JPH0981238A - Method for controlling travelling of autonomously traveling automated guided vehicle - Google Patents
Method for controlling travelling of autonomously traveling automated guided vehicleInfo
- Publication number
- JPH0981238A JPH0981238A JP7236285A JP23628595A JPH0981238A JP H0981238 A JPH0981238 A JP H0981238A JP 7236285 A JP7236285 A JP 7236285A JP 23628595 A JP23628595 A JP 23628595A JP H0981238 A JPH0981238 A JP H0981238A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- vehicle body
- rotation
- moving
- reference point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自律走行方式の無人搬送
車に係り、特にカーブを含む走行経路において任意の目
的位置に車体を正確に移動させることのできる無人搬送
車に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autonomous guided vehicle, and more particularly to an automated guided vehicle capable of accurately moving a vehicle body to an arbitrary target position on a traveling route including a curve.
【0002】[0002]
【従来の技術】工場等における部品、製品等の搬送及び
荷役に無人搬送車が広く利用されているが、製造、製品
の多様化等の要求に応えて、製造工程の変更に伴う無人
搬送車の走行径路の変更を頻繁に行う必要がある。これ
には、誘導路が不要で、走行径路の変更が容易な自律走
行方式の無人搬送車が適している。2. Description of the Related Art Unmanned guided vehicles are widely used for transporting and handling parts and products in factories, but unmanned guided vehicles accompanying changes in the manufacturing process in response to demands for manufacturing, product diversification, etc. It is necessary to change the traveling route of the car frequently. For this, an autonomous guided vehicle that does not require a taxiway and is easy to change the travel route is suitable.
【0003】自律走行方式の無人搬送車は、走行径路を
示すデータを予めメモリに保持しており、各種のセンサ
により車体の現在位置を検出しながら車体が所定の走行
径路上になるように制御しつつ走行する。An autonomous guided vehicle has data indicating a traveling route stored in a memory in advance, and controls the vehicle so that the vehicle is on a predetermined traveling route while detecting the current position of the vehicle by various sensors. Run while doing.
【0004】軌道式の無人搬送車を走行させるとき、左
右の軌道検出センサーにより軌道とのズレを検出し左右
の車輪の回転をコントロールする事により走行が可能で
ある。この種の技術は、例えば特開平5−324057
号公報に記載されている。When a track-type automatic guided vehicle is run, it is possible to run by detecting the deviation from the track by the left and right track detection sensors and controlling the rotation of the left and right wheels. This type of technology is disclosed in, for example, Japanese Patent Laid-Open No. 5-324057
No., published in Japanese Unexamined Patent Publication No.
【0005】[0005]
【発明が解決しようとする課題】しかし、ロボットワゴ
ンのように無軌道走行をさせる場合、軌道検出センサー
がないために走行精度を極めて高くする必要である。ま
た、直進・旋回・カーブ等の走行を行うときに、左右の
車輪をどのように回転させるかを、すべて計算で求めそ
の通りに回転させることが必要である。However, in the case of running without a track like a robot wagon, it is necessary to make the running accuracy extremely high because there is no track detection sensor. Further, when traveling straight, turning, turning, etc., it is necessary to calculate all how to rotate the left and right wheels and rotate them exactly.
【0006】直進の場合は、移動量を車輪の円周で割る
ことで簡単に回転量を求めることができる。また、旋回
の場合は、後輪のピッチを直径とする円周上を後輪が左
右逆方向に回転することにより旋回するので、旋回角度
から後輪の移動量は容易に求めることができる。In the case of going straight, the amount of rotation can be easily obtained by dividing the amount of movement by the circumference of the wheel. Further, in the case of turning, since the rear wheel turns in the left and right directions on the circumference having the diameter of the pitch of the rear wheel, the amount of movement of the rear wheel can be easily obtained from the turning angle.
【0007】しかし、カーブ走行の場合、車体の左右の
駆動輪の回転量が異なるために、容易に求めることは困
難である。However, in the case of curve traveling, it is difficult to easily obtain it because the left and right driving wheels of the vehicle body have different amounts of rotation.
【0008】また、計算により求めた左右の駆動輪の回
転量を忠実に再現するためには、サーボモーター等を使
用する事が安易ではあるが、無人搬送車の場合バッテリ
ーを使用するために通常のサーボモーターでは小電力化
・低コスト化を考えたとき実用化が困難である。Further, in order to faithfully reproduce the rotation amounts of the left and right drive wheels obtained by calculation, it is easy to use a servo motor or the like, but in the case of an automated guided vehicle, a battery is usually used. It is difficult to put this servo motor into practical use when considering low power consumption and cost reduction.
【0009】本発明の目的は、バッテリーを動力源とす
る2輪駆動方式の無人搬送車において、カーブ走行の場
合に無人搬送車の基準点を任意の目的位置に正確に移動
させ、移動後所定の車体角を得ることのできる、構成の
簡単な自律走行方式の無人搬送車を提供することにあ
る。An object of the present invention is, in a two-wheel drive type automatic guided vehicle using a battery as a power source, accurately moving a reference point of the automatic guided vehicle to an arbitrary target position when traveling on a curve, and after moving the predetermined point. It is an object of the present invention to provide an autonomous guided vehicle having a simple configuration and capable of obtaining the vehicle body angle.
【0010】[0010]
【課題を解決するための手段】本発明の特徴は、車体の
左右対称位置に取付けられた一対の駆動輪と、補助輪
と、バッテリーを動力源とし該駆動輪を駆動させるため
直流モ−タ−と、前記駆動輪の回転数を検出するロータ
リーエンコ−ダと、制御情報及び前記エンコーダの出力
信号に基づき前記直流モ−タ−の回転パルス及び回転方
向を指令値として出力するコントローラとを備えた自律
走行式無人搬送車における走行制御方法おいて、前記コ
ントローラは、前記制御情報として車体の進行方向の移
動角度θ及び移動距離Mを入手し、前記制御情報に基づ
いて前記車体上の基準点の旋回中心Zの位置を求め、次
に、前記基準点を目的位置まで移動させるために必要な
前記駆動輪の回転量R、Lを演算により求め、該回転量
の多い方を主輪、少ない方を従輪とし、従輪/主輪の回
転割合を予め計算により求め、該主輪、従輪を設定速度
で回転させ、さらに、前記従輪の回転量を検出し、これ
を前記回転割合と比較して該割合より多いときは前記従
輪の回転を停止、少ないときは回転させ、この処理を前
記主輪が前記設定の回転量に達するまで繰り返し、前記
主輪が前記設定の回転量に達したら該主輪を停止させ、
続いて、前記従輪を回転させ、該従輪が前記設定量だけ
回転したら該従輪を停止させることにより前記基準点を
前記目的位置に移動させることにある。The features of the present invention are a DC motor for driving a pair of drive wheels, which are mounted at symmetrical positions of a vehicle body, an auxiliary wheel, and a battery as a power source. -, A rotary encoder for detecting the number of rotations of the driving wheels, and a controller for outputting a rotation pulse and a rotation direction of the DC motor as command values based on control information and an output signal of the encoder. In the traveling control method for an autonomous guided vehicle, the controller obtains a movement angle θ and a movement distance M in the traveling direction of the vehicle body as the control information, and based on the control information, a reference point on the vehicle body. Of the rotation center Z of the drive wheel is calculated, and then the rotation amounts R and L of the drive wheels required to move the reference point to the target position are calculated. One is the slave wheel, the rotation ratio of the slave wheel / main wheel is calculated in advance, the main wheel and the slave wheel are rotated at the set speed, the rotation amount of the slave wheel is detected, and this is compared with the rotation ratio. When the ratio is greater than the ratio, the rotation of the slave wheels is stopped, and when the ratio is less than the ratio, the slave wheels are rotated, and this process is repeated until the main wheel reaches the preset rotation amount, and when the main wheel reaches the preset rotation amount, Stop the main wheels,
Then, the slave wheel is rotated, and when the slave wheel rotates by the set amount, the slave wheel is stopped to move the reference point to the target position.
【0011】[0011]
【作用】本発明によれば、車体の前後方向に中心線に左
右対称な位置に取り付けられた一対の駆動輪を駆動させ
るための直流モ−タ−及び前記駆動輪の回転数を検出す
るエンコ−ダを有するものにおいて、車体の基準点を車
体の進行方向に対して角度θだけ傾斜した所定距離にあ
る目的位置へ正確に移動させると共に、前記車体の移動
後の車体角を制御することができる。特に、車体の進行
方向が前後左右いずれの側であっても目標の角度θだけ
傾斜した所定距離にある目的位置へ移動させることがで
きる。これにより自律走行式無人搬送車におけるカーブ
走行が実現される。According to the present invention, a DC motor for driving a pair of driving wheels mounted symmetrically with respect to the center line in the front-rear direction of the vehicle body and an encoder for detecting the rotational speed of the driving wheels. In a vehicle having a dash, it is possible to accurately move a reference point of the vehicle body to a target position at a predetermined distance inclined by an angle θ with respect to the traveling direction of the vehicle body and control the vehicle body angle after the movement of the vehicle body. it can. In particular, it is possible to move the vehicle body to a target position at a predetermined distance inclined by a target angle θ regardless of the forward, backward, leftward or rightward direction of the vehicle body. This realizes curve traveling in the autonomous guided vehicle.
【0012】[0012]
【実施例】以下、本発明の実施例を図により説明する。
まず、図1は本発明の一実施例に係る無人搬送車の車体
1の裏面を概念的に示す図である。この無人搬送車は、
後輪駆動形の無人搬送車である。車体1の後部の左右対
称な位置には、駆動輪2a,2bが取り付けられてい
る。3a,3bは駆動輪2a,2bを駆動させるための
直流モ−タ−であり、さらに駆動輪の回転数を検出する
ロータリーエンコ−ダ4a,4bが設けられている。5
は自在キャスター(補助輪)、6はコントローラであ
る。車体1の走行距離及び車体角は、エンコーダ4a、
4bの出力信号に基づきコントローラ6で検出される。
車体1には直流モ−タ−の動力源としてのバッテリーが
搭載されている(図示略)。Embodiments of the present invention will be described below with reference to the drawings.
First, FIG. 1 is a view conceptually showing a back surface of a vehicle body 1 of an automated guided vehicle according to an embodiment of the present invention. This automated guided vehicle is
It is a rear-wheel drive type automated guided vehicle. Drive wheels 2a and 2b are attached to the rear portion of the vehicle body 1 at symmetrical positions. DC motors 3a and 3b for driving the drive wheels 2a and 2b are provided with rotary encoders 4a and 4b for detecting the rotational speed of the drive wheels. 5
Is a universal caster (auxiliary wheel), and 6 is a controller. The traveling distance and the vehicle body angle of the vehicle body 1 are determined by the encoder 4a,
It is detected by the controller 6 based on the output signal of 4b.
The vehicle body 1 is equipped with a battery as a power source for the DC motor (not shown).
【0013】コントローラ6は、図2に示すように構成
されている。すなわち、マイクロコンピュータ61は、
上位(メイン)のコンピュータ(図示せず)から移動量
の指令とロータリーエンコ−ダ4a,4bの検出値を入
力として受け、補助輪5の位置を基準点としこの位置5
を目的位置へ移動させると共に、車体1の移動後の車体
角を求めるように、直流モ−タ−3a,3bを駆動すべ
く、主軸モータアンプ62に回転パルス及び回転方向を
指令値として出力する。なお、車体1の移動コース及び
現在位置等の情報は、メインのコンピュータに保持され
ている。The controller 6 is constructed as shown in FIG. That is, the microcomputer 61
A movement amount command and detection values of the rotary encoders 4a and 4b are received as inputs from a host (main) computer (not shown), and the position of the auxiliary wheel 5 is used as a reference point.
Is output to the spindle motor amplifier 62 as command values so as to drive the DC motors 3a and 3b so as to obtain the vehicle body angle after the vehicle body 1 is moved. . Information such as the moving course and the current position of the vehicle body 1 is held in the main computer.
【0014】次に、コントローラ6による車体1の制御
動作を図3の車体位置関係図及び図4の制御フローで説
明する。この制御は、図3において、駆動輪の位置2
a,2b及び基準点5を結ぶ三角形5・2a・2bの基
準点5を、角度θ(右前方)の方向に距離Mだけ離れた
目的位置5’に移動させるとき、駆動輪2a,2bをど
れだけ移動させれば良いかを求めるものである。Next, the control operation of the vehicle body 1 by the controller 6 will be described with reference to the vehicle body positional relationship diagram of FIG. 3 and the control flow of FIG. This control is based on the drive wheel position 2 in FIG.
When moving the reference points 5 of the triangles 5a, 2b connecting the a, 2b and the reference points 5 to the target position 5'distance M in the direction of the angle θ (front right), the drive wheels 2a, 2b are moved. It asks how much should be moved.
【0015】メインのコンピュータでは、まず、車体1
の姿勢(車体角)が進行方向に対して所定の範囲、例え
ば左右30°以内に有るかどうかをチェックする(ステ
ップ402)。もし、車体1の角度が左右30°以内に
無ければ、直流モ−タ−3a,3bを駆動して30°以
内になるように車体1を旋回させる(ステップ40
4)。In the main computer, first, the vehicle body 1
It is checked whether the posture (vehicle body angle) is within a predetermined range with respect to the traveling direction, for example, within 30 ° to the left and right (step 402). If the angle of the vehicle body 1 is not within 30 ° from the left and right, the DC motors 3a and 3b are driven to turn the vehicle body 1 within 30 ° (step 40).
4).
【0016】次に、コントローラ6は、メインのコンピ
ュータから車体1の進行方向及び進行距離に関する情
報、すなわち現在位置から進行方向への移動角度θ及び
移動距離Mのデータをもらう(ステップ406)。Next, the controller 6 receives information about the traveling direction and traveling distance of the vehicle body 1 from the main computer, that is, data on the moving angle θ and the moving distance M from the current position to the traveling direction (step 406).
【0017】次に、コントローラ6は車体1の旋回中心
Zの位置を演算で求める(ステップ408)。ここで、
三角形5・2a・2bの基準点5が目的位置5’に移動
するときの回転中心Z点は、基準点5と目的位置5’の
中心点から延ばした垂線と駆動輪の位置2a,2bの延
長線が交わる点である。Next, the controller 6 calculates the position of the turning center Z of the vehicle body 1 (step 408). here,
The center Z of rotation when the reference point 5 of the triangles 5 2a 2b moves to the target position 5 ′ is the perpendicular line extending from the center point of the reference point 5 and the target position 5 ′ and the positions 2a and 2b of the drive wheels. This is the point where the extension lines intersect.
【0018】次に、以下に述べるような方法で、コント
ローラ6は車体1の旋回量θxを求める(ステップ41
0)。Next, the controller 6 obtains the turning amount θx of the vehicle body 1 by the following method (step 41).
0).
【0019】まず、駆動輪2a,2bと基準点5の前後
方向のいずれをHとすると、駆動輪2a,2bの中心点
の移動回転半径(SZ)は、図3中の三角形5ABの辺
5Bと三角形BCZの辺CZの和である。 辺5B=M/2*cosecθ で求められる。 辺ZC=H*cotθで求められる。 辺SZ=辺5B+辺CZ =M/2*cosecθ+H*cotθ =M*cosecθ/2+H*cosθ/sinθ =(M+2H*cosθ)/(2*sinθ) で求められる 。First, if either of the front and rear directions of the drive wheels 2a and 2b and the reference point 5 is set to H, the moving turning radius (SZ) of the center point of the drive wheels 2a and 2b is the side 5B of the triangle 5AB in FIG. And the side CZ of the triangle BCZ. The side 5B = M / 2 * cosec θ. It is calculated by the side ZC = H * cotθ. Side SZ = side 5B + side CZ = M / 2 * cosec θ + H * cot θ = M * cosec θ / 2 + H * cos θ / sin θ = (M + 2H * cos θ) / (2 * sin θ)
【0020】よって駆動輪2aの移動回転半径は、辺2
aZ=辺SZ+辺2a2b/2となり、駆動輪2bの移
動回転半径は、辺2bZ=辺SZ−辺2a2b/2で求
められる。Therefore, the radius of gyration of movement of the drive wheel 2a is the side 2
aZ = side SZ + side 2a2b / 2, and the moving radius of rotation of the drive wheel 2b is obtained by side 2bZ = side SZ−side 2a2b / 2.
【0021】また、移動角度及び移動後の車体角はθX
=θY=θZ で求められる。 ここで、θY=ARCTAN((H+Mcosθ)/(辺SZ-Msinθ)) =ARCTAN((H+Mcosθ)/(((M+2Hcosθ)/(2sinθ))-Msinθ)) =ARCTAN((H+Mcosθ)/((M+2Hcosθ-2Msinθ*sinθ)/2sinθ)) =ARCTAN((2sinθ(H+Mcosθ)/((M+2Hcosθ-2M(1-cosθ*cosθ))) =ARCTAN((2sinθ(H+Mcosθ))/(2cosθ(H+Mcosθ)-M)) また、 θZ=ARCTAN(H/辺SZ) =ARCTAN(H/((M+2Hcosθ)/2sinθ)) =ARCTAN(2Hsinθ/(M+2cosθ)) 次に、左右の後輪の回転量R、Lを求める(ステップ4
12)。基準点5を目的位置5’に移動させるときの右
車輪の移動距離(R)は、辺2b2を半径とする円周上を
θXだけ移動するので、R=2*辺2bZ*π*θX/360 で求
められる。Further, the movement angle and the vehicle body angle after the movement are θX.
= ΘY = θZ Here, θY = ARCTAN ((H + Mcosθ) / (side SZ-Msinθ)) = ARCTAN ((H + Mcosθ) / (((M + 2Hcosθ) / (2sinθ))-Msinθ)) = ARCTAN ((H + Mcosθ) / ((M + 2Hcosθ-2Msinθ * sinθ) / 2sinθ)) = ARCTAN ((2sinθ (H + Mcosθ) / ((M + 2Hcosθ-2M (1-cosθ * cosθ))) = ARCTAN ((2sinθ (H + Mcosθ)) / (2cosθ (H + Mcosθ) -M)) In addition, θZ = ARCTAN (H / side SZ) = ARCTAN (H / ((M + 2Hcosθ) / 2sinθ)) = ARCTAN (2Hsinθ / ( M + 2cos θ)) Next, the rotation amounts R and L of the left and right rear wheels are obtained (step 4
12). The moving distance (R) of the right wheel when moving the reference point 5 to the target position 5 ′ moves by θX on the circumference having the radius of the side 2b2, so R = 2 * side 2bZ * π * θX / Required by 360.
【0022】又、左車輪の移動距離(L)は、辺2aZを
半径とする円周上をθXだけ移動するので、 L=2*辺
2aZ*π*θX/360 で求められる。Further, the moving distance (L) of the left wheel moves by θX on the circumference having the radius of the side 2aZ, so that L = 2 * side
It is calculated by 2aZ * π * θX / 360.
【0023】次に、回転量の多い方を主輪、少ない方を
従輪とし(ステップ414)、主輪、従輪を設定速度で
回転させる(ステップ416)。Next, the one with the larger amount of rotation is the main wheel and the one with the smaller amount of rotation is the slave wheel (step 414), and the main wheel and the slave wheel are rotated at the set speed (step 416).
【0024】さらに、従輪の回転量を検出し、計算値と
比較し、多いときは従輪の回転を停止、少ないときは回
転させ、この処理を主輪が設定量の回転をするまで繰り
返し、主輪が設定量だけ回転したら主輪を停止させる
(ステップ418〜422)。Further, the rotation amount of the slave wheel is detected and compared with the calculated value. When the slave wheel is large, the slave wheel is stopped, and when it is small, the slave wheel is rotated, and this process is repeated until the master wheel rotates by the set amount. When the wheel has rotated by the set amount, the main wheel is stopped (steps 418 to 422).
【0025】続いて、従輪を回転させ、後輪が設定量だ
け回転したら従輪を停止させる(ステップ424〜42
8)。Then, the driven wheel is rotated, and when the rear wheel has rotated by the set amount, the driven wheel is stopped (steps 424 to 42).
8).
【0026】なお、右前方へ移動する場合は、上記ステ
ップ412におけるR,Lの計算で問題なく移動する
が、それ以外の方向の場合、移動はするが、無人搬送車
としては、不自然な動きになってしまう。すなわち、旋
回に近い動作をする。If the vehicle moves to the front right, it moves without any problem in the calculation of R and L in step 412, but if it moves in any other direction, it moves, but it is unnatural for an automated guided vehicle. It will be in motion. That is, the operation is similar to turning.
【0027】そこで、このような場合、 進行方向が90°より小さければ、そのまま計算す
る。 進行方向が90°<θ<180°の時は、(180°
−θ)をθに置き換え計算し、左右後輪を共に逆転させ
る。Therefore, in such a case, if the traveling direction is smaller than 90 °, the calculation is performed as it is. When the traveling direction is 90 ° <θ <180 °, (180 °
-Θ) is replaced with θ, and the left and right rear wheels are reversed.
【0028】進行方向が270°<θ<360°の時
は、(360°−θ)をθに置き換え計算し、左後輪の
回転量と右後輪の回転量を入れかえて共に正転させる。When the traveling direction is 270 ° <θ <360 °, (360 ° -θ) is replaced with θ for calculation, and the rotation amount of the left rear wheel and the rotation amount of the right rear wheel are exchanged for normal rotation. .
【0029】進行方向が180°<θ<270°の時
は、(θ−180°)をθに置き換え計算し、左後輪の
回転量と右後輪の回転量を入れかえて共に逆転させる。When the traveling direction is 180 ° <θ <270 °, (θ-180 °) is replaced with θ, and the left rear wheel rotation amount and the right rear wheel rotation amount are replaced and both are reversed.
【0030】すなわち、右後方へ移動する場合、(18
0°−走行方向)を走行方向に置き換え同じ計算を行
い、左右の車輪を逆に回転させ移動させると、基準点5
を後退により目的位置5’に移動させる事が出来る。That is, when moving to the rear right, (18
(0 ° -running direction) is replaced with the running direction, the same calculation is performed, and when the left and right wheels are rotated and moved in reverse, the reference point 5
Can be moved to the target position 5'by retreating.
【0031】又、左前方へ移動するときは、(360°
−走行角度)を走行角度に置き換え、計算を行い左右輪
の移動量を逆にして移動させると基準点5を目的位置
5’に移動させる事が出来る。When moving to the left front, (360 °
-When the traveling angle) is replaced with the traveling angle, the calculation is performed, and the left and right wheels are moved in the opposite amounts, the reference point 5 can be moved to the target position 5 '.
【0032】又、左後方に移動するときは、(走行方向
−180°)を走行方向に置き換え、同じ計算を行い、
左右輪の移動量を逆にし、車輪も逆に回転させる事と後
退左折により、基準点5を目的位置5’に移動させる事
が出来る。When moving to the left rear, (running direction -180 °) is replaced with the running direction, the same calculation is performed,
It is possible to move the reference point 5 to the target position 5'by reversing the movement amount of the left and right wheels, rotating the wheels in the opposite direction, and backward turning left.
【0033】このようにして、駆動輪2a,2bを移動
距離R及びLだけ上記の方法で回転させることにより基
準点5が目的位置5’へ移動する。但し、このとき駆動
輪2a(2b)は、2b(2a)に対し一定の割合で回
転しなければならない。In this way, the reference point 5 is moved to the target position 5'by rotating the drive wheels 2a, 2b by the moving distances R and L in the above manner. However, at this time, the drive wheel 2a (2b) must rotate at a constant rate with respect to 2b (2a).
【0034】通常はこのような場合、駆動用モ−タ−3
a,3bにサ−ボ系のシステムを構成しそれぞれ、速度
コントロ−ルにより一定速度で回転させる方式は一般的
である。Normally, in such a case, the driving motor-3
It is a general method to construct a servo system in a and 3b and rotate them at a constant speed by a speed control.
【0035】本発明の場合、駆動源としてバッテリ−を
使用している為に、電力の消費を抑える事と、駆動輪2
a,2bの回転割合を更に正確に保つために、上記ステ
ップ414以下に示したような処理フローとした。In the case of the present invention, since the battery is used as the drive source, the power consumption is suppressed and the drive wheel 2 is used.
In order to keep the rotation ratios of a and 2b more accurate, the processing flow is as shown in the above step 414 and thereafter.
【0036】すなわち、駆動輪2a,2bのうち、移動
距離が多い方を主輪、少ない方を従輪とし、従輪/主輪
の移動量の割合を予め演算により求めておき、主輪及び
従輪用の駆動モ−タ−3a,3bを指定された速度で回
転させる。このとき主輪の回転数をエンコ−ダ4a(4
b)により読みとり、その値と割合(従輪/主輪)とを
乗じた値と、従輪のエンコ−ダ4b(4a)を比較し、
従輪の回転量が多い場合は従輪の駆動モ−タ−3a(3
b)の回転をOFFにし、少ない場合はONにする事を
高速に繰り返す事により、主輪・従輪の回転割合を常に
理想に近い状態に保つ事が出来る。That is, of the drive wheels 2a, 2b, the one with the longer travel distance is the main wheel and the one with the smaller travel distance is the slave wheel, and the ratio of the travel distance of the slave wheel / main wheel is calculated in advance and used for the master wheel and the slave wheel. The drive motors 3a and 3b are rotated at a designated speed. At this time, the rotation speed of the main wheel is set to the encoder 4a (4
b), read the value, multiply the value by the ratio (subordinate wheel / main wheel), and compare the encoder 4b (4a) of the secondary wheel with
When the amount of rotation of the driven wheel is large, the driven motor for the driven wheel-3a (3
By turning off the rotation of b) and turning it on at high speed when it is small, it is possible to always keep the rotation ratio of the main wheel and the sub-wheel close to the ideal state.
【0037】又、直進の場合駆動モ−タ−3a,3bを
指定された速度で回転させ、回転数をエンコ−ダ4a,
4bで読みとり、回転量が多い方の駆動モ−タ−の回転
をOFFさせる事を高速で繰り返す事により左右の駆動
輪2a,2bの回転量を常に同じにする事が出来る。In the case of straight traveling, the drive motors 3a and 3b are rotated at a designated speed, and the number of rotations is set to the encoder 4a,
It is possible to make the rotation amounts of the left and right drive wheels 2a and 2b always the same by reading at 4b and turning off the rotation of the drive motor having the larger rotation amount at high speed.
【0038】この方式の場合、無人搬送車を移動させる
のに必要最小限の電力ですみ、バッテリ−の消費を抑え
る事が出来る。In the case of this system, the minimum electric power required to move the automatic guided vehicle can be used, and the consumption of the battery can be suppressed.
【0039】なお、上記ステップ414以下で、進行方
向が前進のみか後退のみの場合は問題ないが、前進から
後退・後退から前進に切り替えるとき、途中で自在キャ
スター5が回転するために車体1の位置がずれてしま
う。これは、キャスターの回転が制御システムで関知し
ないときに発生するために起こる現象であり、ズレ分の
補正が不可能である。There is no problem if the traveling direction is forward only or backward only in the above step 414, but when switching from forward to backward / backward to forward, the universal caster 5 rotates midway, so that the body 1 of the vehicle body 1 rotates. The position shifts. This is a phenomenon that occurs when the rotation of the caster is not known by the control system, and it is impossible to correct the deviation.
【0040】そこで、上記ステップ414以下の処理の
前に、この補正を行うのが望ましい。この補正を図5,
図6で説明する。なお、図の例は、自在キャスターが左
右5a,5bの2個有るが、一個の場合と何ら変わると
ころは無い。補正に当たっては、図6(A)の状態か
ら、車体1の方向転換をして強制的にキャスター5を回
転させるべく、図6(B)のように左右どちらかの駆動
輪2a,2bを先にキャスター5が真横の向きになるま
で回転させる。その結果、車体は1’の位置に移動す
る。その後図6(C)に示すように、もう一方の駆動輪
を同じだけ回転させキャスターを先に回転させる。その
結果、車体は1”の位置に移動する。Therefore, it is desirable to carry out this correction before the processing of step 414 and thereafter. This correction is shown in FIG.
This will be described with reference to FIG. Although the example of the drawing has two left and right casters 5a and 5b, there is no difference from the case of one caster. In the correction, in order to forcibly rotate the caster 5 by changing the direction of the vehicle body 1 from the state of FIG. 6 (A), as shown in FIG. 6 (B), the drive wheel 2a, 2b on either the left or right side is moved first. Then, rotate the caster 5 until it faces straight. As a result, the vehicle body moves to the 1'position. Then, as shown in FIG. 6C, the other drive wheel is rotated by the same amount to rotate the caster first. As a result, the car body moves to the 1 "position.
【0041】図5において、 駆動輪2a,2bの間隔を PW(mm) 駆動輪の中心とキャスター5軸中心との距離を H(mm) キャスター5軸中心と取付け軸中心の距離を e(mm) 旋回による車体の旋回角を θa 車体の前へのずれを x(mm) 車体の左(右)へのずれを y(mm)とすると、 θa=arccos(H/(h−e)) x=PW−PWcosθa y=PWsinθa これにより、方向転換時の車体1のずれx,yが計算で
求められ、それ以降走行するときに補正することによ
り、正確な位置制御が可能になる。In FIG. 5, the distance between the drive wheels 2a and 2b is PW (mm) The distance between the center of the drive wheels and the axis of the caster 5 is H (mm) The distance between the center of the caster 5 axis and the center of the mounting axis is e (mm ) The turning angle of the vehicle body due to turning is θa. The deviation of the vehicle body to the front is x (mm), and the deviation of the vehicle body to the left (right) is y (mm). Θa = arccos (H / (he)) x = PW-PW cos θa y = PW sin θa Thus, the displacements x and y of the vehicle body 1 at the time of changing the direction are calculated, and corrective control can be performed by correcting the displacements when traveling thereafter.
【0042】この方法は、ベッド・ワゴン等比較的簡単
な移動装置に採用すると、前輪制御が不要であるため
に、低コスト化ができると共に、小電力化が実現できる
ため、様々な用途で利用可能である。When this method is applied to a relatively simple moving device such as a bed and a wagon, front wheel control is not required, so that the cost can be reduced and the power consumption can be reduced. Therefore, this method can be used in various applications. It is possible.
【0043】なお、本発明は前輪駆動方式の無人搬送車
にも適用できることは言うまでもない。Needless to say, the present invention can also be applied to a front wheel drive type automatic guided vehicle.
【0044】[0044]
【発明の効果】本発明によれば、駆動源としてバッテリ
−を使用した無人搬送車において、搬送車の基準点を任
意の目的位置に移動させ、移動後所定の車体角を得るこ
とができる。特に、主輪・従輪の回転割合を常に理想に
近い状態に保つ事が出来る。According to the present invention, in an automatic guided vehicle using a battery as a drive source, a reference point of the guided vehicle can be moved to an arbitrary target position and a predetermined vehicle body angle can be obtained after the movement. Especially, it is possible to always keep the rotation ratio of the main wheel and the slave wheel close to the ideal state.
【0045】この方式の場合、無人搬送車を移動させる
のに必要最小限の電力ですみ、バッテリ−の消費を抑え
る事が出来る。In the case of this system, the minimum electric power required for moving the automatic guided vehicle can be used, and the consumption of the battery can be suppressed.
【図1】本発明の一実施例に係る無人搬送車の車体1の
裏面を概念的に示す図である。FIG. 1 is a view conceptually showing a back surface of a vehicle body 1 of an automated guided vehicle according to an embodiment of the present invention.
【図2】図1のコントローラの構成を示す図である。FIG. 2 is a diagram showing a configuration of a controller shown in FIG.
【図3】図1のコントローラによる車体の制御動作を説
明するための車体位置関係図である。3 is a vehicle body positional relationship diagram for explaining a vehicle body control operation by the controller of FIG. 1. FIG.
【図4】図1のコントローラによる車体の制御動作を示
す制御フローである。FIG. 4 is a control flow showing a control operation of a vehicle body by the controller of FIG.
【図5】進行方向を前進・後退いずれかに切り替えると
きの車体位置のずれ補正の説明図である。FIG. 5 is an explanatory diagram of vehicle body position deviation correction when switching the traveling direction to either forward or backward.
【図6】図5の車体位置のずれ補正の動作説明図であ
る。FIG. 6 is an explanatory diagram of an operation for correcting the displacement of the vehicle body position in FIG.
1…車体、2a,2b…駆動輪、3a,3b…直流モ−
タ−、4a、4b…ロータリーエンコ−ダ、5…自在キ
ャスター(補助輪)、6…コントローラ1 ... vehicle body, 2a, 2b ... drive wheels, 3a, 3b ... direct current mode
4a, 4b ... Rotary encoder, 5 ... Flexible casters (auxiliary wheels), 6 ... Controller
Claims (5)
駆動輪と、補助輪と、バッテリーを動力源とし該駆動輪
を駆動させるため直流モ−タ−と、前記駆動輪の回転数
を検出するロータリーエンコ−ダと、制御情報及び前記
エンコーダの出力信号に基づき前記直流モ−タ−の回転
パルス及び回転方向を指令値として出力するコントロー
ラとを備えた自律走行式無人搬送車における走行制御方
法おいて、 前記コントローラは、前記制御情報として車体の進行方
向の移動角度θ及び移動距離Mを入手し、前記制御情報
に基づいて前記車体上の基準点の旋回中心Zの位置を求
め、次に、前記基準点を目的位置まで移動させるために
必要な前記駆動輪の回転量R、Lを演算により求め、該
回転量の多い方を主輪、少ない方を従輪とし、従輪/主
輪の回転割合を予め計算により求め、該主輪、従輪を設
定速度で回転させ、さらに、前記従輪の回転量を検出
し、これを前記回転割合と比較して該割合より多いとき
は前記従輪の回転を停止、少ないときは回転させ、この
処理を前記主輪が前記設定の回転量に達するまで繰り返
し、前記主輪が前記設定の回転量に達したら該主輪を停
止させ、続いて、前記従輪を回転させ、該従輪が前記設
定量だけ回転したら該従輪を停止させることにより前記
基準点を前記目的位置に移動させることを特徴とする自
走行式無人搬送車における走行制御方法。1. A pair of drive wheels mounted at symmetrical positions on a vehicle body, an auxiliary wheel, a DC motor for driving the drive wheels using a battery as a power source, and the rotational speeds of the drive wheels. Travel control in an autonomous guided vehicle that includes a rotary encoder for detection and a controller that outputs a rotation pulse and a rotation direction of the DC motor as command values based on control information and an output signal of the encoder. In the method, the controller obtains, as the control information, a movement angle θ and a movement distance M of a vehicle body in a traveling direction, obtains a position of a turning center Z of a reference point on the vehicle body based on the control information, In addition, the rotation amounts R and L of the drive wheels required to move the reference point to the target position are calculated, and the one with the larger rotation amount is the main wheel and the one with the smaller rotation amount is the slave wheel. Times The ratio is obtained by calculation in advance, the main wheel and the slave wheel are rotated at a set speed, the rotation amount of the slave wheel is detected, and this is compared with the rotation ratio. Stop, rotate when the amount is small, repeat this process until the main wheel reaches the set rotation amount, when the main wheel reaches the set rotation amount, stop the main wheel, then, A traveling control method in a self-propelled automatic guided vehicle, comprising rotating the driven wheel by the set amount and stopping the driven wheel to move the reference point to the target position.
る走行制御方法において、 前記車体の右前方向の移動角度をθ、前記駆動輪と前記
基準点の前後方向のずれをH、前記右駆動輪の移動回転
半径を辺aZ、前記左駆動輪の移動回転半径を辺bZと
し、前記車体の移動角度及び移動後の車体角を、θX=
ARCTAN(2Hsinθ/(M+2cosθ))としたとき、前記基準点を
右前方の前記目的位置に移動させるときの前記右駆動輪
の移動距離Rを、R=2*辺2bZ*π*θX/360、前記左駆動
輪の移動距離Lを、L=2*辺2aZ*π*θX/360で求めるこ
とを特徴とする自走行式無人搬送車における走行制御方
法。2. The traveling control method for a self-propelled automatic guided vehicle according to claim 1, wherein the moving angle of the vehicle body in the front right direction is θ, the deviation between the drive wheel and the reference point in the front-rear direction is H, and the right side is Letting the moving radius of rotation of the drive wheel be side aZ and the radius of rotation of the left drive wheel be side bZ, the moving angle of the vehicle body and the vehicle body angle after the movement are θX =
When ARCTAN (2Hsinθ / (M + 2cosθ)), the moving distance R of the right driving wheel when moving the reference point to the target position in the front right is R = 2 * side 2bZ * π * θX / 360, a traveling control method in a self-propelled automatic guided vehicle, characterized in that the moving distance L of the left driving wheel is obtained by L = 2 * side 2aZ * π * θX / 360.
る走行制御方法において、 前記車体の進行方向の移動角度θが、90°<θ<18
0°のときは、(180°−θ)をθに置き換えて前記
演算を行い、前記左右の駆動輪を共に逆転させ、前記基
準点を後退により右後方の前記目的位置に移動させるこ
とを特徴とする自走行式無人搬送車における走行制御方
法。3. The traveling control method for a self-propelled automatic guided vehicle according to claim 2, wherein the moving angle θ in the traveling direction of the vehicle body is 90 ° <θ <18.
When 0 °, (180 ° −θ) is replaced with θ to perform the calculation, the left and right driving wheels are both reversed, and the reference point is moved backward to the target position on the right rear. A traveling control method for a self-propelled automated guided vehicle.
る走行制御方法において、 前記車体の進行方向の移動角度θが、270°<θ<3
60°の時は、(360°−θ)をθに置き換えて前記
演算を行い、前記左右の駆動輪の回転量を入れかえて共
に正転させることにより、前記左右の駆動輪の移動量を
逆にして移動させ前記基準点を左前方の前記目的位置に
移動させることを特徴とする自走行式無人搬送車におけ
る走行制御方法。4. The traveling control method for a self-propelled automatic guided vehicle according to claim 2, wherein the moving angle θ in the traveling direction of the vehicle body is 270 ° <θ <3.
When the angle is 60 °, (360 ° −θ) is replaced with θ to perform the calculation, and the rotation amounts of the left and right drive wheels are replaced with each other so that the left and right drive wheels move in reverse. And moving the reference point to the target position on the left front side of the vehicle.
る走行制御方法において、 前記車体の進行方向の移動角度θが、180°<θ<2
70°の時は、(θ−180°)をθに置き換えて前記
演算を行い、前記左右の駆動輪の回転量を入れかえて共
に逆転させて、前記左右の駆動輪の移動量を逆にし、該
駆動輪を逆に回転させることにより、前記基準点を左後
方の目的位置に移動させるを特徴とする自走行式無人搬
送車における走行制御方法。5. The traveling control method for a self-propelled automatic guided vehicle according to claim 2, wherein a moving angle θ in the traveling direction of the vehicle body is 180 ° <θ <2.
When the angle is 70 °, (θ-180 °) is replaced with θ, the above calculation is performed, the rotation amounts of the left and right drive wheels are exchanged, and both are reversed to reverse the movement amounts of the left and right drive wheels. A traveling control method in a self-propelled automatic guided vehicle, wherein the reference point is moved to a target position on the left rear by rotating the drive wheel in the opposite direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7236285A JPH0981238A (en) | 1995-09-14 | 1995-09-14 | Method for controlling travelling of autonomously traveling automated guided vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7236285A JPH0981238A (en) | 1995-09-14 | 1995-09-14 | Method for controlling travelling of autonomously traveling automated guided vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0981238A true JPH0981238A (en) | 1997-03-28 |
Family
ID=16998529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7236285A Pending JPH0981238A (en) | 1995-09-14 | 1995-09-14 | Method for controlling travelling of autonomously traveling automated guided vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0981238A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115373376A (en) * | 2021-05-19 | 2022-11-22 | 苏州宝时得电动工具有限公司 | Automatic walking equipment steering method, device and automatic walking equipment |
-
1995
- 1995-09-14 JP JP7236285A patent/JPH0981238A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115373376A (en) * | 2021-05-19 | 2022-11-22 | 苏州宝时得电动工具有限公司 | Automatic walking equipment steering method, device and automatic walking equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5073749A (en) | Mobile robot navigating method | |
JP3025604B2 (en) | Unmanned vehicle steering control method | |
JP4984831B2 (en) | Automated guided vehicle and control method thereof | |
JP2006107027A (en) | Automated guided vehicle | |
JP3368704B2 (en) | Unmanned vehicle steering control method | |
JPH0981240A (en) | Method for controlling traveling of autonomously traveling automated guided vehicle | |
JPH0981238A (en) | Method for controlling travelling of autonomously traveling automated guided vehicle | |
JP2940300B2 (en) | Direction indication method for autonomous guided vehicle | |
JPH03279081A (en) | Self-travelling truck | |
JP2907512B2 (en) | Control device for omnidirectional vehicles | |
JP2000148247A (en) | Three-wheel steered unmanned carrier | |
JP2011123822A (en) | Transfer vehicle and program | |
JP2733924B2 (en) | Travel control device for moving objects | |
JPH0445042Y2 (en) | ||
CN116974290B (en) | Method and device for calibrating steering wheel angle of double-steering-wheel AGV | |
JPS6339923B2 (en) | ||
JP2005071128A (en) | Automatic guided transport vehicle and method for controlling travel thereof | |
JP3846828B2 (en) | Steering angle control device for moving body | |
JPH03282705A (en) | Steering angle controller for unmanned carrier vehicle | |
JP3846829B2 (en) | Steering angle control device for moving body | |
JP4449911B2 (en) | Autonomous mobile device | |
JPH05134757A (en) | Running control method for carrier | |
JPH11271042A (en) | Measuring apparatus for position of moving body | |
JPH0512803Y2 (en) | ||
CN117601902A (en) | Dual PID tracking control method suitable for front and rear axle independent steering AGVs |