1msec照射4した。そ
の結果、透明導電層と半導体接合層と絶縁層が混在し
た、導電性が金属と同程度である直径0.2mmの合金
層56が形成された。合金層56の断面を観察すると、
レーザ照射前アモルファスシリコン半導体接合層であっ
た部分と、窒化シリコンであった部分は一様なシリコン
化合物を形成していたが、ITOはこれらから独立した
層を形成していた。レーザが与える熱量は、不透明導電
基体51と透明導電層55が、導電層52と接触するこ
となく、合金層56を形成する大きさでなくてはならな
い。
[Embodiment 5] FIG. 1 is a sectional view showing a photovoltaic device according to Embodiment 5 of the present invention, and FIG. 5 is a plan view of the photovoltaic device shown in FIG. FIG.
It is sectional drawing which showed the photovoltaic element which comprises the photovoltaic device shown in FIG. 1, and FIG. 13 is explanatory drawing which showed the manufacturing process of the photovoltaic element shown in FIG. FIG.
It is a schematic diagram of the apparatus which manufactures the photovoltaic element of the structure shown in FIG. 11 and FIG. First, FIG. 11, FIG. 13, and FIG.
6, the method of manufacturing the photovoltaic element that constitutes the photovoltaic device will be sequentially described. The thin film forming apparatus shown in FIG.
A roll-to-roll process in which a film substrate is pulled out from a rolled film substrate into a thin film forming chamber, a thin film is formed, and the film substrate on which the thin film is formed is wound into a roll again.
It is a roll type device. The roll-to-roll system is capable of forming a thin film while transporting the film substrate to form a uniform thin film on a substrate significantly longer than the thin film forming chamber. The formation also has a feature that it can be easily realized by arranging the targets in the substrate transfer direction. As the opaque electroconductive substrate 51, a mirror-polished stainless steel SUS430 film substrate having a thickness of 0.1 mm, a width of 100 mm and a length of 100 m, prepared by removing oil and fat with an organic solvent or an alkaline solvent, was prepared in a roll shape. Rolled opaque conductive substrate 51
Are drawn out from the delivery chamber 100, and the insulating layer deposition chamber 1
01, conductive layer deposition chamber 102, laser irradiation chamber 103, n layer deposition chamber 104, i layer deposition chamber 105, p layer deposition chamber 106,
By passing through the transparent conductive layer deposition chamber 107 and the laser irradiation chamber 108 at a transportation speed of 500 mm / min, the photovoltaic element having the configuration shown in FIG. 5 was obtained. The following steps were performed in each of the above vacuum chambers. In the insulating layer deposition chamber 101, the deposition gas 111 composed of silane gas and ammonia gas diluted with nitrogen gas is decomposed in plasma excited by applying RF to the electrode 121, and the opaque conductive substrate 51 kept at 250 ° C. A silicon nitride film having a thickness of 2 μm was formed thereover as an insulating layer 52. Ar in the conductive layer deposition chamber 102
A silver film having a thickness of 5000 Å as the conductive layer 53 by a DC sputtering method using a silver target provided on the electrode 122 in an inert gas 112 consisting of
It was formed on the insulating layer 52 kept at ° C. The surface of the silver film had a fine uneven structure with remarkable diffuse reflection. In the laser irradiation chamber 103, wavelength 1.06 μm, pulse frequency 4 kHz
z, q switch pulse oscillation, Nd- in TBM00 mode
Using the YAG laser 123, the average laser output is 0.5
By irradiating a predetermined position of the conductive layer 53 with a beam having a spot diameter of 100 μm adjusted to W for 3 msec, the conductive layer defective portion 58 having a diameter of 0.8 mm where the insulating layer 52 is exposed,
Ten positions are formed at intervals of 10 mm in the width direction of the opaque conductive substrate 51. By repeating this every time the opaque conductive substrate 51 is conveyed by 10 mm, the conductive layer deficient portions 58 are formed as grid points of 10 rows and 10 mm intervals in the width direction. In the n-layer deposition chamber 104, SiH4 gas, SiF4 gas, and PH3 gas diluted with hydrogen gas are decomposed in plasma excited by applying RF to the electrode 124, and 250
An n-type amorphous silicon layer having a thickness of 200Å is formed on the conductive layer 53 kept at ℃, and subsequently, in the i-layer deposition chamber 105, SiH4 gas and SiF4 gas diluted with hydrogen gas and RF are applied to the electrode 125. It decomposes in the plasma excited by applying, and forms an i-type amorphous silicon layer with a thickness of 4000 Å on the n-type amorphous silicon layer,
Then, in the p-layer deposition chamber 106, S diluted with hydrogen gas is added.
The iH4 gas and the BF3 gas are decomposed in the plasma excited by applying RF to the electrode 126 to form a p-type microcrystalline silicon layer having a thickness of 100 Å on the i-type amorphous silicon layer. The bonding layer 54 was formed.
In the transparent conductive layer deposition chamber 107, an ITO film having a thickness of 700Å is formed as a semiconductor as a transparent conductive layer 55 by a DC sputtering method using an ITO target provided on the electrode 127 in a reactive gas 117 composed of Ar and oxygen. It was formed on the bonding layer 54. In the laser irradiation chamber 108, the conductive layer defect portion 58 formed on the conductive layer 53 by the laser is found by a method using the optical sensor 118, and this portion is transparently conductive by using the Nd-YAG laser 128 having the same performance as described above. Layer 5
A beam having a spot diameter of 100 μm and having an average laser output adjusted to 1 w was irradiated 1 msec perpendicularly to the surface from the 5 side. As a result, an alloy layer 56 having a diameter of 0.2 mm, in which the transparent conductive layer, the semiconductor bonding layer, and the insulating layer were mixed, and whose conductivity was about the same as that of a metal, was formed. Observing the cross section of the alloy layer 56,
A part of the amorphous silicon semiconductor bonding layer before laser irradiation and a part of silicon nitride formed a uniform silicon compound, but ITO formed a layer independent of these. The amount of heat given by the laser must be large enough to form the alloy layer 56 without the opaque conductive substrate 51 and the transparent conductive layer 55 coming into contact with the conductive layer 52.

【0016】以上の工程を経て、巻き取り室109で再
びロール状に巻き取られた光起電力素子より、縦10c
m横5cmの長方形に切り出した、10個の光起電力素
子から光起電力装置を製造する方法を、図1、図5に従
って順次説明する。各々の光起電力素子の端部におい
て、透明導電層55、半導体接合層54をエッチング
し、長さ10mm幅4mmの導電層露出部50aを2箇
所形成した。続いて電極接続体57aとして厚さ0.1
mm長さ5mm幅2mmの銅箔を2個用意して、導電層
露出部50a上の透明導電層55に接触しない位置に、
金属粉を含有する導電性樹脂で接着した。次に、各々の
光起電力素子の電極接続体57aと不透明導電基体51
とを、厚さ0.lmm長さ10mm幅5mmの銅箔から
なる電極接続体57bによって、順次直列接続すること
で光起電力装置を作成した。電極接続体57bの不透明
導電基体51および電極接続体57aへの接着は、前述
と同じ性能のNd−YAGレーザを用いた溶着でなされ
た。AM1.5(100mW/cm2)光照射下にて、
作成された光起電力装置の電流電圧特性を測定をしたと
ころ、最適動作点において4.35W、14.5V、光
電変換効率は8.7%が得られた。透明導電層55、電
気的接触部59、不透明導電基体51、電極接続体57
a、57bからなる抵抗による損失電力を求めたとこ
ろ、真性光電変換効率で計算した出力電力の3%未満に
抑えることができた。ここでの真性光電変換効率とは、
それぞれの光起電力素子について、下層に導電層欠損部
58を含まない透明導電層55のある数箇所で、外周を
エッチングで取り除き周囲と絶縁した直径3mmの円形
の透明導電層55と、この円外で透明導電層55、半導
体接合層54をエッチングで取り除き露出させた導電層
53とを電極とし、AM1.5光照射下にて測定された
最適動作点における光電変換効率の平均である。
After the above steps, the photovoltaic element wound again in the winding chamber 109 in a roll shape has a length of 10c.
A method of manufacturing a photovoltaic device from 10 photovoltaic elements cut out into a rectangle of 5 cm in width 5 cm will be sequentially described with reference to FIGS. 1 and 5. At the end of each photovoltaic element, the transparent conductive layer 55 and the semiconductor bonding layer 54 were etched to form two conductive layer exposed portions 50a having a length of 10 mm and a width of 4 mm. Subsequently, the electrode connecting body 57a has a thickness of 0.1.
2 pieces of copper foil having a length of 5 mm and a width of 2 mm are prepared, and the copper foil is placed on the exposed portion 50a of the conductive layer at a position not contacting the transparent conductive layer 55
Bonding was performed with a conductive resin containing metal powder. Next, the electrode connection body 57a of each photovoltaic element and the opaque conductive substrate 51 are formed.
And thickness 0. A photovoltaic device was created by sequentially connecting in series with an electrode connector 57b made of a copper foil having a length of 1 mm, a length of 10 mm, and a width of 5 mm. The electrode connector 57b was adhered to the opaque conductive substrate 51 and the electrode connector 57a by welding using an Nd-YAG laser having the same performance as described above. Under AM1.5 (100 mW / cm 2 ) light irradiation,
When the current-voltage characteristics of the created photovoltaic device were measured, 4.35 W and 14.5 V were obtained at the optimum operating point, and the photoelectric conversion efficiency was 8.7%. Transparent conductive layer 55, electrical contact portion 59, opaque conductive substrate 51, electrode connector 57
When the loss power due to the resistance composed of a and 57b was obtained, it was possible to suppress it to less than 3% of the output power calculated by the intrinsic photoelectric conversion efficiency. The intrinsic photoelectric conversion efficiency here is
For each photovoltaic element, a circular transparent conductive layer 55 with a diameter of 3 mm, which is insulated from the surrounding by removing the outer periphery by etching at several places where the transparent conductive layer 55 does not include the conductive layer defect portion 58 in the lower layer, and this circle This is the average of the photoelectric conversion efficiencies at the optimum operating point measured under AM1.5 light irradiation, using the transparent conductive layer 55 and the conductive layer 53 exposed by removing the semiconductor bonding layer 54 by etching as electrodes.

【0017】[従来例]つぎに、本願発明の上記実施例
と対比し本発明が優れた特性を有することを明らかにす
るため従来例について説明する。図14は、従来の光起
電力装置の一つの構成を示した断面図であり、図15
は、図14で示される光起電力装置の断面図である。以
下図14、図15に従って光起電力装置の製造方法を順
次説明する。不透明導電基体91として、5cm四方で
厚さ0.2mmの鏡面研磨されたステンレスSUS43
0の基体を用意し、アセトン中で超音波洗浄を5分間、
イソプロピルアルコール中で超音波洗浄を1分間行い、
油脂分を除去した。続いて400℃に保った不透明導電
基体91上に、アルミニウムターゲットを用いたAr雰
囲気中でのDCスパッタリング法で、導電層93として
厚さ5000Åのアルミニウム膜を形成した。続いて水
素ガスで希釈されたSiH4ガス、SiF4ガス、PH
3ガスを、RFで励起されたプラズマ中で分解し、25
0℃に保った導電層93上に、厚さ200Åのn型アモ
ルファスシリコン層を形成し、続いてこのn型アモルフ
ァスシリコン層上に、水素ガスで希釈されたSiH4ガ
ス、SiF4ガスを、RFで励起されたプラズマ中で分
解し、250℃に保ったn型アモルファスシリコン層上
に、厚さ4000Åのi型アモルファスシリコン層を形
成し、続いてこのi型アモルファスシリコン層上に、水
素ガスで希釈されたSiH4ガス、BF3ガスを、RF
で励起されたプラズマ中で分解し、250℃に保ったp
型アモルファスシリコン層上に、厚さ100Åのp型微
結晶シリコン層を形成することで、半導体接合層94を
形成した。続いてこの半導体接合層94上に、ITOタ
ーゲットを用いたO2雰囲気中DCスパッタリング法
で、透明導電層95として厚さ700ÅのITO膜を形
成した。続いてこの透明導電層95上に、集電電極98
として、長さ45mmの直径100μmの銀ワイヤー5
本を10mm間隔で、導電性樹脂を用いて接着した。導
電性樹脂は、集電電極98が配置される場所に対応し
て、幅0.4mm長さ45mmの10mm間隔で5箇所
に、スクリーン印刷法で塗布される。続いて電極接続体
97aとして厚さ0.1mm長さ95mm幅4mmの銅
箔を、基体端部の不透明導電基体91に接触しない位置
に、集電電極98が金属粉を含有する導電性樹脂で接着
した。その接着領域に集電電極98の端部を含めること
で、電極接続体97aと集電電極98を接続した。この
光起電力素子を10個作成し、各々の光起電力素子の電
極接続体97aと不透明導電基体91とを、厚さ0.1
mm長さ10mm幅5mmの銅箔からなる電極接続体9
7bによって、順次直列接続することで光起電力装置を
作成した。電極接続体97bの不透明導電基体91およ
び電極接続体97aへの接着は、低融点合金半田を用い
た溶着でなされた。AM1.5(100mW/cm2
光照射下にて電流電圧特性を測定をしたところ、最適動
作点において4.15W、13.8V、光電変換効率は
8.3%が得られた。透明導電層95、集電電極98、
電極接続体97からなる抵抗による損失電力を求めたと
ころ、真性光電変換効率で計算した出力電力の3%〜4
%であった。ここでの真性光電変換効率とは、それぞれ
の光起電力素子について、下層に導電層欠損部98を含
まない透明導電層95のある数箇所で、外周をエッチン
グで取り除き周囲と絶縁した直径3mmの円形の透明導
電層95と、この円の直下の不透明導電層91を電極と
し、AM1.5光照射下にて測定された最適動作点にお
ける光電変換効率の平均である。このような従来例と本
発明とを比較した場合、本願発明によると従来例よりも
高い光電変換効率が得られ、また損失電力を低く抑える
ことができることが分かる。
[Conventional Example] Next, a conventional example will be described in order to clarify that the present invention has excellent characteristics in comparison with the above-described embodiments of the present invention. FIG. 14 is a cross-sectional view showing one configuration of a conventional photovoltaic device, and FIG.
FIG. 15 is a sectional view of the photovoltaic device shown in FIG. 14. The manufacturing method of the photovoltaic device will be sequentially described below with reference to FIGS. As the opaque conductive substrate 91, mirror-polished stainless steel SUS43 having a 5 cm square and a thickness of 0.2 mm
0 base material, ultrasonic cleaning in acetone for 5 minutes,
Ultrasonic cleaning in isopropyl alcohol for 1 minute,
Oils and fats were removed. Then, on the opaque conductive substrate 91 kept at 400 ° C., an aluminum film having a thickness of 5000 Å was formed as the conductive layer 93 by a DC sputtering method in an Ar atmosphere using an aluminum target. Then, SiH4 gas diluted with hydrogen gas, SiF4 gas, PH
3 gas was decomposed in plasma excited by RF,
An n-type amorphous silicon layer having a thickness of 200Å is formed on the conductive layer 93 kept at 0 ° C., and then SiH4 gas and SiF4 gas diluted with hydrogen gas are RF-radiated on the n-type amorphous silicon layer. Decomposes in excited plasma and forms an i-type amorphous silicon layer with a thickness of 4000Å on the n-type amorphous silicon layer kept at 250 ° C., and subsequently dilutes it with hydrogen gas. RF the generated SiH4 gas and BF3 gas.
Decomposed in the plasma excited by the
A semiconductor junction layer 94 was formed by forming a p-type microcrystalline silicon layer having a thickness of 100Å on the type amorphous silicon layer. Subsequently, an ITO film having a thickness of 700 Å was formed as the transparent conductive layer 95 on the semiconductor bonding layer 94 by DC sputtering in an O 2 atmosphere using an ITO target. Then, a collector electrode 98 is formed on the transparent conductive layer 95.
As a silver wire 5 with a length of 45 mm and a diameter of 100 μm
The books were adhered at intervals of 10 mm using a conductive resin. The conductive resin is applied by a screen printing method at five places at intervals of 10 mm with a width of 0.4 mm and a length of 45 mm, corresponding to the place where the collecting electrode 98 is arranged. Subsequently, a copper foil having a thickness of 0.1 mm, a length of 95 mm, and a width of 4 mm is used as the electrode connecting body 97a at a position where the opaque conductive base 91 at the end of the base does not come into contact with the conductive resin containing the metal powder for the collecting electrode 98. Glued By including the end portion of the collector electrode 98 in the adhesion region, the electrode connector 97a and the collector electrode 98 were connected. Ten photovoltaic elements were prepared, and the electrode connection body 97a of each photovoltaic element and the opaque conductive substrate 91 were made to have a thickness of 0.1.
mm electrode connection body 9 made of copper foil having a length of 10 mm and a width of 5 mm
7b, the photovoltaic device was created by sequentially connecting in series. The electrode connecting body 97b was adhered to the opaque conductive substrate 91 and the electrode connecting body 97a by welding using a low melting point alloy solder. AM1.5 (100 mW / cm 2 )
When the current-voltage characteristics were measured under light irradiation, 4.15 W and 13.8 V were obtained at the optimum operating point, and the photoelectric conversion efficiency was 8.3%. Transparent conductive layer 95, collector electrode 98,
When the loss power due to the resistance composed of the electrode connection body 97 was determined, it was 3% to 4% of the output power calculated by the intrinsic photoelectric conversion efficiency.
%Met. Intrinsic photoelectric conversion efficiency here means that for each photovoltaic element, the transparent conductive layer 95 that does not include the conductive layer defect portion 98 in the lower layer has a diameter of 3 mm which is removed by etching the outer periphery and is insulated from the surroundings. This is the average of the photoelectric conversion efficiencies at the optimum operating point measured under AM1.5 light irradiation, using the circular transparent conductive layer 95 and the opaque conductive layer 91 immediately below this circle as electrodes. Comparing such a conventional example with the present invention, it can be seen that according to the present invention, higher photoelectric conversion efficiency than that of the conventional example can be obtained and the power loss can be suppressed low.

【0018】[0018]

【発明の効果】以上のように、本発明は光入射側の電極
である透明導電層と光入射側裏面の不透明導電基体と
が、導電層欠損部において電気的に接触するように構成
することによつて、不透明導電基体に占める光電変換領
域を減少させずに光入射側電極の低抵抗化が図れ、従来
の光電変換素子に比べ高い光電変換効率を有する光電変
換装置を実現することができる。また電気的接触は、絶
縁層、導電層、半導体接合層、透明導電層からなる全層
形成後に、圧迫もしくはレーザ照射等の簡単な工程によ
り行うことができるから、製造設備費用の低減と歩留ま
りを改善し、製造コストを低減することができる。
As described above, according to the present invention, the transparent conductive layer which is the electrode on the light incident side and the opaque conductive substrate on the rear surface on the light incident side are electrically contacted at the defective portion of the conductive layer. Thus, the resistance of the light incident side electrode can be reduced without reducing the photoelectric conversion region occupied in the opaque conductive substrate, and a photoelectric conversion device having higher photoelectric conversion efficiency than the conventional photoelectric conversion element can be realized. . In addition, electrical contact can be made by a simple process such as pressing or laser irradiation after forming all layers consisting of an insulating layer, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer, thus reducing manufacturing equipment cost and yield. It is possible to improve and reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1および実施例5の光起電力装置
の概略を示した断面図。
FIG. 1 is a cross-sectional view schematically showing a photovoltaic device according to first and fifth embodiments of the present invention.

【図2】本発明実施例2の光起電力装置の概略を示した
断面図。
FIG. 2 is a sectional view showing the outline of a photovoltaic device according to Example 2 of the present invention.

【図3】本発明実施例3の光起電力装置の概略を示した
断面図。
FIG. 3 is a sectional view showing an outline of a photovoltaic device according to Example 3 of the present invention.

【図4】本発明実施例4の光起電力装置の概略を示した
断面図。
FIG. 4 is a sectional view showing the outline of a photovoltaic device according to Example 4 of the present invention.

【図5】本発明実施例1および実施例5の光起電力装置
の概略を示した平面図。
FIG. 5 is a plan view showing the outline of the photovoltaic devices of Examples 1 and 5 of the present invention.

【図6】本発明実施例2の光起電力装置の概略を示した
平面図。
FIG. 6 is a plan view showing the outline of a photovoltaic device according to Example 2 of the present invention.

【図7】本発明実施例3の光起電力装置の概略を示した
平面図。
FIG. 7 is a plan view showing the outline of a photovoltaic device according to Example 3 of the present invention.

【図8】本発明実施例4の光起電力装置の概略を示した
平面図。
FIG. 8 is a plan view showing the outline of a photovoltaic device according to Example 4 of the present invention.

【図9】本発明実施例1の光起電力装置を構成する光起
電力素子の概略を示した断面図。
FIG. 9 is a cross-sectional view schematically showing a photovoltaic element that constitutes the photovoltaic device of Example 1 of the present invention.

【図10】本発明実施例2の光起電力装置を構成する光
起電力素子の概略を示した断面図。
FIG. 10 is a cross-sectional view schematically showing a photovoltaic element that constitutes the photovoltaic device of Example 2 of the present invention.

【図11】本発明実施例3、実施例4および実施例5の
光起電力装置を構成する光起電力素子の概略を示した断
面図。
FIG. 11 is a cross-sectional view schematically showing a photovoltaic element that constitutes the photovoltaic devices of Examples 3, 4 and 5 of the present invention.

【図12】本発明実施例1の光起電力装置を構成する光
起電力素子の製造工程を示した説明図。
FIG. 12 is an explanatory view showing the manufacturing process of the photovoltaic element that constitutes the photovoltaic device of Example 1 of the present invention.

【図13】本発明実施例3、実施例4および実施例5の
光起電力装置を構成する光起電力素子の製造工程を示し
た説明図。
FIG. 13 is an explanatory view showing the manufacturing process of the photovoltaic elements that constitute the photovoltaic devices of Examples 3, 4 and 5 of the present invention.

【図14】従来の光起電力装置の概略構成を示した平面
図。
FIG. 14 is a plan view showing a schematic configuration of a conventional photovoltaic device.

【図15】従来の光起電力装置の概略構成を示した断面
図。
FIG. 15 is a cross-sectional view showing a schematic configuration of a conventional photovoltaic device.

【図16】本発明、実施例5の光起電力装置を構成する
光起電力素子の製造装置を示した説明図。
FIG. 16 is an explanatory diagram showing a manufacturing device of a photovoltaic element that constitutes the photovoltaic device of the fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、3、4 レーザビーム 2 圧迫の方向 10a、20a、50a 導電層露出部 20b 基体露出部 30a、40a 導電層接続部 30b、40b 透明導電層分割溝 30c、40c 導電層接続層 11、21、31、41、51、91 不透明導電基
体 12、22、32、42、52 絶縁体 13、23、33、43、53、93 導電層 14、24、34、44、54、94 半導体接合層 15、25、35、45、55、95 透明導電層 36、46、56 合金層 17a、27a、37a、47a、57a、97a
電極接続体 17b、27b、37b、47b、57b、97b
電極接続体 18、28、38、48、58 導電層欠損部 19、29、39、49、59 電気的接触部 98 集電電極 100 送り出し室 101 絶縁体堆積室 102 導電層堆積室 103 レーザ照射室 104 n層堆積室 105 i層堆積室 106 p層堆積室 107 透明層堆積室 108 レーザ照射室 109 巻き取り室 110 送り出しロール 111 堆積ガス 112 不活性ガス 114 堆積ガス 115 堆積ガス 116 堆積ガス 117 反応性ガス 118 センサ 119 巻き取り室 120 ロール基板 121 電極 122 電極 123 レーザ 124 電極 125 電極 126 電極 127 電極 128 レーザ
1, 3 and 4 Laser beam 2 Direction of compression 10a, 20a, 50a Conductive layer exposed portion 20b Substrate exposed portion 30a, 40a Conductive layer connecting portion 30b, 40b Transparent conductive layer dividing groove 30c, 40c Conductive layer connecting layer 11, 21, 31, 41, 51, 91 Opaque conductive substrate 12, 22, 32, 42, 52 Insulator 13, 23, 33, 43, 53, 93 Conductive layer 14, 24, 34, 44, 54, 94 Semiconductor bonding layer 15, 25, 35, 45, 55, 95 Transparent conductive layer 36, 46, 56 Alloy layer 17a, 27a, 37a, 47a, 57a, 97a
Electrode connection body 17b, 27b, 37b, 47b, 57b, 97b
Electrode connection body 18, 28, 38, 48, 58 Conductive layer defective portion 19, 29, 39, 49, 59 Electrical contact portion 98 Current collecting electrode 100 Sending chamber 101 Insulator deposition chamber 102 Conductive layer deposition chamber 103 Laser irradiation chamber 104 n-layer deposition chamber 105 i-layer deposition chamber 106 p-layer deposition chamber 107 Transparent layer deposition chamber 108 Laser irradiation chamber 109 Winding chamber 110 Delivery roll 111 Deposition gas 112 Inert gas 114 Deposition gas 115 Deposition gas 116 Deposition gas 117 Reactivity Gas 118 Sensor 119 Winding chamber 120 Roll substrate 121 Electrode 122 Electrode 123 Laser 124 Electrode 125 Electrode 126 Electrode 127 Electrode 128 Laser

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 不透明導電基体の上に絶縁体層、導電
層、半導体接合層、透明導電層の順に積層して形成され
た複数の光起電力素子を、金属からなる電極接続体を介
して直列接続した光起電力装置であって、前記導電層が
絶縁体層を被覆しない導電層欠損部を複数個備え、該導
電層欠損部において前記不透明導電基体と前記透明導電
層とが電気的に接触し、該導電層欠損部を備えない領域
においてそれらが電気的に非接触とされていることを特
徴とする光起電力装置。
1. A plurality of photovoltaic elements formed by laminating an insulating layer, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer on an opaque conductive substrate in this order through an electrode connection body made of metal. A photovoltaic device connected in series, wherein the conductive layer has a plurality of conductive layer defects that do not cover the insulating layer, and the opaque conductive substrate and the transparent conductive layer are electrically connected to each other at the conductive layer defects. A photovoltaic device, which is in contact with each other and is electrically non-contacted in a region not provided with the conductive layer defect portion.
【請求項2】 前記導電層欠損部は、円形でありその相
互の位置関係は規則性を持っていることを特徴とする請
求項1記載の光起電力装置。
2. The photovoltaic device according to claim 1, wherein the conductive layer deficient portions are circular and the mutual positional relationship has regularity.
【請求項3】 前記導電層欠損部は、真直ぐな溝であり
その相互の位置関係は平行であることを特徴とする請求
項1記載の光起電力装置。
3. The photovoltaic device according to claim 1, wherein the conductive layer deficient portion is a straight groove and the mutual positional relationship is parallel to each other.
【請求項4】 前記不透明導電基体と前記透明導電層と
の電気的接触は、前記導電層欠損部において前記不透明
導電基体の前記透明導電層へ向う凹みと、前記透明導電
層の前記不透明導電基体へ向う凹みの、一方もしくは双
方により行うようにしたことを特徴とする請求項1記載
の光起電力装置。
4. The electrical contact between the opaque conductive substrate and the transparent conductive layer is such that a recess of the opaque conductive substrate toward the transparent conductive layer at the conductive layer defect portion and the opaque conductive substrate of the transparent conductive layer. 2. The photovoltaic device according to claim 1, wherein one or both of the recesses facing toward each other is used.
【請求項5】 前記不透明導電基体と前記透明導電層と
の電気的接触は、前記導電層欠損部において複数層から
なる合金層を形成して行うようにしたことを特徴とする
請求項1記載の光起電力装置。
5. The electrical contact between the opaque conductive substrate and the transparent conductive layer is made by forming an alloy layer composed of a plurality of layers at the conductive layer defect portion. Photovoltaic device.
【請求項6】 前記電極接続体は、一方の光起電力素子
の導電層と、他方の光起電力素子の不透明導電基体もし
くは透明導電層とに、接触していることを特徴とする請
求項1記載の光起電力装置。
6. The electrode connecting body is in contact with a conductive layer of one photovoltaic element and an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element. 1. The photovoltaic device according to 1.
【請求項7】 前記電極接続体は、一方の光起電力素子
の透明導電層の領域を構成する、該透明導電層がその下
層に前記導電層欠損部を備えた領域から分割され下層に
前記導電層欠損部を備えない領域で該透明導電層が導電
層とは電気的に接触しているが不透明基体とは電気的に
非接触の領域と、他方の光起電力素子の不透明導電基体
もしくは透明導電層とに、接触していることを特徴とす
る請求項1記載の光起電力装置。
7. The electrode connecting body constitutes a region of a transparent conductive layer of one photovoltaic element, and the transparent conductive layer is divided from a region having the conductive layer defect portion below the transparent conductive layer, and the transparent layer is divided into the lower layer. A region in which the transparent conductive layer is in electrical contact with the conductive layer but is not in electrical contact with the opaque substrate in a region having no conductive layer defect portion, and an opaque conductive substrate of the other photovoltaic element or The photovoltaic device according to claim 1, wherein the photovoltaic device is in contact with the transparent conductive layer.
【請求項8】 不透明導電基体の上に絶縁体層、導電
層、半導体接合層、透明導電層がこの順で形成された複
数の光起電力素子を、金属からなる電極接続体を介して
直列接続した光起電力装置の製造方法であって、不透明
導電基体の上に絶縁層を形成する工程と、前記絶縁層の
上に絶縁層を被覆しない導電層欠損部を複数個有する導
電層を形成する工程と、前記導電層の上に半導体接合層
を形成する工程と、前記半導体接合層の上に透明導電層
を形成する工程と、前記導電層欠損部において前記不透
明導電基体と前記透明導電層とを電気的に接触させる工
程とを有していることを特徴とする光起電力装置の製造
方法。
8. A plurality of photovoltaic elements, in which an insulating layer, a conductive layer, a semiconductor bonding layer, and a transparent conductive layer are formed in this order on an opaque conductive substrate, are connected in series via an electrode connector made of metal. A method of manufacturing a connected photovoltaic device, comprising: forming an insulating layer on an opaque conductive substrate; and forming a conductive layer having a plurality of conductive layer defects not covering the insulating layer on the insulating layer. A step of forming a semiconductor junction layer on the conductive layer, a step of forming a transparent conductive layer on the semiconductor junction layer, the opaque conductive substrate and the transparent conductive layer at the conductive layer defect portion. And a step of electrically contacting with each other.
【請求項9】 前記導電層欠損部は、レーザ照射によっ
て形成されることを特徴とする請求項8記載の光起電力
装置の製造方法。
9. The method of manufacturing a photovoltaic device according to claim 8, wherein the conductive layer defect portion is formed by laser irradiation.
【請求項10】 前記不透明導電基体と前記透明導電層
とを電気的に接触させる工程は、前記透明導電層を形成
する工程の後に行われることを特徴とする請求項8記載
の光起電力装置の製造方法。
10. The photovoltaic device according to claim 8, wherein the step of electrically contacting the opaque conductive substrate and the transparent conductive layer is performed after the step of forming the transparent conductive layer. Manufacturing method.
【請求項11】 前記不透明導電基体と前記透明導電層
との電気的接触は、前記導電層欠損部において前記不透
明導電基体を前記透明導電層へ向かって凹ませる工程
と、前記透明導電層を前記不透明導電基体へ向かって凹
ませる工程の、一方もしくは双方の工程によって行われ
ることを特徴とする請求項10記載の光起電力装置の製
造方法。
11. The electrical contact between the opaque conductive substrate and the transparent conductive layer is such that the opaque conductive substrate is recessed toward the transparent conductive layer at the conductive layer defect portion, and the transparent conductive layer is contacted with the transparent conductive layer. 11. The method of manufacturing a photovoltaic device according to claim 10, wherein one or both of the step of recessing toward the opaque conductive substrate is performed.
【請求項12】 前記不透明導電基体と前記透明導電層
の一方もしくは双方を凹ませる工程は、鋭突なもので圧
力を加える工程であることを特徴とする請求項11記載
の光起電力装置の製造方法。
12. The photovoltaic device according to claim 11, wherein the step of recessing one or both of the opaque conductive substrate and the transparent conductive layer is a step of applying pressure with a sharp object. Production method.
【請求項13】 前記導電層欠損部における前記不透明
導電基体と前記透明導電層との電気的接触は、前記導電
層欠損部において前記絶縁体層と前記半導体接合層を合
金層に変化させる工程によって行われることを特徴とす
る請求項10記載の光起電力装置の製造方法。
13. The electrical contact between the opaque conductive substrate and the transparent conductive layer at the conductive layer deficient portion is made by a step of changing the insulator layer and the semiconductor bonding layer into an alloy layer at the conductive layer deficient portion. The method for manufacturing a photovoltaic device according to claim 10, wherein the method is performed.
【請求項14】 前記絶縁体層と前記半導体接合層を合
金層に変化させる工程は、レーザ照射を含む工程である
ことを特徴とする請求項13記載の光起電力装置の製造
方法。
14. The method for manufacturing a photovoltaic device according to claim 13, wherein the step of changing the insulator layer and the semiconductor junction layer into an alloy layer is a step including laser irradiation.
【請求項15】 前記直列接続は、金属からなる電極接
続体を一方の光起電力素子の導電層と他方の光起電力素
子の不透明導電基体もしくは透明導電層とに接触させる
工程によって行われることを特徴とする請求項8記載の
光起電力装置の製造方法。
15. The series connection is performed by a step of bringing an electrode connection body made of metal into contact with a conductive layer of one photovoltaic element and an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element. 9. The method of manufacturing a photovoltaic device according to claim 8.
【請求項16】 前記電極接続体を、一方の光起電力素
子の導電層に接触させる工程、および他方の光起電力素
子の不透明導電基体もしくは透明導電層に接触させる工
程の、双方または一方は、レーザ照射を用いた溶着を含
む工程によって行われることを特徴とする請求項15記
載の光起電力装置の製造方法。
16. The step of contacting the electrode connecting body with a conductive layer of one photovoltaic element and the step of contacting with an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element, both or one of 16. The method of manufacturing a photovoltaic device according to claim 15, wherein the method is performed by a step including welding using laser irradiation.
【請求項17】 前記電極接続体を、一方の光起電力素
子の導電層に接触させる工程、および他方の光起電力素
子の不透明導電基体もしくは透明導電層に接触させる工
程の、双方または一方は、樹脂を主成分とする物質を介
在させる工程によって行われることを特徴とする請求項
15記載の光起電力装置の製造方法。
17. The step of contacting the electrode connecting body with a conductive layer of one photovoltaic element and the step of contacting with an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element, both or one of 16. The method for manufacturing a photovoltaic device according to claim 15, wherein the method is performed by a step of interposing a substance containing a resin as a main component.
【請求項18】 前記電極接続体を、一方の光起電力素
子の導電層に接触させる工程、および他方の光起電力素
子の不透明導電基体もしくは透明導電層に接触させる工
程の、双方または一方は、低融点合金の半田を用いた溶
着を含む工程によって行われることを特徴とする請求項
15記載の光起電力装置の製造方法。
18. The step of contacting the electrode connecting body with a conductive layer of one photovoltaic element, and the step of contacting with an opaque conductive substrate or a transparent conductive layer of the other photovoltaic element, both or one of 16. The method for manufacturing a photovoltaic device according to claim 15, wherein the method is performed by a step including welding using a low melting point alloy solder.
【請求項19】 前記直列接続は、金属からなる電極接
続体を、一方の光起電力素子の透明導電層の領域を構成
する、該透明導電層がその下層に前記導電層欠損部を備
えた領域から分割され下層に前記導電層欠損部を備えな
い領域で該透明導電層が導電層とは電気的に接触してい
るが不透明基体とは電気的に非接触の領域と、他方の光
起電力素子の不透明導電基体もしくは透明導電層とに、
接触させる工程によって行われるとを特徴とする請求項
8記載の光起電力装置の製造方法。
19. The serial connection comprises an electrode connection body made of metal, which constitutes a region of a transparent conductive layer of one photovoltaic element, and the transparent conductive layer has the conductive layer defect portion below the transparent conductive layer. In a region which is divided from the region and which does not have the conductive layer defect portion in the lower layer, the transparent conductive layer is in electrical contact with the conductive layer but is not in electrical contact with the opaque substrate, and the other photo-sensitive region. For opaque conductive substrate or transparent conductive layer of power element,
The method for manufacturing a photovoltaic device according to claim 8, wherein the method is performed by a step of contacting.
【請求項20】 前記透明導電層の、その下層に前記導
電層欠損部を備えた領域と下層に前記導電層欠損部を備
えない領域との分割は、レーザ照射を含む工程により行
われることを特徴とする請求項19記載の光起電力装置
の製造方法。
20. The division of the transparent conductive layer into a region having the conductive layer defect portion below it and a region not having the conductive layer defect portion below it are performed by a step including laser irradiation. 20. The method of manufacturing a photovoltaic device according to claim 19, wherein the photovoltaic device is manufactured.
【請求項21】 前記透明導電層の、導電層と電気的に
接触し不透明導電基体と電気的に非接触の領域は、レー
ザ照射を含む工程により形成されることを特徴とする請
求項19記載の光起電力装置の製造方法。
21. The region of the transparent conductive layer that is in electrical contact with the conductive layer and is not in electrical contact with the opaque conductive substrate is formed by a process including laser irradiation. Method for manufacturing photovoltaic device of.
【請求項22】 前記電極接続体を、一方の光起電力素
子の透明導電層の下層に前記導電層欠損部を備えない領
域に接触させる工程、および他方の光起電力素子の不透
明導電基体もしくは透明導電層に接触させる工程の、双
方または一方は、レーザを用いた溶着を含む工程である
ことを特徴とする請求項19記載の光起電力装置の製造
方法。
22. A step of bringing the electrode connection body into contact with a region below the transparent conductive layer of one photovoltaic element without the conductive layer defect portion, and an opaque conductive substrate of the other photovoltaic element or 20. The method for manufacturing a photovoltaic device according to claim 19, wherein both or one of the steps of bringing into contact with the transparent conductive layer is a step including welding using a laser.
【請求項23】 前記電極接続体を、一方の光起電力素
子の透明導電層の下層に前記導電層欠損部を備えない領
域に接触させる工程、および他方の光起電力素子の不透
明導電基体もしくは透明導電層に接触させる工程の、双
方または一方は、樹脂を主成分とする物質を介在させる
工程であることを特徴とする請求項19記載の光起電力
装置の製造方法。
23. A step of bringing the electrode connection body into contact with a region below the transparent conductive layer of one photovoltaic element without the conductive layer defect portion, and an opaque conductive substrate of the other photovoltaic element or 20. The method for manufacturing a photovoltaic device according to claim 19, wherein at least one of the step of bringing the transparent conductive layer into contact with the transparent conductive layer is a step of interposing a substance containing a resin as a main component.
【請求項24】 前記電極接続体を、一方の光起電力素
子の透明導電層の下層に前記導電層欠損部を備えない領
域に接触させる工程、および他方の光起電力素子の不透
明導電基体もしくは透明導電層に接触させる工程の、双
方または一方は、低融点合金の半田を用いた溶着を含む
工程であることを特徴とする請求項19記載の光起電力
装置の製造方法。
24. A step of bringing the electrode connection body into contact with a region below the transparent conductive layer of one of the photovoltaic elements without the conductive layer defect portion, and an opaque conductive substrate of the other photovoltaic element or 20. The method of manufacturing a photovoltaic device according to claim 19, wherein at least one of the steps of contacting with the transparent conductive layer is a step including welding using a solder of a low melting point alloy.
JP7258144A 1995-09-11 1995-09-11 Photovoltaic device and manufacture thereof Pending JPH0982994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7258144A JPH0982994A (en) 1995-09-11 1995-09-11 Photovoltaic device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7258144A JPH0982994A (en) 1995-09-11 1995-09-11 Photovoltaic device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0982994A true JPH0982994A (en) 1997-03-28

Family

ID=17316139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7258144A Pending JPH0982994A (en) 1995-09-11 1995-09-11 Photovoltaic device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0982994A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530894A (en) * 1998-11-23 2002-09-17 スティックティング・エネルギーオンデルズーク・セントルム・ネーデルランド Method for producing metallization patterns on photovoltaic cells
JP2004200512A (en) * 2002-12-19 2004-07-15 Kyocera Corp Photoelectric conversion device
JP2008519438A (en) * 2004-10-29 2008-06-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Back contact solar cell
JP2011526423A (en) * 2008-06-27 2011-10-06 ソロパワー、インコーポレイテッド Method and apparatus for achieving low resistance contact to metal-based thin film solar cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530894A (en) * 1998-11-23 2002-09-17 スティックティング・エネルギーオンデルズーク・セントルム・ネーデルランド Method for producing metallization patterns on photovoltaic cells
JP2004200512A (en) * 2002-12-19 2004-07-15 Kyocera Corp Photoelectric conversion device
JP2008519438A (en) * 2004-10-29 2008-06-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Back contact solar cell
JP2011526423A (en) * 2008-06-27 2011-10-06 ソロパワー、インコーポレイテッド Method and apparatus for achieving low resistance contact to metal-based thin film solar cells

Similar Documents

Publication Publication Date Title
US4865999A (en) Solar cell fabrication method
US4697041A (en) Integrated solar cells
US4380112A (en) Front surface metallization and encapsulation of solar cells
US4348546A (en) Front surface metallization and encapsulation of solar cells
AU2004204637B2 (en) Transparent thin-film solar cell module and its manufacturing method
US5421908A (en) Thin-film solar cell and method for the manufacture thereof
US6720576B1 (en) Plasma processing method and photoelectric conversion device
US5821597A (en) Photoelectric conversion device
US4532371A (en) Series-connected photovoltaic array and method of making same
US6011215A (en) Point contact photovoltaic module and method for its manufacture
US20070199588A1 (en) High voltage solar cell and solar cell module
JP2008034609A (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
JPH03239377A (en) Solar cell module
JP4441938B2 (en) Integrated thin film device and method of manufacturing the same
JP2000049369A (en) Thin-film solar battery module
JPH1079522A (en) Thin-film photoelectric conversion device and its manufacturing method
JPH0982994A (en) Photovoltaic device and manufacture thereof
JPH06204529A (en) Solar cell
JP3520425B2 (en) Solar cell module and method of manufacturing the same
JP3393842B2 (en) Method for manufacturing photoelectric conversion device
JPH0519990B2 (en)
JP3720254B2 (en) Thin film solar cell and manufacturing method thereof
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element
JPH0974211A (en) Photovoltaic element and manufacture thereof
JPS6265480A (en) Thin film solar cell device