JPH0979338A - Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling body - Google Patents
Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling bodyInfo
- Publication number
- JPH0979338A JPH0979338A JP23571595A JP23571595A JPH0979338A JP H0979338 A JPH0979338 A JP H0979338A JP 23571595 A JP23571595 A JP 23571595A JP 23571595 A JP23571595 A JP 23571595A JP H0979338 A JPH0979338 A JP H0979338A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- amount
- less
- depth
- continuously variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/02—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
- F16H15/04—Gearings providing a continuous range of gear ratios
- F16H15/06—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
- F16H15/32—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
- F16H15/36—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
- F16H15/38—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
- F16H2015/383—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces with two or more sets of toroid gearings arranged in parallel
Landscapes
- Friction Gearing (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車などの車両
や回転動力源等において、無段変速機として使用可能な
トロイダル式(転がり式)無段変速機に関し、とくに、
トロイダル式無段変速機を構成する転動体および転動体
材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toroidal type (rolling type) continuously variable transmission that can be used as a continuously variable transmission in vehicles such as automobiles and rotary power sources.
The present invention relates to rolling elements and rolling element materials constituting a toroidal continuously variable transmission.
【0002】[0002]
【従来の技術】自動車などの車両において使用される変
速機としては、歯車列における噛み合わせ状態を手動や
自動で切り替える有段変速機が多く用いられているが、
無段変速機を採用する試みもなされている。2. Description of the Related Art As a transmission used in a vehicle such as an automobile, a stepped transmission that switches the meshing state of a gear train manually or automatically is often used.
Attempts have also been made to adopt a continuously variable transmission.
【0003】この無段変速機は、連続的に変速するた
め、燃費が向上すること、変速ショックが無いこと等の
特徴をもっているが、その構造によって、ベルト式とト
ロイダル式の2つに大別される。Since the continuously variable transmission continuously shifts gears, it is characterized by improved fuel economy and no shift shock, but it is roughly classified into a belt type and a toroidal type according to its structure. To be done.
【0004】その中で、トロイダル式(転がり式)の無
段変速機は、図1に示すように、潤滑油を介して接触す
る金属製転動体を用いた構造を有するものであって、こ
のトロイダル式無段変速機1は、入力軸2に接続したロ
ーディングカム3および連結軸4を介して一体で回転す
る入力ディスク5,5を備えていると共に、歯車6,7
を介して出力軸8を回転させる出力ディスク9,9をそ
なえ、入力ディスク5,5と出力ディスク9,9との間
にパワーローラー10,10,10,10を設け、各パ
ワーローラー10はボールベアリング11を介して各々
支持体12により支持された構造を有するものである。Among them, a toroidal type (rolling type) continuously variable transmission has a structure using metal rolling elements that come into contact with each other through lubricating oil, as shown in FIG. The toroidal type continuously variable transmission 1 includes input disks 5 and 5 that rotate integrally via a loading cam 3 and a connecting shaft 4 connected to an input shaft 2, and gears 6 and 7.
It is equipped with output disks 9 and 9 for rotating the output shaft 8 via, and power rollers 10, 10, 10 and 10 are provided between the input disks 5 and 5 and the output disks 9 and 9, and each power roller 10 is a ball. The structure is such that each is supported by a support 12 via a bearing 11.
【0005】そして、このトロイダル式無段変速機1で
は、入力ディスク5と出力ディスク9との間で挟まれた
パワーローラー10の傾きを変化させ、入出力ディスク
5,9の相対回転速度を変えて変速しつつ、入力軸2か
ら出力軸8へと動力を伝達する仕組みになっている(特
開平1−229158号公報など)。In the toroidal type continuously variable transmission 1, the inclination of the power roller 10 sandwiched between the input disk 5 and the output disk 9 is changed to change the relative rotation speed of the input / output disks 5, 9. The mechanism is such that power is transmitted from the input shaft 2 to the output shaft 8 while shifting gears (Japanese Patent Laid-Open No. 1-229158, etc.).
【0006】そのため、このような金属製転動体よりな
る入力ディスク5,出力ディスク9およびパワーローラ
ー10は、エンジントルクの入力によって、転動面にお
いては面圧入力を受けることとなるので、面疲労強度
(転動疲労強度)に優れていることが要求され、高い表
面硬度と深い硬化層深さを有していることが必要となる
(例えば、特開平7−71555号等)。Therefore, the input disk 5, the output disk 9 and the power roller 10 made of such metal rolling elements receive a surface pressure input on the rolling surface due to the input of the engine torque, so that the surface fatigue occurs. It is required to have excellent strength (rolling fatigue strength), and it is necessary to have a high surface hardness and a deep hardened layer depth (for example, JP-A-7-71555).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、このよ
うな従来のトロイダル式無段変速機1の金属製転動体
(5,9,10)においては、トルクを伝達するために
入力ディスク5にローディングカム3にて荷重をかけ、
転動面に高い面圧を負荷する必要があるため、転動体内
部に高い剪断応力が発生し、最大剪断応力の発生深さ付
近を起点とする亀裂が生成され、ピッティング剥離に至
る故障が生じることがあった。また、剥離に至らない場
合でも、内部の塑性変形に伴い転動面が陥没し、変速性
能が損なわれることがあった。However, in the metal rolling element (5, 9, 10) of the conventional toroidal type continuously variable transmission 1 as described above, the loading cam is loaded on the input disk 5 to transmit the torque. Load at 3,
Since it is necessary to apply a high surface pressure to the rolling surfaces, high shear stress is generated inside the rolling elements, and cracks starting from the vicinity of the maximum shear stress generation depth are generated, resulting in failure that leads to pitting separation. It happened. Further, even if the peeling does not occur, the rolling surface may be depressed due to the plastic deformation of the inside, and the shifting performance may be impaired.
【0008】さらに、使用中のトロイダル式無段変速機
1の潤滑油中には、種々の摺動部品から生じる夾雑物が
あり、このような夾雑物が転動面に噛み込むと圧痕が出
来、その周囲に形成される応力集中により、表面起点の
亀裂が発生し、ピッティング剥離に至ることがあった。Further, in the lubricating oil of the toroidal type continuously variable transmission 1 in use, there are contaminants generated from various sliding parts, and when such contaminants are caught in the rolling surface, indentations are formed. Due to the stress concentration formed around it, a crack originating from the surface may be generated, leading to pitting separation.
【0009】そして、パワーローラー10の背面は、ボ
ールベアリング11を介して各々支持体12により支持
されているが、入力ディスク5に荷重が負荷される際
に、やはり高い面圧が発生するため、夾雑物を噛み込む
と表面起点の亀裂および剥離が発生することがあった。The back surface of the power roller 10 is respectively supported by the support 12 via the ball bearings 11. However, when a load is applied to the input disk 5, a high surface pressure is also generated. Occurrence of cracks and delamination at the surface origin sometimes occurred when foreign matter was caught.
【0010】したがって、このような内部起点の亀裂お
よび剥離が生じがたく、また、表面起点の亀裂および剥
離が発生しがたいものとすることが課題であった。[0010] Therefore, it has been a problem to prevent such cracks and peeling originating from the inside, and to prevent cracks and peeling originating from the surface.
【0011】[0011]
【発明の目的】本発明は、上記の課題にかんがみてなさ
れたものであって、耐ピッティング性および転動疲労強
度に優れ、長寿命のものとすることが可能であるトロイ
ダル式無段変速機用転動体材料および転動体を提供する
ことを目的としているものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is a toroidal type continuously variable transmission that is excellent in pitting resistance and rolling fatigue strength and can have a long life. The purpose is to provide a rolling element material for a machine and a rolling element.
【0012】[0012]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係わるトロイダル式無段変速機用転動
体材料の構成は、以下の通りである。The structure of the rolling element material for a toroidal type continuously variable transmission according to the present invention, which has been capable of solving the above problems, is as follows.
【0013】すなわち、重量%で、C:0.1〜0.6
%、Si:0.05〜1.5%、Mn:0.2〜2.0
%、V:0.03〜1.0%、P:0.02%以下、A
l:0.005〜0.10%、Ti:0.005%以
下、N:0.004〜0.03%、O:0.002%以
下、場合によってはさらに他の成分として、Ni:0.
20〜5.0%,Cr:0.20〜5.0%,Mo:
0.05〜1.0%,W:0.03〜2.0%,Nb:
0.01〜0.10%よりなる群から選択される1種ま
たは2種以上の元素を含有し、同じく場合によっては他
の成分として、S:0.03超〜0.10%,Pb:
0.01〜0.30%,Te:0.005〜0.10
%,Se:0.005〜0.10%,Ca:0.000
5〜0.010%,Zr:0.005〜0.10%より
なる群から選択される1種または2種以上の元素を含有
し、残部がFeおよび不可避的不純物からなり、 Veq=(V)+1.2(Si)−1.1(Mn)+
0.1(Ni)+0.3(Cr)+0.4(Mo)+
0.2(W) において、Veq≧0.2であり、かつ、 R*=−(Si)+1.5(Mn)+0.5(Ni)+
1.5(Cr)+(Mo)−0.5(V)−0.2
(W) において、0≦R*≦4.5であり、浸炭窒化処理をし
て鋼材の炭素量:C、窒素量:Nの和であるC+N量を
転動体内部に発生する最大剪断応力の発生深さをZst
としたときに深さd≦0.2Zstの位置において0.
9〜1.3%としたときに残留オーステナイト量が20
〜40体積%になるトロイダル式無段変速機用転動体材
料の構成としたことを特徴としている。That is, in% by weight, C: 0.1 to 0.6
%, Si: 0.05 to 1.5%, Mn: 0.2 to 2.0
%, V: 0.03 to 1.0%, P: 0.02% or less, A
1: 0.005 to 0.10%, Ti: 0.005% or less, N: 0.004 to 0.03%, O: 0.002% or less, and optionally, Ni: 0 as another component. .
20-5.0%, Cr: 0.20-5.0%, Mo:
0.05-1.0%, W: 0.03-2.0%, Nb:
It contains one or more elements selected from the group consisting of 0.01 to 0.10%, and optionally, as other components, S: more than 0.03 to 0.10%, Pb:
0.01-0.30%, Te: 0.005-0.10
%, Se: 0.005 to 0.10%, Ca: 0.000
5 to 0.010%, Zr: 0.005 to 0.10%, containing one or more elements selected from the group consisting of Fe and unavoidable impurities, and Veq = (V ) +1.2 (Si) -1.1 (Mn) +
0.1 (Ni) +0.3 (Cr) +0.4 (Mo) +
At 0.2 (W), Veq ≧ 0.2, and R * = − (Si) +1.5 (Mn) +0.5 (Ni) +
1.5 (Cr) + (Mo) -0.5 (V) -0.2
In (W), 0 ≦ R * ≦ 4.5, carbonitriding is performed, and the amount of C + N, which is the sum of carbon amount: C and nitrogen amount: N, of the steel material is calculated as the maximum shear stress generated in the rolling element. Generation depth is Zst
At the position of depth d ≦ 0.2Zst.
The residual austenite amount is 20 when 9 to 1.3% is set.
It is characterized in that the rolling element material for a toroidal type continuously variable transmission is up to 40% by volume.
【0014】また、上記課題を解決することのできた本
発明に係わるトロイダル式無段変速機用転動体の構成
は、以下の通りである。The structure of the rolling element for a toroidal type continuously variable transmission according to the present invention, which has been able to solve the above problems, is as follows.
【0015】すなわち、潤滑油を介して接触する複数個
の金属製転動体を用いたトロイダル式無段変速機におい
て、前記転動体の素材として上記トロイダル式無段変速
機用転動体材料を用い、浸炭窒化処理により、転動面に
おけるN量が重量%で0.2%以上0.6%以下、面接
触により転動体内部に発生する最大剪断応力の発生深さ
をZstとしたときに深さd≦0.2Zstの位置にお
いてC+N量が重量%で0.9%以上1.3%以下、残
留オーステナイト量が体積%で20%以上40%以下、
硬さがHV650以上、直径(粒径)1.0μm以下の
炭窒化物が面積率で1%以上であり、かつ、深さ0.5
Zst≦d≦1.4Zstの位置においてCおよびN量
が重量%で0.6%≦C+N≦1.2%、硬さがHV7
00以上、深さd=Zstの位置における硬さがHV7
60以上であるトロイダル式無段変速機用転動体の構成
としたことを特徴としている。That is, in a toroidal type continuously variable transmission using a plurality of metal rolling elements that come in contact with each other through lubricating oil, the rolling element material for the toroidal type continuously variable transmission is used as a material of the rolling element, By carbonitriding, the N content in the rolling surface is 0.2% or more and 0.6% or less in weight%, and the depth when the maximum shear stress generated inside the rolling element due to surface contact is Zst At the position of d ≦ 0.2Zst, the amount of C + N is 0.9% or more and 1.3% or less by weight%, the amount of retained austenite is 20% or more and 40% or less by volume%,
A carbonitride having a hardness of HV 650 or more and a diameter (particle diameter) of 1.0 μm or less is 1% or more in area ratio and a depth of 0.5.
Zst ≤ d ≤ 1.4 At the position of Zst, C and N contents are 0.6% ≤ C + N ≤ 1.2% in weight% and hardness is HV7.
00 or more, the hardness at the depth d = Zst is HV7
The feature is that the rolling element for a toroidal type continuously variable transmission having a number of 60 or more is configured.
【0016】[0016]
【発明の作用】本発明に係わるトロイダル式無段変速機
用転動体材料の成分組成(重量%)の限定理由について
各成分の作用と共に説明する。The reasons for limiting the component composition (% by weight) of the rolling element material for a toroidal type continuously variable transmission according to the present invention will be explained together with the action of each component.
【0017】C:0.1〜0.6% Cは浸炭窒化処理した部品に所要の芯部硬さを与えるた
めに欠くことの出来ない元素であり、0.1%以上の添
加が必要である。しかし、0.6%を超えると、被削性
が低下するとともに靭性の劣化を招くので、0.6%を
上限とした。C: 0.1 to 0.6% C is an element indispensable for imparting the required hardness of the core to carbonitrided parts, and it is necessary to add 0.1% or more. is there. However, if it exceeds 0.6%, the machinability deteriorates and the toughness deteriorates, so 0.6% was made the upper limit.
【0018】Si:0.05〜1.5% 部品の転動疲労強度を向上するためには、使用時の摩
擦、あるいは変形による発熱で部品が軟化しにくくする
ことが必要である。Siは部品の軟化抵抗性を上げる効
果が大きく、このためには欠くことが出来ない元素であ
り、0.05%以上の添加が必要である。しかし、1.
5%を超えると炭窒化処理時のCの侵入を妨げたり、加
工性を悪くしたりするので、上限を1.5%にした。Si: 0.05 to 1.5% In order to improve the rolling fatigue strength of a component, it is necessary to make it difficult for the component to soften due to friction during use or heat generated by deformation. Si has a great effect of increasing the softening resistance of parts, and is an element indispensable for this purpose, and it is necessary to add Si in an amount of 0.05% or more. However, 1.
If it exceeds 5%, the penetration of C during carbonitriding is impeded or the workability is deteriorated, so the upper limit was made 1.5%.
【0019】Mn:0.2〜2.0% Mnは鋼材の溶製時において脱酸を目的として添加す
る。しかし、0.2%未満では脱酸が不十分となり、鋼
材の内部品質を劣化させる。また、浸炭層部の焼き入れ
性が確保できず、硬化層深さが浅くなり、強度の低下を
まねくので、0.2%以上とした。Mn: 0.2-2.0% Mn is added for the purpose of deoxidation during melting of steel material. However, if it is less than 0.2%, deoxidation becomes insufficient and the internal quality of the steel material deteriorates. Further, the hardenability of the carburized layer cannot be ensured, the depth of the hardened layer becomes shallow, and the strength is lowered.
【0020】一方、2.0%を超えると素材硬さの上昇
をもたらし、被削性を劣化させるので、上限を2.0%
にした。On the other hand, if it exceeds 2.0%, the hardness of the material is increased and the machinability is deteriorated, so the upper limit is 2.0%.
I made it.
【0021】V:0.03〜1.0% Vは浸炭窒化処理で微細な炭窒化物を表面硬化処理層に
析出し、硬度の上昇、転動疲労強度の向上に有効であ
り、その硬化を確保するために0.03%以上の添加と
した。しかし、1.0%を超えると焼き入れ時に芯部で
フェライトが多く生成し、芯部硬さが低下し、静的強
度、疲労強度が低下するので、1.0%以下とした。V: 0.03 to 1.0% V is effective for increasing the hardness and rolling fatigue strength by depositing fine carbonitrides on the surface-hardened layer by carbonitriding. In order to ensure that, 0.03% or more was added. However, if it exceeds 1.0%, a large amount of ferrite is generated in the core during quenching, the core hardness decreases, and the static strength and fatigue strength decrease, so it was made 1.0% or less.
【0022】P:0.02%以下 Pは粒界強度を劣化させ、磁性を阻害するので、0.0
2%を上限とした。P: 0.02% or less P deteriorates the grain boundary strength and hinders magnetism.
The upper limit was 2%.
【0023】Al:0.005〜0.10% Alは鋼材の溶製時において脱酸を目的として添加す
る。また、浸炭窒化処理の加熱時にオーステナイト結晶
粒の成長を抑制する元素であり、0.005%未満では
効果が得られない。また、0.10%を超えて添加して
も結晶粒成長を抑制する効果が飽和するとともに、過剰
の添加により硬質の非金属介在物を多数生成して転動疲
労寿命を低下させるので、0.10%を上限とした。Al: 0.005 to 0.10% Al is added for the purpose of deoxidation during melting of steel material. Further, it is an element that suppresses the growth of austenite crystal grains during heating in carbonitriding, and if it is less than 0.005%, no effect is obtained. Further, even if added in excess of 0.10%, the effect of suppressing the crystal grain growth is saturated, and excessive addition causes the formation of a large number of hard non-metallic inclusions, which reduces the rolling fatigue life. The upper limit was 10%.
【0024】Ti:0.005%以下 Tiは硬質の介在物を生成し、転動疲労寿命に悪影響を
与えるので、0.005%を上限とした。Ti: 0.005% or less Ti forms hard inclusions and adversely affects the rolling fatigue life, so 0.005% was made the upper limit.
【0025】N:0.004〜0.03% NはAlNを生成してオーステナイト結晶粒を微細化
し、転動疲労寿命を向上させる。しかし、0.004%
未満ではその効果は期待できず、0.03%超過では鋳
造や熱間圧延時の割れ不良の原因となるので、上限は
0.03%にした。N: 0.004 to 0.03% N forms AlN to make austenite crystal grains fine and improve rolling fatigue life. However, 0.004%
If it is less than 0.03%, the effect cannot be expected, and if it exceeds 0.03%, it causes cracking defects during casting and hot rolling, so the upper limit was made 0.03%.
【0026】O:0.002%以下 O量が多いとAl2O3やSiO2等の酸化物系介在物
が多く生成し、疲労強度、特に転動疲労寿命に悪影響を
及ぼすので、上限を0.002%にした。O: 0.002% or less When the O content is large, a large amount of oxide-based inclusions such as Al 2 O 3 and SiO 2 are produced, which adversely affects fatigue strength, especially rolling fatigue life. It was set to 0.002%.
【0027】Ni:0.20〜5.0% Niは焼き入れ性、靭性の向上に有効であるので場合に
よっては添加する。しかし、添加するとしても0.20
%未満ではその効果は期待できず、また、5.0%を超
えると加工性が悪くなるので、5.0%を上限とした。Ni: 0.20 to 5.0% Ni is effective in improving hardenability and toughness, so it is added in some cases. However, even if added, 0.20
If it is less than%, the effect cannot be expected, and if it exceeds 5.0%, the workability deteriorates, so 5.0% was made the upper limit.
【0028】Cr:0.20〜5.0% Crは焼き入れ性、浸炭窒化性の向上に有効である。ま
た、炭窒化物を形成して軟化抵抗の向上に寄与するので
場合によっては添加する。しかし、添加するとしても
0.20%未満ではその効果は期待できず、また、5.
0%を超えると加工性が悪くなるので、5.0%を上限
とした。Cr: 0.20 to 5.0% Cr is effective in improving hardenability and carbonitriding property. Further, carbonitride is formed and contributes to the improvement of the softening resistance, so it is added in some cases. However, even if added, the effect cannot be expected at less than 0.20%, and
If it exceeds 0%, workability deteriorates, so 5.0% was made the upper limit.
【0029】Mo:0.05〜1.0% Moは焼き入れ性の向上に有効であるとともに、炭窒化
物の形成で軟化抵抗の向上に寄与するので場合によって
は添加する。しかし、添加するとしても0.05%未満
ではその効果は期待できず、また、1.0%を超えて添
加すると加工性が劣化するので、1.0%を上限とし
た。Mo: 0.05 to 1.0% Mo is effective in improving the hardenability and contributes to the improvement of the softening resistance in the formation of carbonitrides, so Mo is added in some cases. However, even if added, the effect cannot be expected if it is less than 0.05%, and if it is added over 1.0%, the workability deteriorates, so 1.0% was made the upper limit.
【0030】W:0.03〜2.0% Wは炭化物を生成し、表面硬さおよび軟化抵抗性を上げ
るのに効果がある。また、芯部硬さを上げる効果もある
ので場合によっては添加する。しかし、添加するとして
も0.03%未満ではその効果は期待できず、2.0%
超過では素材硬さが高くなり、鍛造性、被削性に悪影響
を及ぼすので、上限を2.0%と規定した。W: 0.03 to 2.0% W produces carbides and is effective in increasing surface hardness and softening resistance. In addition, since it also has the effect of increasing the hardness of the core, it is added in some cases. However, even if added, the effect cannot be expected if less than 0.03%, and 2.0%
If it exceeds the limit, the hardness of the material becomes high, which adversely affects the forgeability and machinability, so the upper limit was defined as 2.0%.
【0031】Nb:0.01〜0.10% Nbは鋼中のCやNと結合して炭窒化物を生成し結晶粒
を微細化させて靭性を増大させるのに有効な元素である
ので場合によっては添加する。しかし、添加するとして
も0.01%未満ではその効果は期待できず、0.10
%を超えて添加しても効果が飽和するので、0.10%
を上限とした。Nb: 0.01 to 0.10% Nb is an element effective in combining with C and N in steel to form carbonitrides and refining crystal grains to increase toughness. Add in some cases. However, even if added, the effect cannot be expected if less than 0.01%, and
%, The effect will be saturated even if added over 0.1%, so 0.10%
Was set as the upper limit.
【0032】S:0.03超〜0.10% Sは被削性を向上する元素であるので、場合によっては
添加する。そして、このような効果を得るには0.03
%超過の添加とすることが必要であるが、多すぎるとM
nS組成の非金属介在物量が増加して転動寿命に悪影響
を及ぼすので、0.10%を上限とした。S: more than 0.03 to 0.10% S is an element that improves machinability, so S is added in some cases. And 0.03 to get such effect
It is necessary to add more than%, but if it is too much, M
Since the amount of non-metallic inclusions of nS composition increases and adversely affects the rolling life, 0.10% was made the upper limit.
【0033】Pb:0.01〜0.30% Te,S
e:0.005〜0.10% Pbは被削性向上元素であるので場合によっては添加す
る。そして、被削性を向上させるためには0.01%以
上添加する必要がある。ただし、0.30%を超えて添
加すると転動疲労寿命が低下するため、0.30%を上
限とした。Pb: 0.01 to 0.30% Te, S
e: 0.005 to 0.10% Since Pb is a machinability improving element, it is added in some cases. Then, in order to improve machinability, it is necessary to add 0.01% or more. However, if added in excess of 0.30%, the rolling fatigue life will decrease, so 0.30% was made the upper limit.
【0034】Te,Seも被削性向上元素であるので場
合によっては添加する。そして、被削性を向上させるた
めには0.005%以上添加する必要がある。ただし、
0.10%を超えて添加すると転動疲労寿命が低下する
ため、0.10%を上限とした。Since Te and Se are also machinability improving elements, they are added in some cases. And, in order to improve the machinability, it is necessary to add 0.005% or more. However,
If added in excess of 0.10%, the rolling contact fatigue life will decrease, so 0.10% was made the upper limit.
【0035】Ca:0.0005〜0.010%,Z
r:0.005〜0.10% CaはAl2O3の周囲にCaOとして生成し、熱間圧
延時にMnSの変形を抑制して、MnSの粒状化に寄与
することによって、転動疲労寿命を低下させずに被削性
を向上させるので場合によっては添加する。しかし、そ
の効果は0.005%未満では期待できず、0.010
%超過では効果が飽和する。また、Zrも熱間圧延時に
MnSの変形を抑制してMnSの粒状化に寄与すること
によって、転動疲労寿命を低下させずに被削性の向上を
図ることができるので場合によっては添加する。しか
し、その効果は0.005%未満では期待できず、0.
10%超過ではZrO2等の非金属介在物が多く生成
し、転動疲労寿命を低下させるので上限を0.10%と
した。Ca: 0.0005 to 0.010%, Z
r: 0.005 to 0.10% Ca is generated as CaO around Al 2 O 3 , suppresses deformation of MnS during hot rolling, and contributes to granulation of MnS. Since it improves machinability without lowering the value, it is added in some cases. However, the effect cannot be expected if less than 0.005%, and 0.010%
If it exceeds%, the effect will be saturated. Zr also suppresses the deformation of MnS during hot rolling and contributes to the granulation of MnS, whereby machinability can be improved without lowering the rolling fatigue life, so Zr is added in some cases. . However, if the effect is less than 0.005%, it cannot be expected.
If it exceeds 10%, a large amount of non-metallic inclusions such as ZrO 2 is generated and the rolling fatigue life is reduced, so the upper limit was made 0.10%.
【0036】Veq:0.2以上 部品の転動疲労寿命を向上するためには、使用時の摩
擦、あるいは変形による発熱で部品が軟化しにくいよう
にすることが必要である。そこで、それぞれの元素が軟
化抵抗に及ぼす効果を把握し、 Veq=(V)+1.2(Si)−1.1(Mn)+
0.1(Ni)+0.3(Cr)+0.4(Mo)+
0.2(W) において、Veq≧2とすることにより、転動疲労寿命
の大幅な向上が達成し得ることを見いだした。Veq: 0.2 or more In order to improve the rolling fatigue life of parts, it is necessary to prevent the parts from softening due to friction during use or heat generated by deformation. Therefore, by grasping the effect of each element on the softening resistance, Veq = (V) +1.2 (Si) -1.1 (Mn) +
0.1 (Ni) +0.3 (Cr) +0.4 (Mo) +
It was found that a rolling fatigue life can be significantly improved by setting Veq ≧ 2 at 0.2 (W).
【0037】R*:0以上4.5以下 表層に適正量の残留オーステナイト(γR)を生成する
ことにより転動疲労寿命を向上し得る。そこで、それぞ
れの元素が残留オーステナイト量に及ぼす影響を明らか
にし、 R*=−(Si)+1.5(Mn)+0.5(Ni)+
1.5(Cr)+(Mo)−0.5(V)−0.2
(W) おいて、0≦R*≦4.5であり、浸炭窒化処理をして
鋼材の炭素量:C、窒素量:Nの和であるC+N量を転
動体内部に発生する最大剪断応力の発生深さをZstと
したときに深さd≦0.2Zstの位置において0.9
〜1.3%としたときに残留オーステナイト量が20〜
40体積%になるようにすることにより、転動疲労寿命
の大幅な向上が達成し得ることを見いだした。R *: 0 or more and 4.5 or less The rolling fatigue life can be improved by generating an appropriate amount of retained austenite (γR) in the surface layer. Therefore, the effect of each element on the amount of retained austenite was clarified, and R * =-(Si) +1.5 (Mn) +0.5 (Ni) +
1.5 (Cr) + (Mo) -0.5 (V) -0.2
In (W), 0 ≦ R * ≦ 4.5, and the maximum shear stress generated inside the rolling element is C + N, which is the sum of carbon content: C and nitrogen content: N of the steel material after carbonitriding. When the generation depth of Z is Zst, 0.9 at the position of depth d ≦ 0.2Zst
~ 1.3%, the amount of retained austenite is 20 ~
It was found that a rolling fatigue life can be significantly improved by setting the content to 40% by volume.
【0038】本発明によるトロイダル式無段変速機用転
動体材料は、上記した成分組成を有するものであり、以
下に、上記した転動体材料よりなる本発明によるトロイ
ダル式無段変速機用転動体の浸炭窒化処理によるCおよ
びN量、残留オーステナイト量、硬さおよび炭窒化物量
を定めた理由を各々の作用と共に順次説明するが、以下
の説明において、Zstは転動面における荷重により転
動体内部に発生する最大剪断応力の発生深さであり、C
およびN量は重量%、残留オーステナイト量は体積%、
炭窒化物量は面積%にて表わす。The rolling element material for a toroidal type continuously variable transmission according to the present invention has the above-described composition, and the rolling element material for a toroidal type continuously variable transmission according to the present invention, which is made of the rolling element material described above, will be described below. The reasons for determining the amounts of C and N, the amount of retained austenite, the hardness, and the amount of carbonitride by the carbonitriding treatment of No. 1 will be sequentially described together with their respective functions. Is the depth of maximum shear stress generated in
And N content is% by weight, residual austenite content is% by volume,
The amount of carbonitride is expressed in area%.
【0039】転動面におけるN量:重量%で0.2%以
上0.6%以下 潤滑油中の夾雑物が転動面に噛み込むと、表面に微小な
陥没が生じ、陥没周囲の応力集中部に亀裂が生成する。
この亀裂生成を阻止するためには、応力集中を緩和する
とともに、金属組織を強化する必要がある。応力集中の
緩和には延性に優れる残留オーステナイトが必要である
が、N量が0.2%未満では、その量が不十分で、か
つ、残留オーステナイトに固溶しているN量が不足して
強度不足となるため、容易に亀裂が生成するので、0.
2%以上とした。しかし、N量が0.6%を超えると、
残留オーステナイトが多すぎ、硬度が低下するため、亀
裂生成が容易となる。また、N量が0.6%を超える
と、焼き入れ時にベイナイトが生成され、所望の残留オ
ーステナイト量が得られないこともあるので、0.6%
以下とした。N content on rolling surface: 0.2% or more and 0.6% or less by weight% When foreign matter in the lubricating oil is caught in the rolling surface, a small depression occurs on the surface, and stress around the depression is generated. A crack is generated in the concentrated portion.
In order to prevent this crack formation, it is necessary to relieve stress concentration and strengthen the metal structure. Retained austenite with excellent ductility is required to relax stress concentration, but if the N content is less than 0.2%, the amount is insufficient and the amount of N dissolved in the retained austenite is insufficient. Since the strength is insufficient, cracks are easily generated.
2% or more. However, if the N content exceeds 0.6%,
Since the amount of retained austenite is too large and the hardness is lowered, crack formation is facilitated. On the other hand, if the N content exceeds 0.6%, bainite may be formed during quenching, and the desired residual austenite content may not be obtained.
Below.
【0040】深さd≦0.2Zstの位置におけるC+
N量:重量%で0.9%以上1.3%以下 この部分は、潤滑油中の夾雑物が転動面に噛み込み、転
動表面で生成したクラックが伝播しやすい。それを阻止
するためには、転動体の金属組織が十分な靭性を有する
ことが必要であるが、C+N量が0.9%未満では亀裂
の生成および伝播を阻止するのに十分な高い靭性を有す
る残留オーステナイトが得られず、炭窒化物量も少ない
ため、硬度が低下し、塑性変形による転動面の陥没を生
じるので、0.9%以上とした。しかし、C+N量が
1.3%を超えると結晶粒界に網状に炭(窒)化物が生
成し、かえって亀裂の生成および伝播を助長するので、
1.3%以下とした。C + at the position of depth d≤0.2Zst
N content: 0.9% or more and 1.3% or less in weight% In this portion, impurities in the lubricating oil are caught in the rolling surface, and cracks generated on the rolling surface easily propagate. In order to prevent this, it is necessary that the metal structure of the rolling element has sufficient toughness, but if the C + N content is less than 0.9%, a sufficiently high toughness to prevent the generation and propagation of cracks is required. Since the retained austenite contained therein is not obtained and the amount of carbonitride is small, the hardness is lowered and the rolling contact surface is depressed due to plastic deformation. However, when the amount of C + N exceeds 1.3%, carbon (nitride) nitrides are formed in the crystal grain boundary in a net shape, which rather promotes the generation and propagation of cracks.
It was set to 1.3% or less.
【0041】深さd≦0.2Zstの位置における残留
オーステナイト量:体積%で20%以上40%以下 残留オーステナイトは靭性に優れた組織であって、亀裂
先端の応力を緩和し、その伝播を阻止する作用がある。
しかし、この深さの部分においてその量が20%未満で
は、亀裂の伝播を阻止するには不十分であるので、20
%以上とした。一方、その量が40%を超えると、硬度
が低下し大きな陥没が生じるので、40%以下とした。Amount of retained austenite at the position of depth d ≦ 0.2 Zst: 20% to 40% in volume% Retained austenite is a structure having excellent toughness, and relaxes the stress at the crack tip and prevents its propagation. There is an action.
However, if the amount is less than 20% in this depth portion, it is not enough to prevent the propagation of cracks.
% And above. On the other hand, if the amount exceeds 40%, the hardness decreases and a large depression occurs, so the content was made 40% or less.
【0042】深さd≦0.2Zstの位置における硬
さ:ビッカース硬さでHV650以上 この深さの部分における硬さがHV650を下回ると繰
り返し荷重による亀裂の生成および伝播が容易となり、
塑性変形による転動面の陥没の原因となるので、HV6
50以上とした。Hardness at a position of depth d ≦ 0.2 Zst: Vickers hardness of HV 650 or more If the hardness at this depth is less than HV650, the generation and propagation of cracks due to repeated loading becomes easy,
Since it causes the rolling surface to sink due to plastic deformation, HV6
It was set to 50 or more.
【0043】深さd≦0.2Zstの位置における直径
(粒径)1.0μm以下の炭窒化物:面積率で1%以上 炭窒化物の直径(粒径)が1.0μmを超える炭窒化物
は硬度を維持するためには有効であるが、転動疲労過程
で、亀裂の伝播を抑制する効果がない。従って、直径
1.0μm以下の炭窒化物が、亀裂の伝播抑制には必要
となる。しかし、直径1.0μm以下の炭窒化物が面積
率で1%未満では、硬度が低下し、塑性変形による転動
面の陥没とそれにともなう表面亀裂の生成を誘発させる
ので、1%以上とした。Carbonitride having a diameter (particle size) of 1.0 μm or less at a depth d ≦ 0.2 Zst: 1% or more in area ratio Carbonitride having a carbonitride diameter (particle size) of more than 1.0 μm Although the material is effective for maintaining hardness, it has no effect of suppressing the propagation of cracks in the rolling fatigue process. Therefore, carbonitrides with a diameter of 1.0 μm or less are required to suppress the propagation of cracks. However, if the area ratio of carbonitrides having a diameter of 1.0 μm or less is less than 1%, the hardness is lowered, and the depression of the rolling surface due to plastic deformation and the generation of surface cracks accompanying it are induced, so 1% or more is set. .
【0044】0.5Zst≦d≦1.4Zstの位置に
おけるCおよびN量:重量%で0.6%≦C+N≦1.
2% この深さの部位は、大きな剪断応力の繰り返しを受ける
ため、内部亀裂の起点となることが多く、また、塑性変
形が生じて転動面が大きく陥没する原因ともなる。そし
て、この部位でC+N量が0.6%未満であると、マル
テンサイトの硬さが低下するとともに、炭窒化物の析出
が少なく、塑性変形が容易に生じ、転動面の大きな陥没
の原因となるので、0.6%以上とした。また、C+N
量が1.2%を超えると、炭窒化物の成長に伴い、その
周囲に不完全焼き入れ組織が形成され、そこを起点とす
る亀裂が生成するので、1.2%以下とした。Amount of C and N at the position of 0.5 Zst ≦ d ≦ 1.4 Zst: 0.6% by weight% C + N ≦ 1.
2% Since the part of this depth is repeatedly subjected to a large shear stress, it often becomes the starting point of an internal crack, and also causes plastic deformation to cause the rolling surface to largely collapse. When the amount of C + N is less than 0.6% at this portion, the hardness of martensite is reduced, the precipitation of carbonitride is small, and plastic deformation easily occurs, causing a large depression of the rolling surface. Therefore, it is set to 0.6% or more. Also, C + N
If the amount exceeds 1.2%, an incompletely hardened structure is formed around the carbonitride growth, and cracks originating from the incompletely hardened structure are generated. Therefore, the content is set to 1.2% or less.
【0045】0.5Zst≦d≦1.4Zstの位置に
おける硬さ:ビッカース硬さでHV700以上 この深さ範囲での硬さがHV700未満となると、この
部位の塑性変形に起因する転動面の陥没が大きくなり、
トロイダル式無段変速機用転動体としての変速性能を阻
害するので、硬さはHV700以上とする必要があり、
とくに、d=Zstの位置において硬さがHV760以
上であるようにすることが必要である。Hardness at a position of 0.5 Zst ≦ d ≦ 1.4 Zst: Vickers hardness of HV 700 or more When the hardness in this depth range is less than HV 700, the rolling surface of the rolling surface due to plastic deformation of this portion is The depression will be bigger,
Since it impairs the speed change performance as a rolling element for a toroidal type continuously variable transmission, the hardness must be HV 700 or more,
In particular, it is necessary that the hardness is HV760 or higher at the position of d = Zst.
【0046】[0046]
【実施例】表1および表2に発明鋼(No.1〜19)
および表3に比較鋼(No.20〜29)の化学成分を
示す。これら供試鋼を小型炉にて溶製し、熱間鍛造後焼
きならし処理を施し、試験片を加工した。試験片形状に
機械加工した後、浸炭窒化処理を行った。そのときの熱
処理条件を図2および表4に示す。そして、表4中N
o.1のH/T熱処理条件でローラーピッチング試験片
を作製した。その後、ローラーピッチング試験を表5に
示す試験条件のもとで行った。それらの試験片の材質調
査結果およびローラーピッチング試験結果を表6,表7
(発明鋼)および表8(比較鋼)に示す。EXAMPLES Inventive steels (Nos. 1 to 19) are shown in Tables 1 and 2.
And Table 3 shows the chemical composition of the comparative steels (Nos. 20 to 29). These test steels were melted in a small furnace, subjected to hot forging and normalizing treatment, and processed into test pieces. After machining into a test piece shape, carbonitriding treatment was performed. The heat treatment conditions at that time are shown in FIG. 2 and Table 4. And N in Table 4
o. A roller pitching test piece was prepared under the H / T heat treatment condition of 1. Then, a roller pitching test was performed under the test conditions shown in Table 5. Table 6 and Table 7 show the results of the material investigation and the roller pitting test results of those test pieces.
(Invention Steel) and Table 8 (Comparative Steel).
【0047】No.1〜19は本発明の規定要件をすべ
て充足する実施例であり、直径が1μm以下の微細な析
出物が均一に分散していると共に、適当量の残留オース
テナイト(γR)が生成しており、転動面の高温硬さが
大で硬さの低下が小さいことから軟化抵抗性も高く、ロ
ーラーピッチング試験回数が大であることから転動疲労
強度が高いものとなっている。No. 1 to 19 are Examples that satisfy all the requirements of the present invention, in which fine precipitates having a diameter of 1 μm or less are uniformly dispersed, and an appropriate amount of retained austenite (γR) is generated, The rolling surface has a large high temperature hardness and a small decrease in hardness, so it has a high resistance to softening, and a large number of roller pitching tests results in a high rolling fatigue strength.
【0048】これに対して、No.20〜29は、成分
組成の一部が本発明の規定要件を満たしておらず、転動
疲労強度が低く、本発明の目的を果たすものとはいえな
いものとなっている。On the other hand, no. In Nos. 20 to 29, a part of the component composition does not satisfy the specified requirements of the present invention, and the rolling fatigue strength is low, and it cannot be said that the object of the present invention is fulfilled.
【0049】すなわち、No.20鋼はV無添加のため
化合物の析出が極くわずかであり、軟化抵抗性が弱いも
のとなっており、No.21鋼はSi量が少なく、軟化
抵抗性が低いものとなっており、No.22鋼はMn量
が多すぎるために残留オーステナイト量が多く、軟化抵
抗性が低いものとなっており、No.23鋼はNi量が
多すぎるため残留オーステナイト量が多いものとなって
おり、No.24鋼はCr量が多すぎるため残留オース
テナイト量が多くものとなっており、No.25鋼はM
o量が多すぎるため残留オーステナイト量が多いものと
なっていることが認められた。That is, No. Since No. 20 steel does not contain V, precipitation of the compound is extremely small and the softening resistance is weak. No. 21 steel has a low Si content and low softening resistance. No. 22 steel has a large amount of retained austenite and a low softening resistance because the Mn content is too large. No. 23 steel has a large amount of retained austenite because the amount of Ni is too large. No. 24 steel has a large amount of retained austenite because the amount of Cr is too large. 25 steel is M
It was confirmed that the amount of retained austenite was large because the amount of o was too large.
【0050】また、No.26鋼はV量が多すぎるため
芯部のフェライトが多く、芯部硬さ不足のため疲労寿命
が短いものとなっており、No.27鋼はSi量が多す
ぎるため芯部のフェライトが多く、芯部硬さ不足のため
疲労寿命が短いものとなっており、No.28鋼はC量
が少なすぎるために芯部硬さが不足して疲労寿命が短い
ものとなっており、No.29鋼は規格鋼であるSCM
420であるが、化合物の析出が少なく軟化抵抗性が低
い等のため疲労寿命が短いものとなっていることが認め
られた。No. No. 26 steel has a large amount of ferrite in the core due to excessive V content, and has a short fatigue life due to insufficient hardness of the core. No. 27 steel has a large amount of ferrite in the core portion because the Si content is too large, and has a short fatigue life due to insufficient hardness of the core portion. No. 28 steel has a short fatigue life because the hardness of the core is insufficient because the C content is too small. 29 steel is standard steel SCM
Although it was 420, it was confirmed that the fatigue life was short because of less precipitation of the compound and low softening resistance.
【0051】そして.No.22〜24鋼はR*値が大
きすぎるものであり、残留オーステナイト量を高める添
加元素であるMn,Ni,Crの添加量が過大なものと
なっているため、残留オーステナイトが多すぎるものと
なっており、また、No.21〜23鋼はVeq値が小
さすぎるものであり、軟化抵抗向上作用の大きいSiの
添加量が少ないため、軟化抵抗性が低いものとなってい
ることが認められた。And. No. The 22 to 24 steels have an excessively large R * value, and the additive amounts of Mn, Ni, and Cr, which are additional elements for increasing the amount of retained austenite, are excessive, so that the retained austenite is too large. No. It was confirmed that the Nos. 21 to 23 steels have Veq values that are too small, and the addition amount of Si, which has a large effect of improving the softening resistance, is small, so that the softening resistance is low.
【0052】[0052]
【表1】 [Table 1]
【0053】[0053]
【表2】 [Table 2]
【0054】[0054]
【表3】 [Table 3]
【0055】[0055]
【表4】 [Table 4]
【0056】[0056]
【表5】 [Table 5]
【0057】[0057]
【表6】 [Table 6]
【0058】[0058]
【表7】 [Table 7]
【0059】[0059]
【表8】 [Table 8]
【0060】次に、材質調査およびローラーピッチング
試験結果で本発明の目的を満足することが確かめられた
鋼No.1〜19の中から4つを選び、図1に示したト
ロイダル式無段変速機1に適用した場合について述べ
る。Next, steel No. which was confirmed to satisfy the object of the present invention by the results of the material examination and the roller pitting test results. A case in which four of 1 to 19 are selected and applied to the toroidal type continuously variable transmission 1 shown in FIG. 1 will be described.
【0061】すでに説明したように、図1に示すトロイ
ダル式無段変速機1は、金属製転動体である入力ディス
ク5、出力ディスク9およびパワーローラー10を1組
とし、動力伝達能力により1組ないしは複数組(本実施
例の場合は2組)から構成されている。As described above, the toroidal type continuously variable transmission 1 shown in FIG. 1 has the input disc 5, the output disc 9 and the power roller 10 which are metallic rolling elements as one set, and one set according to the power transmission capability. Or, it is composed of a plurality of sets (two sets in the case of the present embodiment).
【0062】これらの金属製転動体である入力ディスク
5,出力ディスク9およびパワーローラー10におい
て、この実施例では、表1および表2に示した本発明鋼
材のうち、No.1,3,6,8を選択し、それらの鋼
材を部品形状に機械加工を行った後、表4(H/T 2
〜H/T 6)の中から浸炭窒化条件を適宜選択して熱
処理を行い、研磨加工を行って、入出力ディスク5,9
およびパワーローラー10の作製を行った。In the present embodiment, among these steel rolling elements, the input disc 5, the output disc 9, and the power roller 10, among the steel materials of the present invention shown in Tables 1 and 2, No. After selecting 1, 3, 6 and 8 and machining those steel materials to the shape of parts,
~ H / T 6) carbonitriding conditions are appropriately selected, heat treatment is performed, polishing is performed, and the input / output disks 5, 9
And the power roller 10 was produced.
【0063】次いで、ディスク5,9およびパワーロー
ラー10の表面および特定深さの位置におけるビッカー
ス硬さ、C量、N量、残留オーステナイト(γR)量、
直径1.0μm以下の炭窒化物の析出量を測定したとこ
ろ、表9〜表13に示す結果であった。なお、表9〜表
13中のZstは、Hertz接触(面接触)により転
動体内部に発生する最大剪断応力の発生深さ(mm)を
示すものである。Next, the Vickers hardness, the amount of C, the amount of N, the amount of retained austenite (γR) on the surfaces of the disks 5 and 9 and the power roller 10 and at the position of a specific depth,
When the precipitation amount of carbonitrides having a diameter of 1.0 μm or less was measured, the results are shown in Tables 9 to 13. Zst in Tables 9 to 13 indicates the depth (mm) of maximum shear stress generated inside the rolling element due to Hertz contact (surface contact).
【0064】次に、各入力ディスク5,出力ディスク9
およびパワーローラー10に対し、表14に示す条件下
で耐久試験を実施した。この結果を同じく表9〜表13
に示す。Next, each input disk 5 and output disk 9
The durability test was performed on the power roller 10 and the conditions shown in Table 14. The results are also shown in Tables 9 to 13.
Shown in
【0065】[0065]
【表9】 [Table 9]
【0066】[0066]
【表10】 [Table 10]
【0067】[0067]
【表11】 [Table 11]
【0068】[0068]
【表12】 [Table 12]
【0069】[0069]
【表13】 [Table 13]
【0070】[0070]
【表14】 [Table 14]
【0071】表9ないし表13に示すように、本発明実
施例1〜10によれば、比較例1〜4のものと比べて剥
離寿命回数が多く、転動疲労特性に優れたものとなって
いると共に、剥離形態がすべて内部となっていて、表面
起点の剥離がなく、かつまた転動面の陥没などの変形も
生じないものとなっていることが確かめられた。As shown in Tables 9 to 13, according to Examples 1 to 10 of the present invention, the number of peeling lives was greater than that of Comparative Examples 1 to 4 and the rolling fatigue characteristics were excellent. In addition, it was confirmed that the peeling morphology was all inside, and that there was no peeling at the surface origin and no deformation such as depression of the rolling surface.
【0072】このように、本発明実施例において確認さ
れたところからもわかるように、 (1)転動体材料の構成成分が本発明で規定する範囲に
ある場合、硬化層でV,Cr,Mo等の炭窒化物を適量
析出したものとすることにより、硬さを増大すると共に
高温での硬さ低下が小さく軟化抵抗性を向上するため、
転動疲労寿命を向上する。As described above, as can be seen from the results confirmed in the examples of the present invention, (1) when the constituent components of the rolling element material are within the ranges specified in the present invention, V, Cr, and Mo in the hardened layer are obtained. By increasing the amount of carbonitrides such as, for example, to increase the hardness and decrease the hardness at high temperature to improve the softening resistance,
Improves rolling fatigue life.
【0073】(2)表面におけるN量が0.2〜0.6
%で、かつ、深さd≦0.2Zstの位置におけるC+
N量が0.9〜1.3%、残留オーステナイト量が20
〜40%の範囲であると、Nの固溶により、微小陥没部
の応力集中を緩和する残留オーステナイトを強化し、表
面からの亀裂の生成を抑制するため、耐ピッチング性を
向上する。(2) The amount of N on the surface is 0.2 to 0.6.
% And C + at the position of depth d ≦ 0.2Zst
N content is 0.9-1.3%, residual austenite content is 20
When it is in the range of up to 40%, the solid solution of N strengthens the retained austenite that relaxes the stress concentration in the minute depressions and suppresses the generation of cracks from the surface, thus improving the pitting resistance.
【0074】(3)深さd≦0.2Zstの位置におけ
る直径が1.0μm以下の炭窒化物が面積率で1%以上
で、かつ、硬さがHV650以上であると、繰り返し荷
重による表面からの亀裂の生成および伝播を抑制するた
め、耐ピッチング性を向上する。(3) If the area ratio of carbonitrides having a diameter of 1.0 μm or less at a depth d ≦ 0.2 Zst is 1% or more and the hardness is HV650 or more, the surface is subjected to repeated loading. Since the generation and propagation of cracks from the ground are suppressed, the pitting resistance is improved.
【0075】(4)深さ0.5Zst≦d≦1.4Zs
tの位置においてC+N量が0.6%≦C+N≦1.2
%でかつ、硬さがHV700以上、深さd=Zstの位
置において硬さがHV760以上であると、マルテンサ
イト+炭窒化物の析出により、内部の塑性変形による転
動面陥没を抑制し、最大剪断応力の発生深さZst近傍
での剪断応力の繰り返しによる亀裂の発生および伝播を
抑制するため、面疲労強度を向上する。(4) Depth 0.5 Zst ≦ d ≦ 1.4 Zs
At the position of t, the C + N amount is 0.6% ≦ C + N ≦ 1.2.
% And the hardness is HV700 or more and the hardness is HV760 or more at the position of the depth d = Zst, the rolling surface depression due to the plastic deformation inside is suppressed by the precipitation of martensite + carbonitride, Since the generation and propagation of cracks due to repeated shear stress near the maximum shear stress generation depth Zst are suppressed, the surface fatigue strength is improved.
【0076】など、それぞれ必要とする特性を兼ね備え
ていることから、転動疲労特性が改善され、耐久寿命が
向上した転動体となる。Since the rolling elements have the required characteristics, the rolling contact fatigue characteristics are improved, and the rolling element has a longer durable life.
【0077】さらに、実施例1〜4のように、浸炭拡散
時に少量のNH3ガスを流すような熱処理法(表4に示
したH/T No.2)であると、Nが深くまで拡散し
ていくため、より高い転動疲労強度を得ることが出来
る。Further, in the heat treatment method (H / T No. 2 shown in Table 4) in which a small amount of NH 3 gas is caused to flow during carburizing diffusion as in Examples 1 to 4, N is diffused deeply. As a result, higher rolling contact fatigue strength can be obtained.
【0078】さらにまた、実施例1,4,5,7,10
のように、深さd=Zstの位置に置けるC+N量が
0.85〜0.91%であると、その位置でほぼ最高硬
さがHV800以上となり、より高い転動疲労強度を得
ることが出来る。Furthermore, Examples 1, 4, 5, 7, 10
As described above, when the C + N amount at the position where the depth d = Zst is 0.85 to 0.91%, almost the maximum hardness becomes HV800 or higher at that position, and higher rolling fatigue strength can be obtained. I can.
【0079】これに対して、比較例1,4で示すよう
に、表面のN量が0.6%より多く、かつ、深さd≦
0.2Zstの位置おけるC+N量が1.3%より多
く、残留オーステナイト量が40%より多く、硬さがH
V650未満のものは、表層の強度不足のため、表面起
点の剥離および陥没を生じ、寿命も短くなってしまう。On the other hand, as shown in Comparative Examples 1 and 4, the amount of N on the surface is more than 0.6% and the depth d ≦.
The amount of C + N at the position of 0.2 Zst is more than 1.3%, the amount of retained austenite is more than 40%, and the hardness is H.
If the V is less than V650, the strength of the surface layer is insufficient, resulting in peeling and depression at the surface starting point, resulting in a shorter life.
【0080】さらに、比較例2,3のように、深さ0.
5Zst≦d≦1.4Zstの範囲での硬さがHV70
0以下であると、硬さ不足による臨界剪断強度不足のた
め、Zst近傍で塑性変形を起こし、転動面が陥没し、
短寿命で内部起点の剥離を生じてしまう。Further, as in Comparative Examples 2 and 3, the depth 0.
Hardness in the range of 5Zst ≦ d ≦ 1.4Zst is HV70.
When it is 0 or less, the critical shear strength is insufficient due to insufficient hardness, so plastic deformation occurs near Zst, and the rolling surface is depressed,
Peeling from the internal origin occurs with a short life.
【0081】さらに、比較例3のように、表面のN量が
2.0%未満で、かつ、深さd≦0.2Zstの位置
で、C+N量が0.8%未満、残留オーステナイト量が
20%未満、析出物が面積率が1%未満であると、表層
で、圧痕などによる応力集中を緩和する効果が少なくな
るため、表面起点の剥離を生じやすくなり、著しく短寿
命になる。Further, as in Comparative Example 3, when the N content on the surface is less than 2.0% and the depth d ≦ 0.2Zst, the C + N content is less than 0.8% and the residual austenite content is If it is less than 20% and the area ratio of the precipitate is less than 1%, the effect of alleviating the stress concentration due to the indentation or the like on the surface layer is lessened, so that peeling from the surface starting point is likely to occur and the life is remarkably shortened.
【0082】さらに、比較例4のように、深さ0.5Z
st≦d≦1.4Zstの範囲で、C+N量が1.2%
より多いと、残留オーステナイトを生成し、硬さが低下
してしまうため、深さZstでHV750未満となり、
Zst近傍で塑性変形を生じ、転動面が陥没してしま
う。Further, as in Comparative Example 4, the depth is 0.5Z.
C + N amount is 1.2% in the range of st ≦ d ≦ 1.4Zst
If it is more than that, residual austenite is generated and the hardness is lowered, so that the depth becomes less than HV750 at Zst,
Plastic deformation occurs near Zst, and the rolling surface is depressed.
【0083】以上のことから、本発明によると、面疲労
強度に優れ、かつ転動面の陥没を抑制しうる転動体とな
る。From the above, according to the present invention, a rolling element having excellent surface fatigue strength and capable of suppressing depression of the rolling surface can be obtained.
【0084】[0084]
【発明の効果】以上説明してきたように、本発明によれ
ば、潤滑油を介して接触する複数個の金属製転動体を用
いたトロイダル式無段変速機用転動体材料において、重
量%で、C:0.1〜0.6%、Si:0.05〜1.
5%、Mn:0.2〜2.0%、V:0.03〜1.0
%、P:0.02%以下、Al:0.005〜0.10
%、Ti:0.005%以下、N:0.004〜0.0
3%、O:0.002%以下、場合によってはさらに他
の成分として、Ni:0.20〜5.0%,Cr:0.
20〜5.0%,Mo:0.05〜1.0%,W:0.
03〜2.0%,Nb:0.01〜0.10%よりなる
群から選択される1種または2種以上の元素を含有し、
同じく場合によっては他の成分として、S:0.03超
〜0.10%,Pb:0.01〜0.30%,Te:
0.005〜0.10%,Se:0.005〜0.10
%,Ca:0.0005〜0.010%,Zr:0.0
05〜0.10%よりなる群から選択される1種または
2種以上の元素を含有し、残部がFeおよび不可避的不
純物からなり、 Veq=(V)+1.2(Si)−1.1(Mn)+
0.1(Ni)+0.3(Cr)+0.4(Mo)+
0.2(W) において、Veq≧0.2であり、かつ、 R*=−(Si)+1.5(Mn)+0.5(Ni)+
1.5(Cr)+(Mo)−0.5(V)−0.2
(W) において、0≦R*≦4.5であり、浸炭窒化処理をし
て鋼材の炭素量:C、窒素量:Nの和であるC+N量を
深さd≦0.2Zstの位置において0.9〜1.3%
としたときに残留オーステナイト量が20〜40体積%
になる構成としたから、転動疲労強度に優れたトロイダ
ル式無段変速機用転動体材料を提供することが可能であ
るという著しく優れた効果がもたらされる。As described above, according to the present invention, a rolling element material for a toroidal type continuously variable transmission using a plurality of metallic rolling elements that come into contact with each other through lubricating oil is used in% by weight. , C: 0.1 to 0.6%, Si: 0.05 to 1.
5%, Mn: 0.2 to 2.0%, V: 0.03 to 1.0
%, P: 0.02% or less, Al: 0.005-0.10
%, Ti: 0.005% or less, N: 0.004 to 0.0
3%, O: 0.002% or less, and in some cases, Ni: 0.20 to 5.0%, Cr: 0.
20-5.0%, Mo: 0.05-1.0%, W: 0.
03-2.0%, Nb: containing one or more elements selected from the group consisting of 0.01-0.10%,
Similarly, as other components, S: more than 0.03 to 0.10%, Pb: 0.01 to 0.30%, Te:
0.005-0.10%, Se: 0.005-0.10
%, Ca: 0.0005 to 0.010%, Zr: 0.0
Veq = (V) +1.2 (Si) -1.1 containing one or more elements selected from the group consisting of 05 to 0.10% and the balance Fe and unavoidable impurities. (Mn) +
0.1 (Ni) +0.3 (Cr) +0.4 (Mo) +
At 0.2 (W), Veq ≧ 0.2, and R * = − (Si) +1.5 (Mn) +0.5 (Ni) +
1.5 (Cr) + (Mo) -0.5 (V) -0.2
In (W), 0 ≦ R * ≦ 4.5, carbonitriding is performed, and the C + N amount, which is the sum of the carbon amount: C and the nitrogen amount: N, of the steel material at the depth d ≦ 0.2 Zst. 0.9-1.3%
And the amount of retained austenite is 20 to 40% by volume.
With such a configuration, it is possible to provide a rolling element material for a toroidal type continuously variable transmission that is excellent in rolling fatigue strength, which is a remarkably excellent effect.
【0085】また、本発明によるトロイダル式無段変速
機用転動体は、上記したトロイダル式無段変速機用転動
体材料を用い、浸炭窒化処理により、転動面におけるN
量が重量%で0.2%以上0.6%以下、面接触により
転動体内部に発生する最大剪断応力の発生深さをZst
としたときに深さd≦0.2Zstの位置においてC+
N量が重量%で0.9%以上1.3%以下、残留オース
テナイト量が体積%で20%以上40%以下、硬さがH
V650以上、直径1.0μm以下の炭窒化物が面積率
で1%以上であり、かつ、深さ0.5Zst≦d≦1.
4Zstの位置においてCおよびN量が重量%で0.6
%≦C+N≦1.2%、硬さがHV700以上、深さd
=Zstの位置における硬さがHV760以上である構
成としたから、転動体における硬化層の硬さが大きなも
のになると共に高温での硬さ低下が少なく軟化抵抗性が
向上し、また、耐ピッチング性もを向上し、かつまた陥
没を抑制するため、転動疲労寿命が更に向上したものと
なり、転動面陥没による変速性能の悪化を改善すること
が可能であって、内部および表面起点の亀裂および剥離
が発生しがたい長寿命のトロイダル式無段変速機用転動
体を提供することが可能であるという著しく優れた効果
がもたらされる。Further, the rolling element for a toroidal type continuously variable transmission according to the present invention uses the above-mentioned rolling element material for a toroidal type continuously variable transmission and is carbonitrided to obtain an N value on the rolling surface.
If the amount is 0.2% or more and 0.6% or less by weight, the depth of maximum shear stress generated inside the rolling element due to surface contact is Zst.
And C + at the position of depth d ≦ 0.2Zst
The amount of N is 0.9% to 1.3% by weight, the amount of retained austenite is 20% to 40% by volume, and the hardness is H.
V650 or more and a carbonitride having a diameter of 1.0 μm or less has an area ratio of 1% or more and a depth of 0.5 Zst ≦ d ≦ 1.
At 4Zst, the C and N contents are 0.6% by weight.
% ≦ C + N ≦ 1.2%, hardness HV 700 or more, depth d
Since the hardness at the position of = Zst is HV760 or more, the hardness of the hardened layer in the rolling element is large, the hardness at high temperature is less decreased, the softening resistance is improved, and the pitting resistance is improved. It is also possible to improve the rolling contact fatigue life and further improve the deterioration of the gear shifting performance due to the depression of the rolling contact surface. And, it is possible to provide a rolling element for a toroidal type continuously variable transmission that is resistant to peeling and has a long life.
【図1】トロイダル式(転がり式)無段変速機の構造を
例示する断面説明図である。FIG. 1 is an explanatory cross-sectional view illustrating the structure of a toroidal (rolling) continuously variable transmission.
【図2】本発明の実施例において採用した熱処理条件を
示す説明図である。FIG. 2 is an explanatory diagram showing heat treatment conditions adopted in the examples of the present invention.
1 トロイダル式(転がり式)無段変速機 5 入力ディスク(転動体) 9 出力ディスク(転動体) 10 パワーローラー(転動体) 1 Toroidal type (rolling type) continuously variable transmission 5 Input disc (rolling element) 9 Output disc (rolling element) 10 Power roller (rolling element)
フロントページの続き (72)発明者 安 部 聡 兵庫県神戸市灘区灘浜東町2 株式会社神 戸製鋼所神戸製鉄所内 (72)発明者 内 山 典 子 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 木 野 伸 郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 松 本 隆 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 梅 垣 俊 造 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Front page continued (72) Inventor Satoshi Abe 2 Nadahamahigashi-cho, Nada-ku, Kobe-shi, Hyogo Inside the Kido Steel Works, Ltd. Kobe Steel Works (72) Noriko Uchiyama 2 Takara-cho, Kanagawa-ku, Yokohama, Japan Nissan Motor Co., Ltd. Incorporated (72) Inventor Shinro Kino 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Takashi Matsumoto 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72 ) Inventor Shun Umegaki 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.
Claims (4)
i:0.05〜1.5%、Mn:0.2〜2.0%、
V:0.03〜1.0%、P:0.02%以下、Al:
0.005〜0.10%、Ti:0.005%以下、
N:0.004〜0.03%、O:0.002%以下、
残部がFeおよび不可避的不純物からなり、 Veq=(V)+1.2(Si)−1.1(Mn)+
0.1(Ni)+0.3(Cr)+0.4(Mo)+
0.2(W) において、Veq≧0.2であり、かつ、 R*=−(Si)+1.5(Mn)+0.5(Ni)+
1.5(Cr)+(Mo)−0.5(V)−0.2
(W) において、0≦R*≦4.5であり、浸炭窒化処理をし
て鋼材の炭素量:C、窒素量:Nの和であるC+N量を
転動体内部に発生する最大剪断応力の発生深さをZst
としたときに深さd≦0.2Zstの位置において0.
9〜1.3%としたときに残留オーステナイト量が20
〜40体積%になることを特徴とする転動疲労強度に優
れたトロイダル式無段変速機用転動体材料。1. C: 0.1-0.6%, S by weight%
i: 0.05 to 1.5%, Mn: 0.2 to 2.0%,
V: 0.03 to 1.0%, P: 0.02% or less, Al:
0.005-0.10%, Ti: 0.005% or less,
N: 0.004 to 0.03%, O: 0.002% or less,
The balance consists of Fe and inevitable impurities, and Veq = (V) +1.2 (Si) -1.1 (Mn) +
0.1 (Ni) +0.3 (Cr) +0.4 (Mo) +
At 0.2 (W), Veq ≧ 0.2, and R * = − (Si) +1.5 (Mn) +0.5 (Ni) +
1.5 (Cr) + (Mo) -0.5 (V) -0.2
In (W), 0 ≦ R * ≦ 4.5, carbonitriding is performed, and the amount of C + N, which is the sum of carbon amount: C and nitrogen amount: N, of the steel material is calculated as the maximum shear stress generated in the rolling element. Generation depth is Zst
At the position of depth d ≦ 0.2Zst.
The residual austenite amount is 20 when 9 to 1.3% is set.
A rolling element material for a toroidal type continuously variable transmission having excellent rolling contact fatigue strength, characterized in that the content is up to 40% by volume.
〜5.0%,Cr:0.20〜5.0%,Mo:0.0
5〜1.0%,W:0.03〜2.0%,Nb:0.0
1〜0.10%よりなる群から選択される1種または2
種以上の元素を含有し、残部がFeおよび不可避的不純
物からなり、 Veq=(V)+1.2(Si)−1.1(Mn)+
0.1(Ni)+0.3(Cr)+0.4(Mo)+
0.2(W) において、Veq≧0.2であり、かつ、 R*=−(Si)+1.5(Mn)+0.5(Ni)+
1.5(Cr)+(Mo)−0.5(V)−0.2
(W) において、0≦R*≦4.5であり、浸炭窒化処理をし
て鋼材の炭素量:C、窒素量:Nの和であるC+N量を
深さd≦0.2Zstの位置において0.9〜1.3%
としたときに残留オーステナイト量が20〜40体積%
になることを特徴とする請求項1に記載の転動疲労強度
に優れたトロイダル式無段変速機用転動体材料。2. As another component, Ni: 0.20
~ 5.0%, Cr: 0.20 to 5.0%, Mo: 0.0
5 to 1.0%, W: 0.03 to 2.0%, Nb: 0.0
1 or 2 selected from the group consisting of 1 to 0.10%
Veq = (V) +1.2 (Si) -1.1 (Mn) +, containing at least one element and the balance being Fe and unavoidable impurities.
0.1 (Ni) +0.3 (Cr) +0.4 (Mo) +
At 0.2 (W), Veq ≧ 0.2, and R * = − (Si) +1.5 (Mn) +0.5 (Ni) +
1.5 (Cr) + (Mo) -0.5 (V) -0.2
In (W), 0 ≦ R * ≦ 4.5, carbonitriding is performed, and the C + N amount, which is the sum of the carbon amount: C and the nitrogen amount: N, of the steel material at the depth d ≦ 0.2 Zst. 0.9-1.3%
And the amount of retained austenite is 20 to 40% by volume.
The rolling element material for a toroidal type continuously variable transmission according to claim 1, which is excellent in rolling fatigue strength.
〜0.10%,Pb:0.01〜0.30%,Te:
0.005〜0.10%,Se:0.005〜0.10
%,Ca:0.0005〜0.010%,Zr:0.0
05〜0.10%よりなる群から選択される1種または
2種以上の元素を含有し、残部がFeおよび不可避的不
純物からなり、 Veq=(V)+1.2(Si)−1.1(Mn)+
0.1(Ni)+0.3(Cr)+0.4(Mo)+
0.2(W) において、Veq≧0.2であり、かつ、 R*=−(Si)+1.5(Mn)+0.5(Ni)+
1.5(Cr)+(Mo)−0.5(V)−0.2
(W) において、0≦R*≦4.5であり、浸炭窒化処理をし
て鋼材の炭素量:C、窒素量:Nの和であるC+N量を
深さd≦0.2Zstの位置において0.9〜1.3%
としたときに残留オーステナイト量が20〜40体積%
になることを特徴とする請求項1または2に記載の転動
疲労強度に優れたトロイダル式無段変速機用転動体材
料。3. As other components, S: more than 0.03 to 0.10%, Pb: 0.01 to 0.30%, Te:
0.005-0.10%, Se: 0.005-0.10
%, Ca: 0.0005 to 0.010%, Zr: 0.0
Veq = (V) +1.2 (Si) -1.1 containing one or more elements selected from the group consisting of 05 to 0.10% and the balance Fe and unavoidable impurities. (Mn) +
0.1 (Ni) +0.3 (Cr) +0.4 (Mo) +
At 0.2 (W), Veq ≧ 0.2, and R * = − (Si) +1.5 (Mn) +0.5 (Ni) +
1.5 (Cr) + (Mo) -0.5 (V) -0.2
In (W), 0 ≦ R * ≦ 4.5, carbonitriding is performed, and the C + N amount, which is the sum of the carbon amount: C and the nitrogen amount: N, of the steel material at the depth d ≦ 0.2 Zst. 0.9-1.3%
And the amount of retained austenite is 20 to 40% by volume.
The rolling element material for a toroidal type continuously variable transmission having excellent rolling contact fatigue strength according to claim 1 or 2.
転動体を用いたトロイダル式無段変速機において、前記
転動体の素材として請求項1または2項または3項のト
ロイダル式無段変速機用転動体材料を用い、浸炭窒化処
理により、転動面におけるN量が重量%で0.2%以上
0.6%以下、面接触により転動体内部に発生する最大
剪断応力の発生深さをZstとしたときに深さd≦0.
2Zstの位置においてC+N量が重量%で0.9%以
上1.3%以下、残留オーステナイト量が体積%で20
%以上40%以下、硬さがHV650以上、直径1.0
μm以下の炭窒化物が面積率で1%以上であり、かつ、
深さ0.5Zst≦d≦1.4Zstの位置においてC
およびN量が重量%で0.6%≦C+N≦1.2%、硬
さがHV700以上、深さd=Zstの位置における硬
さがHV760以上であることを特徴とするトロイダル
式無段変速機用転動体。4. A toroidal type continuously variable transmission using a plurality of metal rolling elements that come into contact with each other through lubricating oil, wherein the toroidal type continuously variable transmission according to claim 1, 2 or 3 is used as a material for the rolling elements. The content of N on the rolling surface is 0.2% or more and 0.6% or less by weight by carbonitriding using the rolling element material for transmission, and the maximum depth of shear stress generated inside the rolling element due to surface contact. When the depth is Zst, the depth d ≦ 0.
At the 2Zst position, the C + N amount is 0.9% or more and 1.3% or less by weight% and the retained austenite amount is 20% by volume.
% Or more and 40% or less, hardness HV650 or more, diameter 1.0
The area ratio of carbonitrides of μm or less is 1% or more, and
C at a depth of 0.5 Zst ≦ d ≦ 1.4 Zst
And N content is 0.6% ≦ C + N ≦ 1.2% by weight, hardness is HV700 or more, and hardness at a position of depth d = Zst is HV760 or more, toroidal type continuously variable transmission. Rolling element for machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23571595A JPH0979338A (en) | 1995-09-13 | 1995-09-13 | Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23571595A JPH0979338A (en) | 1995-09-13 | 1995-09-13 | Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0979338A true JPH0979338A (en) | 1997-03-25 |
Family
ID=16990161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23571595A Pending JPH0979338A (en) | 1995-09-13 | 1995-09-13 | Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0979338A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000212721A (en) * | 1998-11-19 | 2000-08-02 | Nsk Ltd | Rolling member excellent in wear resistance |
NL1012391C2 (en) * | 1999-06-18 | 2000-12-22 | Skf Eng & Res Centre Bv | CVT / IVT part. |
US6165100A (en) * | 1997-11-10 | 2000-12-26 | Nsk Ltd. | High-cleanness steel and toroidal type continuously variable transmission including components such as input/output discs, power roller and cam disc using the high-cleanness steel |
JP2001323939A (en) * | 2000-05-18 | 2001-11-22 | Nsk Ltd | Rolling bearing |
JP2003130163A (en) * | 2001-10-19 | 2003-05-08 | Nsk Ltd | Toroidal infinite variable-speed machine |
EP1348775A4 (en) * | 2000-12-27 | 2003-10-01 | Nsk Ltd | Toroidal continuously variable transmission |
JP2005068453A (en) * | 2003-08-28 | 2005-03-17 | Nissan Motor Co Ltd | High facial pressure resistant part and manufacturing method therefor |
DE10045039B4 (en) * | 1999-09-14 | 2006-08-24 | Nsk Ltd. | Continuously variable toroidal transmission |
JP2006283848A (en) * | 2005-03-31 | 2006-10-19 | Nsk Ltd | Toroidal type continuously variable transmission |
JP2013221207A (en) * | 2012-04-19 | 2013-10-28 | Nsk Ltd | Rolling shaft |
EP3176278A4 (en) * | 2014-07-29 | 2017-12-27 | Nippon Steel & Sumitomo Metal Corporation | Carbonitrided bearing member |
-
1995
- 1995-09-13 JP JP23571595A patent/JPH0979338A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6165100A (en) * | 1997-11-10 | 2000-12-26 | Nsk Ltd. | High-cleanness steel and toroidal type continuously variable transmission including components such as input/output discs, power roller and cam disc using the high-cleanness steel |
JP2000212721A (en) * | 1998-11-19 | 2000-08-02 | Nsk Ltd | Rolling member excellent in wear resistance |
NL1012391C2 (en) * | 1999-06-18 | 2000-12-22 | Skf Eng & Res Centre Bv | CVT / IVT part. |
WO2000079151A1 (en) * | 1999-06-18 | 2000-12-28 | Skf Engineering & Research Centre B.V. | Cvt/ivt component |
DE10045039B4 (en) * | 1999-09-14 | 2006-08-24 | Nsk Ltd. | Continuously variable toroidal transmission |
JP2001323939A (en) * | 2000-05-18 | 2001-11-22 | Nsk Ltd | Rolling bearing |
EP1348775A4 (en) * | 2000-12-27 | 2003-10-01 | Nsk Ltd | Toroidal continuously variable transmission |
EP1348775A1 (en) * | 2000-12-27 | 2003-10-01 | Nsk Ltd., | Toroidal continuously variable transmission |
US6666792B2 (en) | 2000-12-27 | 2003-12-23 | Nsk Ltd. | Toroidal continuously variable transmission |
JP2003130163A (en) * | 2001-10-19 | 2003-05-08 | Nsk Ltd | Toroidal infinite variable-speed machine |
JP2005068453A (en) * | 2003-08-28 | 2005-03-17 | Nissan Motor Co Ltd | High facial pressure resistant part and manufacturing method therefor |
JP2006283848A (en) * | 2005-03-31 | 2006-10-19 | Nsk Ltd | Toroidal type continuously variable transmission |
JP2013221207A (en) * | 2012-04-19 | 2013-10-28 | Nsk Ltd | Rolling shaft |
EP3176278A4 (en) * | 2014-07-29 | 2017-12-27 | Nippon Steel & Sumitomo Metal Corporation | Carbonitrided bearing member |
EP3176276A4 (en) * | 2014-07-29 | 2018-04-04 | Nippon Steel & Sumitomo Metal Corporation | Steel for carbonitrided bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100216877B1 (en) | Rolling bearing | |
CN102282282B (en) | Steel for surface hardening for machine structural use, and component for machine structural use | |
US4930909A (en) | Rolling bearing | |
EP0458646A1 (en) | Bearing steel | |
US3912551A (en) | Pin for a steel chain | |
JPH084774A (en) | Rolling bearing | |
JPH0826446B2 (en) | Rolling bearing | |
JP2885829B2 (en) | Rolling bearing | |
JPH11101247A (en) | Rolling bearing part | |
JPH0979338A (en) | Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling body | |
JP2001073072A (en) | Carbo-nitrided parts excellent in pitching resistance | |
JP3410947B2 (en) | Rolling element of continuously variable transmission and method of manufacturing the same | |
JPH0349978B2 (en) | ||
JP2883460B2 (en) | Bearing steel | |
KR940002139B1 (en) | Carburized boron steels for gears | |
JP4000616B2 (en) | Gear having excellent pitting resistance and method for producing the same | |
JP2001303173A (en) | Steel for carburizing and carbo-nitriding | |
JP2002194484A (en) | Steel for machine structure | |
JP3273634B2 (en) | Steel material for carburizing and machine structural parts for machine structural parts excellent in pitting resistance and method for producing the same | |
JP3510506B2 (en) | Carburizing and carburizing steel | |
JPH09296250A (en) | Steel for gear excellent in face fatigue strength | |
JP4874199B2 (en) | Gear parts with excellent compatibility | |
JP2008121075A (en) | Gear part excellent in fitness | |
JPH0488148A (en) | High strength gear steel capable of rapid carburization and high strength gear | |
JPH0428845A (en) | Steel for rolling bearing |