JPH0979838A - Straightness measuring device - Google Patents
Straightness measuring deviceInfo
- Publication number
- JPH0979838A JPH0979838A JP23562795A JP23562795A JPH0979838A JP H0979838 A JPH0979838 A JP H0979838A JP 23562795 A JP23562795 A JP 23562795A JP 23562795 A JP23562795 A JP 23562795A JP H0979838 A JPH0979838 A JP H0979838A
- Authority
- JP
- Japan
- Prior art keywords
- measuring device
- displacement
- long material
- displacement measuring
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、一方向に長い棒材
や帯材などの長尺材の曲がりや反り(以下、これらを総
称して「歪」と呼ぶ)を測定する測定装置に係り、特に
長尺材に沿って変位測定器を移動させる真直度測定装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for measuring bending or warping (hereinafter, collectively referred to as "strain") of a long material such as a bar or a strip that is long in one direction. In particular, it relates to a straightness measuring device for moving a displacement measuring device along a long material.
【0002】[0002]
【従来の技術】機械装置の部材に長尺材を使用すること
があるが、用途によっては長尺材に高い真直度が要求さ
れ、歪のある長尺材は利用できないことになる。このた
め、使用条件に合うように長尺材を矯正加工して歪を取
り除かればならない。2. Description of the Related Art A long member is sometimes used as a member of a mechanical device. However, depending on the application, a high straightness is required for the long member, and a long member having a strain cannot be used. Therefore, the long material must be straightened to remove the distortion so as to meet the usage conditions.
【0003】長尺材に対する矯正加工を効果的に行うた
めには、事前に長尺材の歪量及び分布等を定量的に測定
して把握しておくことが不可欠である。このようなこと
から長尺材の真直度を高精度に測定する技術が重要とな
っている。In order to effectively perform the straightening process on a long material, it is indispensable to quantitatively measure and grasp the strain amount and distribution of the long material in advance. For this reason, a technique for measuring the straightness of a long material with high accuracy is important.
【0004】従来から行われていた長尺材の真直度測定
は、磁気センサやレーザ変位計等の変位測定器を長尺材
に沿って平行に走行させることにより、長尺材の歪を計
測している。変位測定器による変位測定と同時に変位測
定器の台車に備えた基準パターンを固定側のカメラで撮
影して基準パターンのずれ量を測定し、このずれ量と先
の歪量の測定結果とを相互に比較及び分析することによ
り長尺材の真直度を測定している。Conventionally, the straightness of a long material is measured by measuring the strain of the long material by running a displacement measuring device such as a magnetic sensor or a laser displacement gauge in parallel along the long material. are doing. Simultaneously with the displacement measurement by the displacement measuring device, the reference pattern provided on the carriage of the displacement measuring device is photographed by the camera on the fixed side to measure the deviation amount of the reference pattern, and this deviation amount and the above distortion amount measurement result are mutually measured. The straightness of the long material is measured by comparing and analyzing.
【0005】図3は、上記した真直度測定装置の構成例
を示している。同図において符号1は被測定物である長
尺材であり、具体的にはレールの例が示されている。測
定装置2を長尺材1と平行に走行させるために走行台3
の上面に長尺材1と平行に一組のガイドレール4a,4
bを敷設している。測定装置2は、走行台車2aに固定
したサーボモータ5によって回転駆動されるピニオン
(図示せず)をガイドレール4a,4bの間に敷設され
たラック6に噛合させて自走する。また、測定装置2に
非接触型の変位測定器7を装備し、走行台車2aに固定
したシリンダ8によって変位測定器7を長尺材1の側面
に所定の測定位置まで接近できるようにしている。図4
は変位測定器7を長尺材1の側面に所定の測定位置まで
接近させた状態を示している。変位測定器7はx軸(水
平)方向の変位を測定するが、同じ構成で測定装置の走
行台車2a上にy軸(垂直)方向の変位を測定する変位
測定器がもう一台備えられている(図示せず)。FIG. 3 shows an example of the configuration of the straightness measuring device described above. In the figure, reference numeral 1 is a long material which is an object to be measured, and specifically, an example of a rail is shown. In order to run the measuring device 2 in parallel with the long material 1, a traveling platform 3
A set of guide rails 4a, 4 parallel to the long member 1 on the upper surface of the
b is laid. The measuring device 2 is self-propelled by engaging a pinion (not shown) rotatably driven by a servomotor 5 fixed to the traveling carriage 2a with a rack 6 laid between the guide rails 4a and 4b. Further, the measuring device 2 is equipped with a non-contact type displacement measuring device 7 so that the displacement measuring device 7 can be brought close to a side surface of the long material 1 to a predetermined measuring position by a cylinder 8 fixed to the traveling carriage 2a. . FIG.
Shows a state in which the displacement measuring device 7 is brought close to the side surface of the long material 1 to a predetermined measuring position. The displacement measuring device 7 measures the displacement in the x-axis (horizontal) direction, but another displacement measuring device having the same configuration and measuring the displacement in the y-axis (vertical) direction is provided on the traveling carriage 2a of the measuring device. (Not shown).
【0006】一方、測定装置2の走行台車2a上には測
定基準を見るための基準パターン20を備え、走行台3
の一端部に基準パターン20を連続して受像するテレビ
カメラ21を固定している。テレビカメラ21が出力す
る画像信号を画像処理装置22に入力して走行台車2a
のx軸(水平)方向、y軸(垂直)方向のそれぞれの基
準位置に対するずれ量を算出する。図4はテレビカメラ
21で受像した基準パターン20の重心位置の重心位置
原点(測定基準)に対するずれ量x1,y1を示してい
る。画像処理装置22で算出したずれ量を演算装置23
に入力して変位測定器7で測定した変位検出データを補
正する。On the other hand, the traveling carriage 2a of the measuring device 2 is provided with a reference pattern 20 for seeing the measurement reference, and the traveling carriage 3
A television camera 21 for continuously receiving the reference pattern 20 is fixed to one end of the. The image signal output from the television camera 21 is input to the image processing device 22 to drive the traveling vehicle 2a.
The amount of deviation from the reference position in each of the x-axis (horizontal) direction and the y-axis (vertical) direction is calculated. FIG. 4 shows displacement amounts x1 and y1 of the center of gravity position of the reference pattern 20 received by the television camera 21 with respect to the center of gravity position (measurement reference). The deviation amount calculated by the image processing device 22 is calculated by the calculation device 23.
Is input to and the displacement detection data measured by the displacement measuring device 7 is corrected.
【0007】ところで、非接触形の変位測定器7は、図
6に示すように測定位置に応じて変位分解能が変化す
る。変位測定器7と被測定物との相対距離である測定位
置が適正位置のときに最も変位分解能が高く、測定位置
の適正位置からのずれ量が大きくなるのに応じて変位分
解能が低くなる。また、測定範囲を大きくとると適正位
置であっても変位測定器の出力特性の直線性が悪くな
る。By the way, in the non-contact type displacement measuring instrument 7, the displacement resolution changes according to the measurement position as shown in FIG. The displacement resolution is highest when the measurement position, which is the relative distance between the displacement measuring instrument 7 and the object to be measured, is the proper position, and the displacement resolution decreases as the amount of deviation of the measurement position from the proper position increases. Further, if the measurement range is made large, the linearity of the output characteristic of the displacement measuring device becomes poor even at the proper position.
【0008】[0008]
【発明が解決しようとする課題】このように、上述した
真直度測定装置は、測定位置が適正位置からずれるのに
応じて変位分解能が低下するので、高精度に歪みを測定
できる範囲が変位測定器の測定可能範囲XS に限定さ
れ、この測定可能範囲XS から逸脱してしまうような大
きな歪みを持った長尺材に対する測定精度が劣化する。
また、測定範囲を大きくとると変位測定器の出力特性の
直線性が悪くなり、その結果として測定精度が劣化する
ことになる。As described above, in the straightness measuring device described above, the displacement resolution is lowered in response to the deviation of the measurement position from the proper position, so that the range in which strain can be measured with high accuracy is displacement measurement. It is limited to the measurable range X S of the instrument, and the measurement accuracy of a long material having a large strain that deviates from the measurable range X S deteriorates.
In addition, if the measurement range is made large, the linearity of the output characteristic of the displacement measuring device deteriorates, and as a result, the measurement accuracy deteriorates.
【0009】本発明は、以上のような実情に鑑みてなさ
れたもので、測定基準に対する位置ずれを補正すると同
時に、大きな歪量をもった長尺材の真直度を高精度に測
定できるようにした長尺材真直度測定装置を提供するこ
とを目的とする。The present invention has been made in view of the above circumstances, and it is possible to correct the positional deviation with respect to the measurement reference and at the same time measure the straightness of a long material having a large amount of strain with high accuracy. It is an object of the present invention to provide a long material straightness measuring device.
【0010】[0010]
【課題を解決するための手段】本発明は、上記目的を達
成するために以下のような手段を講じた。請求項1に対
応する本発明は、長尺材との間の相対変位を検出する変
位測定器を長尺材の長手方向に平行移動させて長尺材の
歪を測定する真直度測定装置において、前記変位測定器
を長尺材の長手方向に平行移動させる走行手段と、前記
変位測定器を駆動信号に基づいて長尺材と対向する相対
方向へ移動させる駆動手段と、前記変位測定器によって
測定された変位量を前記変位測定器を長尺材の歪みに追
従移動させる駆動信号に変換して前記駆動手段へ送出す
る変換手段と、前記変位測定器によって測定された歪量
を前記変換手段が前記駆動手段に対して駆動信号によっ
て指示した移動量に基づいて補正する演算手段とを備え
る。In order to achieve the above object, the present invention takes the following measures. The present invention corresponding to claim 1 is a straightness measuring device for measuring a strain of a long material by translating a displacement measuring device for detecting relative displacement between the long material and the longitudinal direction of the long material. Traveling means for moving the displacement measuring device in parallel in the longitudinal direction of the long material, driving means for moving the displacement measuring device in a relative direction facing the long material based on a drive signal, and the displacement measuring device. Conversion means for converting the measured displacement amount into a driving signal for moving the displacement measuring device to follow the strain of the long material and sending the driving signal to the driving means, and the converting amount for the strain amount measured by the displacement measuring device. And a calculation means for making a correction based on the movement amount instructed by the drive signal to the drive means.
【0011】本発明の真直度測定装置によれば、変位測
定器が走行手段により長尺材の長手方向に平行移動する
とき、変位測定器から出力される変位測定信号が演算手
段に入力されると共に変換手段に入力される。変換手段
が変位測定器から出力される変位検出信号を変位測定器
を長尺材の歪みに追従移動させる駆動信号に変換して駆
動手段へ送出するので、変位測定器は走行しながら長尺
材の歪みに追従して移動することになる。従って、走行
前に変位測定器を長尺材に対して適正な測定位置に初期
設定しておくことにより大きな歪みを持った長尺材であ
っても変位測定器の測定可能範囲から逸脱すること無く
測定を実施することができる。一方、演算手段では変位
測定器によって測定された歪量が駆動信号によって指示
された移動量に基づいて補正される。According to the straightness measuring device of the present invention, when the displacement measuring device is translated by the traveling means in the longitudinal direction of the long material, the displacement measuring signal output from the displacement measuring device is input to the calculating means. It is input together with the conversion means. The conversion means converts the displacement detection signal output from the displacement measuring device into a drive signal for moving the displacement measuring device to follow the strain of the long material and sends the drive signal to the driving means. It will follow the distortion of. Therefore, by setting the displacement measuring instrument to the proper measurement position for the long material before traveling, it is possible to deviate from the measurable range of the displacement measuring instrument even for long materials with large distortion. It is possible to carry out the measurement without the need. On the other hand, the computing means corrects the amount of strain measured by the displacement measuring device based on the amount of movement indicated by the drive signal.
【0012】請求項2に対応する本発明は、長尺材との
間の相対変位を検出する変位測定器を長尺材の長手方向
に平行移動させて長尺材の歪を測定する真直度測定装置
において、前記変位測定器を長尺材の長手方向に平行移
動させる走行手段と、前記変位測定器を駆動信号に基づ
いて長尺材と対向する相対方向へ移動させる駆動手段
と、前記変位測定器によって測定された変位量を前記変
位測定器を長尺材の歪みに追従移動させる駆動信号に変
換して前記駆動手段へ送出する変換手段と、前記駆動手
段による前記変位測定器の移動量を間接的又は直接的に
測定する測定器と、前記変位測定器によって測定された
歪量を前記測定器で測定した前記変位測定器の移動量に
基づいて補正する演算手段とを備える。According to a second aspect of the present invention, a straightness for measuring a strain of a long material by translating a displacement measuring device for detecting relative displacement between the long material and the longitudinal direction of the long material. In the measuring device, a traveling means for moving the displacement measuring device in parallel with the longitudinal direction of the long material, a driving means for moving the displacement measuring device in a relative direction facing the long material based on a drive signal, and the displacement. Conversion means for converting the displacement amount measured by the measuring device into a driving signal for moving the displacement measuring device to follow the strain of the long material and sending the driving signal to the driving means, and the moving amount of the displacement measuring device by the driving means. And a calculation unit that corrects the strain amount measured by the displacement measuring device based on the movement amount of the displacement measuring device measured by the measuring device.
【0013】本発明の真直度測定装置によれば、変位測
定器が走行手段により長尺材の長手方向に平行移動する
とき、変位測定器から出力される変位測定信号が演算手
段及び変換手段に入力され、変換手段が変位検出信号を
駆動信号に変換して駆動手段へ送出する。駆動手段によ
る変位測定器の移動量が間接的または直接的に測定器に
よって測定されて演算手段へ送出される。演算手段では
変位測定器から変位測定信号として入力する歪量が測定
器から入力する変位測定器の移動量に基づいて補正され
る。According to the straightness measuring apparatus of the present invention, when the displacement measuring device is translated by the traveling means in the longitudinal direction of the long material, the displacement measuring signal output from the displacement measuring device is sent to the computing means and the converting means. Inputted, the conversion means converts the displacement detection signal into a drive signal and sends it to the drive means. The movement amount of the displacement measuring device by the driving means is indirectly or directly measured by the measuring device and sent to the calculating means. The calculation means corrects the amount of strain input from the displacement measuring device as a displacement measurement signal based on the amount of movement of the displacement measuring device input from the measuring device.
【0014】ここで、変位測定器の移動量を間接的に測
定する測定器として送りネジ回転角センサーを用いるこ
とができる。送りネジ回転角センサを使用すればセミク
ローズドループ制御となり、オープンループ制御に比べ
て精度よく測定できる。Here, a feed screw rotation angle sensor can be used as a measuring device for indirectly measuring the movement amount of the displacement measuring device. If a feed screw rotation angle sensor is used, it becomes semi-closed loop control, and it can measure more accurately than open loop control.
【0015】また、変位測定器の移動量を直接的に測定
する測定器としてリニアスケールなどのセンサを用いる
ことができる。リニアスケールセンサを使用すれば完全
なクローズドループ制御となり、セミクローズドループ
制御に比べより精度よく測定できる。A sensor such as a linear scale can be used as a measuring device for directly measuring the movement amount of the displacement measuring device. If a linear scale sensor is used, complete closed loop control will be achieved, and more accurate measurement will be possible compared to semi-closed loop control.
【0016】請求項3に対応する本発明は、上記したい
ずれかの真直度測定装置において、前記変位測定器が平
行移動したとき各測定位置での当該変位測定器のずれ量
を検出するずれ検出手段と、前記変位測定器によって測
定した変位量を前記ずれ検出手段で検出したずれ量で補
正する補正手段とを備える。According to a third aspect of the present invention, in any one of the straightness measuring devices described above, when the displacement measuring device is moved in parallel, the displacement detecting device detects the amount of displacement of the displacement measuring device at each measurement position. And a correction unit that corrects the displacement amount measured by the displacement measuring device by the displacement amount detected by the displacement detection unit.
【0017】本発明の真直度測定装置によれば、変位測
定器が走行手段によって移動するときの変位測定器自体
のずれがずれ検出手段によって検出され、変位測定器に
よって測定した変位量から変位測定器自体のずれが補正
手段により除去される。According to the straightness measuring apparatus of the present invention, when the displacement measuring device is moved by the traveling means, the displacement of the displacement measuring device itself is detected by the displacement detecting device, and the displacement is measured from the displacement amount measured by the displacement measuring device. The deviation of the container itself is removed by the correction means.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明に係る長尺材真直度測定装置
の実施の形態を示している。なお、図4に示す前述した
長尺材真直度測定装置と同一の構成要素には同一の参照
符号を付している。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 shows an embodiment of a long material straightness measuring device according to the present invention. The same components as those of the long material straightness measuring device shown in FIG. 4 are designated by the same reference numerals.
【0019】この長尺材真直度測定装置は、測定装置2
の変位測定器として長尺材1との間のx軸方向の相対変
位を検出するX変位測定器7−1と、y軸方向の相対変
位を検出するもう1台のY変位測定器7−2(図1には
図示せず)とを備えている。X変位測定器7−1をステ
ッピングモータ31−1によってx軸方向に移動できる
ようにし、ステッピングモータ31−1のx軸方向の移
動量をロータリーエンコーダ32−1で読み取ってい
る。Y変位測定器7−2についてもステッピングモータ
31−2,ロータリーエンコーダ32−2が設けられて
いる。ステッピングモータ31−1にアナログ/パルス
変換器33−1から供給するパルス信号によってステッ
ピングモータ31−1の移動量を制御する。y軸方向に
ついても同様に構成されている。これら構成要素からな
る測定装置2が走行台車2aの上に設けられており、走
行台車2aがガイドレール4a,4b上を走行する。This long material straightness measuring device is a measuring device 2
X displacement measuring device 7-1 for detecting relative displacement in the x-axis direction between the long material 1 and another Y displacement measuring device 7-for detecting relative displacement in the y-axis direction. 2 (not shown in FIG. 1). The X displacement measuring device 7-1 is made movable in the x-axis direction by the stepping motor 31-1, and the amount of movement of the stepping motor 31-1 in the x-axis direction is read by the rotary encoder 32-1. The Y displacement measuring device 7-2 is also provided with a stepping motor 31-2 and a rotary encoder 32-2. The movement amount of the stepping motor 31-1 is controlled by the pulse signal supplied from the analog / pulse converter 33-1 to the stepping motor 31-1. The same is applied to the y-axis direction. The measuring device 2 including these components is provided on the traveling carriage 2a, and the traveling carriage 2a travels on the guide rails 4a and 4b.
【0020】また、測定装置2の走行台車2a上に基準
パターン20が配設され、この基準パターン20と向か
い合うようにして走行台3の一端側に基準パターンを画
像としてとらえるテレビカメラ21が設置されている。
テレビカメラ21は2次元的に配列された撮像素子によ
って構成されている。Further, a reference pattern 20 is provided on the traveling carriage 2a of the measuring device 2, and a TV camera 21 is provided on one end side of the traveling stand 3 so as to face the reference pattern 20 so as to capture the reference pattern as an image. ing.
The television camera 21 is composed of image pickup devices arranged two-dimensionally.
【0021】図2は、本実施形態に係る長尺材真直度測
定装置の電気系の機能ブロックを示している。X変位測
定器の出力信号を変位量として演算装置30に出力する
と共に、アナログ/パルス変換器33−1に出力してい
る。アナログ/パルス変換器33−1から検出変位量に
応じたパルス信号を発生してステッピングモータ31−
1を駆動する。ステッピングモータ31−1の移動量を
読み取ったロータリーエンコーダ32−1の出力信号を
演算装置30に出力している。y軸方向についても同様
に構成されている。演算装置30は上記変位量と移動量
とに基づいて測定装置2に対する長尺材の相対的な変位
量を算出する。FIG. 2 shows functional blocks of an electric system of the long material straightness measuring device according to this embodiment. The output signal of the X displacement measuring device is output as a displacement amount to the arithmetic unit 30 and also to the analog / pulse converter 33-1. A pulse signal corresponding to the detected displacement is generated from the analog / pulse converter 33-1 to generate the stepping motor 31-
1 is driven. The output signal of the rotary encoder 32-1 reading the amount of movement of the stepping motor 31-1 is output to the arithmetic unit 30. The same is applied to the y-axis direction. The computing device 30 calculates the relative displacement amount of the long material with respect to the measuring device 2 based on the displacement amount and the movement amount.
【0022】また、テレビカメラ21から出力された画
像信号が画像処理装置22に入力される。この画像処理
装置22は入力された画像信号を処理して基準パターン
の重心位置を基準とした測定装置の走行台車2aの位置
ずれ量を演算装置30に記憶させておく。演算装置30
では前述した変位量に上記位置ずれ量を補正して長尺材
1の実際の歪量を算出する。The image signal output from the television camera 21 is input to the image processing device 22. The image processing device 22 processes the input image signal and stores the positional deviation amount of the traveling carriage 2a of the measuring device in the arithmetic device 30 with the center of gravity of the reference pattern as a reference. Arithmetic unit 30
Then, the above-mentioned displacement amount is corrected to the displacement amount described above to calculate the actual strain amount of the long material 1.
【0023】次に、以上のようにして構成された本長尺
材真直度測定装置の動作について説明する。なお、x軸
方向とY軸方向とを区別せずに説明することとする。ま
ず、被測定物である長尺材1をローラ装置13を介して
搬入した後、クランプ装置14を用いて所定の測定位置
に位置決めする。しかる後、このままでは長尺材1に歪
が生じて測定に誤差が生ずるので、これを防止するため
にクランプ装置を解放してから測定を開始する。Next, the operation of the straightness measuring device for straightness of the long material constructed as described above will be explained. Note that the description will be made without distinguishing the x-axis direction and the Y-axis direction. First, the long material 1 as the object to be measured is carried in via the roller device 13, and then is positioned at a predetermined measurement position by using the clamp device 14. After that, if this is left as it is, distortion occurs in the long material 1 and an error occurs in the measurement. Therefore, in order to prevent this, the clamp device is released before starting the measurement.
【0024】測定装置2を長尺材1に沿って平行に自走
させる。このとき、変位測定器7−1(7−2)が長尺
材1との距離を測定し、測定器基準位置からのずれ量を
演算装置30に出力する。同時に、変位測定器7−1
(7−2)の出力信号でアナログ/パルス変換器33−
1(33−2)を介してステッピングモータ31−1
(31−2)を駆動して長尺材1に対し変位測定器7−
1(7−2)が測定基準位置にくるように追従制御す
る。そのときの追従移動量をロータリーエンコーダ32
−1(32−2)によって測定する。The measuring device 2 is self-propelled along the long material 1 in parallel. At this time, the displacement measuring device 7-1 (7-2) measures the distance from the long material 1 and outputs the amount of deviation from the measuring device reference position to the arithmetic unit 30. At the same time, the displacement measuring device 7-1
Analog / pulse converter 33-using the output signal of (7-2)
1 (33-2) via the stepping motor 31-1
Displacement measuring device 7-
Follow-up control is performed so that 1 (7-2) comes to the measurement reference position. The following movement amount at that time is determined by the rotary encoder 32.
-1 (32-2).
【0025】演算装置30では,上記ずれ量と移動量に
より測定装置に対する長尺材1の相対的な位置量を算出
する。図3を参照して説明する。A0 を変位測定器7−
1(7−2)の測定基準距離、A1 をある位置での変位
量、B1 をステッピングモータの移動量、δを時間遅れ
による追従遅れ量、Cを測定基準位置に対する相対変位
とする。これらの関係は下式で示される。The computing device 30 calculates the relative position amount of the long material 1 with respect to the measuring device based on the displacement amount and the movement amount. This will be described with reference to FIG. A 0 is the displacement measuring device 7-
1 (7-2) is a measurement reference distance, A 1 is a displacement amount at a certain position, B 1 is a movement amount of a stepping motor, δ is a tracking delay amount due to a time delay, and C is a relative displacement with respect to the measurement reference position. These relationships are shown by the following equation.
【0026】 A1 =A0 +δ≒A0 …(1) δ=A1 −B1 …(2) C=B1 +δ=A1 +B1 −A0 …(3) 上記(3)式により長尺材1と測定装置2との相対変位
が連続的に検出され、歪量データとして演算装置30に
記憶される。時間遅れによる追従遅れ量は測定装置2の
走行台車2aの速度を設定することによりある範囲内に
入るよう設定する。A 1 = A 0 + δ≈A 0 (1) δ = A 1 -B 1 (2) C = B 1 + δ = A 1 + B 1 -A 0 (3) According to the above formula (3) The relative displacement between the long material 1 and the measuring device 2 is continuously detected and stored in the computing device 30 as strain amount data. The tracking delay amount due to the time delay is set to fall within a certain range by setting the speed of the traveling carriage 2a of the measuring device 2.
【0027】一方、走行台車2aの走行時に、テレビカ
メラ21で基準パターン20を各測定位置で連続して受
像して、その画像信号をテレビカメラ21から画像処理
装置22に送出する。On the other hand, when the traveling vehicle 2a is traveling, the television camera 21 continuously receives the reference pattern 20 at each measurement position, and the image signal is sent from the television camera 21 to the image processing device 22.
【0028】画像処理装置22は、各測定位置におい
て、図5に示されるように、撮影した基準パターンの重
心位置Oと予め記憶されている重心位置原点O0 とのx
軸方向及びy軸方向それぞれに対する位置ずれ量x1 ,
y1 を求めて演算装置30に出力する。As shown in FIG. 5, the image processing device 22 has an x of the barycentric position O of the photographed reference pattern and the prestored barycentric position origin O 0 at each measurement position.
Misalignment amount x 1 in each of the axial direction and the y-axis direction,
The y 1 is calculated and output to the arithmetic unit 30.
【0029】演算装置30は、位置ずれ量データx1 ,
y1 に基づいて先に求めた相対変位データを補正して各
測定点における歪量を算出する。このように本実施の形
態によれば、変位測定器7−1(7−2)とロータリー
エンコーダ32−1(32−2)を組み合わせることに
より、長尺材1の大きな歪量が測定できると同時に、測
定装置2の自走に伴う誤差を正確に補正できるので、長
尺材1についての正確な歪量を測定することができる。The arithmetic unit 30 calculates the positional deviation amount data x 1 ,
The amount of strain at each measurement point is calculated by correcting the relative displacement data previously obtained based on y 1 . As described above, according to the present embodiment, it is possible to measure a large strain amount of the long material 1 by combining the displacement measuring device 7-1 (7-2) and the rotary encoder 32-1 (32-2). At the same time, the error caused by the self-propelled measuring device 2 can be accurately corrected, so that the accurate strain amount of the long material 1 can be measured.
【0030】なお、以上の説明では、変位測定器7−1
(7−2)をステッピングモータ31−1(31−2)
で移動させているが、サーボシリンダなど他の駆動機構
によって移動させてもよい。また、このときの変位測定
器7−1(7−2)の移動量を測定装置2の台車上のロ
ータリーエンコーダ32−1(32−2)で測定してい
るが、フィードモニタあるいはカメラ21で撮影して画
像処理により移動量を検出するようにしても良い。In the above description, the displacement measuring device 7-1
(7-2) to stepping motor 31-1 (31-2)
However, it may be moved by another drive mechanism such as a servo cylinder. Further, the movement amount of the displacement measuring device 7-1 (7-2) at this time is measured by the rotary encoder 32-1 (32-2) on the carriage of the measuring device 2, but it is measured by the feed monitor or the camera 21. The amount of movement may be detected by photographing and performing image processing.
【0031】また、上記した実施形態は、変位検出器の
移動をロータリーエンコーダ32で間接的に測定して演
算装置30へフィードバックするセミクローズドループ
の場合を示しているが、リニアスケールを用いた完全な
クローズドループにしてもよく、又は特に測定器を設け
ないでアナログ/パルス変換器33からステッピングモ
ータ31へ送出する信号の一部を演算装置30へ入力し
て移動量を判断させるオープンループ制御にしてもよ
い。本発明は上記実施形態に限定されるものではなく、
本発明の要旨を逸脱しない範囲内で種々変形実施可能で
ある。In the above embodiment, the movement of the displacement detector is indirectly measured by the rotary encoder 32 and fed back to the arithmetic unit 30. In the semi-closed loop, the linear scale is used. Closed loop, or open loop control in which a part of the signal sent from the analog / pulse converter 33 to the stepping motor 31 is input to the arithmetic unit 30 and the movement amount is judged without providing a measuring device. May be. The present invention is not limited to the above embodiment,
Various modifications can be made without departing from the spirit of the present invention.
【0032】[0032]
【発明の効果】以上詳記したように本発明によれば、変
位測定器に対する長尺材の相対的変位を一定に保つよう
に位置制御するため、測定範囲が追従遅れ分だけあれば
よく、測定範囲を狭くすることができ、変位測定器の分
解能が同じであれば測定精度を上げることができる。ま
た、測定器自身を小さくすることもできるので、長尺材
に対して適切な大きさのセンサーを選ぶことが可能とな
り、より正確な測定ができる。また、変位測定器の移動
量の検出方法が用途に合わせて選ぶことができる。さら
に、変位測定器の出力信号を変位測定器自身を移動させ
るアクチュエータの駆動源としているので、追従性がよ
く、システム構成も簡単になる。As described above in detail, according to the present invention, the position control is performed so that the relative displacement of the long material with respect to the displacement measuring device is kept constant. The measurement range can be narrowed, and the measurement accuracy can be improved if the displacement measuring devices have the same resolution. Further, since the measuring device itself can be made small, it becomes possible to select a sensor having an appropriate size for a long material, and more accurate measurement can be performed. Further, the method of detecting the movement amount of the displacement measuring device can be selected according to the application. Furthermore, since the output signal of the displacement measuring instrument is used as the drive source of the actuator that moves the displacement measuring instrument itself, the followability is good and the system configuration is simple.
【図1】本発明の実施の形態である長尺材真直度測定装
置の構成図である。FIG. 1 is a configuration diagram of a long material straightness measuring device according to an embodiment of the present invention.
【図2】図1に示す長尺材真直度測定装置における電気
系の機能ブロック図である。FIG. 2 is a functional block diagram of an electric system in the long material straightness measuring device shown in FIG.
【図3】図1の長尺材真直度測定装置において変位測定
器で検出された変位量と変位測定器自身の移動量の関係
を示した図。3 is a diagram showing a relationship between a displacement amount detected by a displacement measuring device and a moving amount of the displacement measuring device itself in the long material straightness measuring device of FIG.
【図4】従来の長尺材真直度測定装置を示した斜視図。FIG. 4 is a perspective view showing a conventional long material straightness measuring device.
【図5】長尺材と変位測定器との関係を示す図である。FIG. 5 is a diagram showing a relationship between a long material and a displacement measuring device.
【図6】基準パターンの重心位置の原点とある測定点に
おける基準パターンの重心位置との関係を表した説明
図。FIG. 6 is an explanatory diagram showing the relationship between the origin of the center of gravity of the reference pattern and the center of gravity of the reference pattern at a certain measurement point.
【図7】変位測定器の測定基準位置と測定範囲および出
力特性の関係を表した図。FIG. 7 is a diagram showing a relationship between a measurement reference position of a displacement measuring device, a measurement range, and output characteristics.
1…長尺材、2…走行測定装置、2a…測定装置の台
車、3…走行台、4a,4b…ガイドレール、5…サー
ボモータ、6…ラック、7−1…X変位測定器、7−2
…Y変位測定器、13…ローラ装置、14…クランプ装
置、20…基準パターン、21…テレビカメラ、22…
画像処理装置、30…演算装置、31−1,31−28
…ステッピングモータ、32−1,32−2…ロータリ
エンコーダ、33−1,33−2…アナログ/パルス変
換器。DESCRIPTION OF SYMBOLS 1 ... Long material, 2 ... Running measuring device, 2a ... Measuring device truck, 3 ... Running platform, 4a, 4b ... Guide rail, 5 ... Servo motor, 6 ... Rack, 7-1 ... X displacement measuring device, 7 -2
... Y displacement measuring device, 13 ... Roller device, 14 ... Clamping device, 20 ... Reference pattern, 21 ... Television camera, 22 ...
Image processing device, 30 ... Arithmetic device, 31-1, 31-28
... Stepping motors 32-1, 32-2 ... Rotary encoders, 33-1, 33-2 ... Analog / pulse converter.
Claims (3)
測定器を長尺材の長手方向に平行移動させて長尺材の歪
を測定する真直度測定装置において、 前記変位測定器を長尺材の長手方向に平行移動させる走
行手段と、 前記変位測定器を駆動信号に基づいて長尺材と対向する
相対方向へ移動させる駆動手段と、 前記変位測定器によって測定された変位量を前記変位測
定器を長尺材の歪みに追従移動させる駆動信号に変換し
て前記駆動手段へ送出する変換手段と、 前記変位測定器によって測定された歪量を前記変換手段
が前記駆動手段に対して駆動信号によって指示した移動
量に基づいて補正する演算手段とを具備したことを特徴
とする真直度測定装置。1. A straightness measuring device for measuring a strain of a long material by translating a displacement measuring device for detecting a relative displacement between the long material and the longitudinal direction of the long material, the displacement measuring device Traveling means for moving in parallel to the longitudinal direction of the long material, driving means for moving the displacement measuring device in a relative direction facing the long material based on a drive signal, and a displacement amount measured by the displacement measuring device. A conversion means for converting the displacement measuring device into a driving signal for moving the displacement measuring device to follow the strain of the long material and sending the driving signal to the driving means, and the converting amount of the strain amount measured by the displacement measuring device to the driving means. On the other hand, a straightness measuring apparatus comprising: a calculating unit that corrects the movement amount based on a movement amount instructed by a drive signal.
測定器を長尺材の長手方向に平行移動させて長尺材の歪
を測定する真直度測定装置において、 前記変位測定器を長尺材の長手方向に平行移動させる走
行手段と、 前記変位測定器を駆動信号に基づいて長尺材と対向する
相対方向へ移動させる駆動手段と、 前記変位測定器によって測定された変位量を前記変位測
定器を長尺材の歪みに追従移動させる駆動信号に変換し
て前記駆動手段へ送出する変換手段と、 前記駆動手段による前記変位測定器の移動量を間接的又
は直接的に測定する測定器と、 前記変位測定器によって測定された歪量を前記測定器で
測定した前記変位測定器の移動量に基づいて補正する演
算手段とを具備したことを特徴とする真直度測定装置。2. A straightness measuring device for measuring a strain of a long material by translating a displacement measuring device for detecting a relative displacement between the long material and the longitudinal direction of the long material. Traveling means for moving in parallel to the longitudinal direction of the long material, driving means for moving the displacement measuring device in a relative direction facing the long material based on a drive signal, and a displacement amount measured by the displacement measuring device. And a conversion means for converting the displacement measuring device into a driving signal for moving the displacement measuring device to follow the strain of the long material and sending the driving signal to the driving means, and indirectly or directly measuring the movement amount of the displacement measuring device by the driving means. A straightness measuring device, comprising: a measuring device for adjusting the strain amount; and a computing unit that corrects the strain amount measured by the displacement measuring device based on the movement amount of the displacement measuring device measured by the measuring device.
記載の真直度測定装置において、 前記変位測定器が平行移動したとき各測定位置での当該
変位測定器のずれ量を検出するずれ検出手段と、 前記変位測定器によって測定した変位量を前記ずれ検出
手段で検出したずれ量で補正する補正手段とを具備した
ことを特徴とする真直度測定装置。3. The straightness measuring device according to claim 1, wherein when the displacement measuring device is translated, a deviation amount of the displacement measuring device at each measurement position is detected. A straightness measuring device comprising: a deviation detecting means; and a correcting means for correcting the displacement amount measured by the displacement measuring device with the deviation amount detected by the deviation detecting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23562795A JPH0979838A (en) | 1995-09-13 | 1995-09-13 | Straightness measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23562795A JPH0979838A (en) | 1995-09-13 | 1995-09-13 | Straightness measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0979838A true JPH0979838A (en) | 1997-03-28 |
Family
ID=16988820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23562795A Pending JPH0979838A (en) | 1995-09-13 | 1995-09-13 | Straightness measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0979838A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008544220A (en) * | 2005-06-08 | 2008-12-04 | ヴェンドロクス アーベー | Measuring device for measuring curvature |
CN102809355A (en) * | 2012-07-31 | 2012-12-05 | 宁波韵升股份有限公司 | Verticality detecting equipment and detecting method for product |
CN103090759A (en) * | 2013-01-16 | 2013-05-08 | 山东赛尔机械导轨有限公司 | Detection device and detection method of straight line guide rail pair |
CN105444675A (en) * | 2016-01-12 | 2016-03-30 | 苏州天准科技股份有限公司 | High-precision positioning tool for rapidly positioning product |
US10285915B2 (en) | 2012-10-17 | 2019-05-14 | The Procter & Gamble Company | Strip for the delivery of an oral care active and methods for applying oral care actives |
-
1995
- 1995-09-13 JP JP23562795A patent/JPH0979838A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008544220A (en) * | 2005-06-08 | 2008-12-04 | ヴェンドロクス アーベー | Measuring device for measuring curvature |
CN102809355A (en) * | 2012-07-31 | 2012-12-05 | 宁波韵升股份有限公司 | Verticality detecting equipment and detecting method for product |
CN102809355B (en) * | 2012-07-31 | 2015-01-28 | 宁波韵升股份有限公司 | Verticality detecting equipment and detecting method for product |
US10285915B2 (en) | 2012-10-17 | 2019-05-14 | The Procter & Gamble Company | Strip for the delivery of an oral care active and methods for applying oral care actives |
CN103090759A (en) * | 2013-01-16 | 2013-05-08 | 山东赛尔机械导轨有限公司 | Detection device and detection method of straight line guide rail pair |
CN105444675A (en) * | 2016-01-12 | 2016-03-30 | 苏州天准科技股份有限公司 | High-precision positioning tool for rapidly positioning product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920010735B1 (en) | Roll profile measuring method and device | |
KR102518930B1 (en) | sheet thickness measuring device | |
DE2829222C3 (en) | Device for monitoring the position of a movable organ | |
JPH0310042B2 (en) | ||
TWI667090B (en) | Laser processing device | |
JPH0648185B2 (en) | Sheet thickness measuring device | |
JP4970204B2 (en) | Straightness measuring device, thickness variation measuring device, and orthogonality measuring device | |
JPH0979838A (en) | Straightness measuring device | |
JPH04369409A (en) | Optical thickness measuring apparatus | |
US5107132A (en) | Apparatus for the verification of corrected surfaces or in the process of correction | |
JPH06109455A (en) | Measuring device for straightness of long material | |
CN116592757A (en) | Two-dimensional precision compensation method of measurement system | |
JPH09318321A (en) | Length-measuring apparatus | |
WO2021084772A1 (en) | Position measurement method | |
JPH0778411B2 (en) | Plate dimension measuring device | |
JP3028686B2 (en) | Method and apparatus for measuring bending of top surface of railroad rail | |
JPH0839468A (en) | Control system for robot | |
JPH05173639A (en) | Position control device and control method thereof | |
JPH06186028A (en) | Measuring method for straightness of long member | |
JPS58161828A (en) | Method for detecting metal position | |
JPS58126045A (en) | Method and device for correcting positioning of machine tool | |
JPH0727545A (en) | Long material straightness measuring device | |
JP3350272B2 (en) | Material testing equipment | |
JP2675662B2 (en) | Automatic plate thickness measuring device | |
JPH0776687B2 (en) | Automatic plate thickness measuring device |