[go: up one dir, main page]

JPH0978117A - Operation of converter - Google Patents

Operation of converter

Info

Publication number
JPH0978117A
JPH0978117A JP23012595A JP23012595A JPH0978117A JP H0978117 A JPH0978117 A JP H0978117A JP 23012595 A JP23012595 A JP 23012595A JP 23012595 A JP23012595 A JP 23012595A JP H0978117 A JPH0978117 A JP H0978117A
Authority
JP
Japan
Prior art keywords
refractory
furnace
heat load
converter
local heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23012595A
Other languages
Japanese (ja)
Inventor
Nozomi Tamura
望 田村
Hajime Suzuki
一 鈴木
Takashi Kuroki
隆 黒木
Atsushi Kiritani
厚志 桐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23012595A priority Critical patent/JPH0978117A/en
Publication of JPH0978117A publication Critical patent/JPH0978117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the erosion of a refractory lined in a converter by estimating heat load applied on the refractory during operation from a temp. measurement to a furnace outer iron shell and a remaining thickness of the refractory to use the setting of a good operational condition at the next time. SOLUTION: A thermometer 5 is set to an arbitrary position in the iron shell 3 surrounding the outer periphery of the converter 1 and the thickness Li (m) of the refractory 4 in the furnace near the temp. measuring part of the iron shell 3 is measured immediately after tapping molten steel. The local heat load Qi (kcal/m<2> .hr. deg.C) applied to each position during operation is measured based on this thickness Li and the iron shell temp. Ti ( deg.C) with the thermometer 5 and the operational condition in the following time is set so that the local heat load Qi in each position uniformizes. Further, the local heat load Qi is calculated with the equation Qi=K/Li×(Ti2-Ti1). Wherein, Ti2 is the surface temp. of the refractory in the furnace ( deg.C) and K is the thermal conductivity of the refractory (kcal/m.hr. deg.C). By this method, the erosion speed of the lining refractory 4 is made to slow and the erosion in the whole periphery of the furnace is uniformly progressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転炉の操業方法に
関し、詳しくは転炉内張耐火物の溶損を抑制するため、
操業中に該耐火物にかかる熱負荷を炉外周鉄皮の測温と
耐火物残存厚みとから推定して次回の操業条件の設定に
役立てる転炉操業方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a converter, and more specifically, for suppressing melting loss of a refractory lined in a converter,
The present invention relates to a converter operating method for estimating the heat load applied to the refractory during operation from the temperature measurement of the furnace outer shell and the remaining thickness of the refractory, which is useful for setting the next operating condition.

【0002】[0002]

【従来の技術】転炉の炉体寿命は製鋼コストに大きな影
響を与えるため、従来より炉体寿命の延長に関する開発
研究は多い。そのためか、最近では炉容積の拡大や操業
条件の苛酷化があるにもかかわらず、同一炉代で10、
000チャージ以上を達成する転炉も出現している。こ
れは、耐火物の品質向上と共に、築炉、補修あるいは操
業技術の目覚ましい発展の総合的成果と言えよう。
2. Description of the Related Art Since the life of the furnace body of a converter has a great influence on the cost of steelmaking, there have been many development studies on the extension of the life of the furnace body. Perhaps because of this, despite the recent expansion of furnace volume and severer operating conditions, the same furnace cost 10
Converters that can achieve over 000 charges have also appeared. It can be said that this is a comprehensive result of the remarkable development of furnace construction, repair or operation technology along with the improvement of refractory quality.

【0003】ところで、これら炉体寿命の延長技術のう
ちには、操業中の内張耐火物の保護管理も重要なものと
位置づけられ、従来より使用中転炉の内張耐火物厚みを
知る技術が研究されている。例えば、特開昭48−80
406号公報は、鉄皮の外周面に複数の温度計接点を配
置して鉄皮温度を測定し、該測定値を利用して炉内耐火
物の厚みを推定する方法を開示した。また、転炉内張耐
火物の残存厚みを実測する技術に関しては、例えば、
(社)日本鉄鋼協会発行の「鉄と鋼」、vol.80、
T162(1994)で(株)神戸製鋼所加古川製作所
から報告された「転炉耐火物残厚管理方法の改善」に記
載されているように、レーザ式れんが残厚測定装置も開
発されている。
By the way, among these techniques for extending the life of the furnace body, the protection management of the lining refractory during operation is also important, and conventionally, the technique for knowing the thickness of the lining refractory of the converter in use is known. Is being studied. For example, JP-A-48-80
Japanese Patent No. 406 discloses a method of arranging a plurality of thermometer contacts on the outer peripheral surface of the iron shell to measure the iron shell temperature and estimating the thickness of the refractory in the furnace using the measured values. Further, regarding the technique for measuring the remaining thickness of the refractory lined in the converter, for example,
(Corporation) "Iron and Steel" issued by Japan Iron and Steel Institute, vol. 80,
A laser brick residual thickness measuring device has also been developed as described in "Improvement of Converter Refractory Residual Thickness Management Method" reported by Kakogawa Works of Kobe Steel, Ltd. at T162 (1994).

【0004】しかしながら、上記特開昭48−8040
6号公報記載の技術は、転炉内張れんがの残厚を推定す
るだけであり、それによって、該れんがを操業にとって
安全な厚さまで有効に使用して炉体寿命の延長に役立た
り、炉体補修の時期や炉休止の時期の推定ができたり、
局所損耗が速やかに発見できたりするが、これら効果は
あくまで副次的なもので、1炉代の中でれんが損耗を具
体的に抑制する方法を提供するものではない。また、上
記レーザ方式の耐火物残厚測定装置にしても、れんが残
厚を実測するのみで、上述と同様の効果が精度良く達成
されるようになるに過ぎない。つまり、既存の鉄皮測
温、レンガ残厚の測定及び推定は、各々の測定値がただ
耐火物の管理にのみ使用されており、転炉の操業条件に
直接結びついてのれんが保護対策までには至っていない
のが現状である。
However, the above-mentioned JP-A-48-8040
The technique described in Japanese Patent Publication No. 6 only estimates the remaining thickness of the bricks lined in the converter, thereby effectively using the bricks up to a thickness that is safe for operation and helping to extend the life of the furnace body. You can estimate the time of body repair and the time of furnace shutdown,
Although local wear can be found promptly, these effects are merely secondary and do not provide a method for specifically suppressing the wear of bricks in one furnace cost. Further, even with the laser-type refractory residual thickness measuring device, the same effect as described above can be achieved with high accuracy only by measuring the brick residual thickness. In other words, in the existing iron skin temperature measurement and brick residual thickness measurement and estimation, each measured value is used only for the management of refractories, and the goodwill protection measures directly linked to the operating conditions of the converter The current situation is that it has not arrived.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、既存の転炉での計測技術を有効に活用して、内
張耐火物の溶損速度が遅く、且つ炉周全体で均一に溶損
を進行させる転炉操業方法を提供することを目的として
いる。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention effectively utilizes the existing measuring technology in a converter to achieve a slow erosion rate of the refractory lining and a uniform furnace circumference. It is an object of the present invention to provide a converter operating method that promotes melting loss.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため既存の技術で測定したデータで炉の内張耐火
物に操業中にかかる熱負荷量を求めれば、測定した温度
も耐火物厚みも共に利用できると考えた。何故ならば、
鉄皮温度や耐火物厚の測定値を個別に次回の操業条件設
定の参考にしても、それだけでは、例えば残存耐火物が
厚くても熱負荷が大きい場合、将来の操業で溶損が著し
くなると予想され、十分でないからである。そして、さ
らに、その熱負荷量は、現時点での耐火物状態を反映し
ていることから、それを各所で求めできるだけ同じにな
るように処置すれば、炉内形状が特異にならず溶損速度
が低下すると考え、本発明を創案した。
In order to achieve the above-mentioned object, the inventor can obtain the measured temperature of the refractory lining by refracting the lining refractory of the furnace from the data measured by the existing technique. I thought that the thickness of the material could be used together. because,
Even if the measured values of the iron shell temperature and the refractory thickness are individually referred to for the next operation condition setting, if only that, for example, when the residual refractory is thick and the heat load is large, the melting loss will be significant in the future operation. Because it is expected and not enough. Moreover, since the heat load reflects the refractory state at the present time, if it is obtained at each place and treated so as to be the same as possible, the shape of the furnace does not become peculiar and the melting rate The present invention was devised on the assumption that

【0007】すなわち、本発明は、炉体外周の複数部位
で鉄皮温度を測定しつつ、上吹ランスから炉内に保持し
た溶鉄面に酸素を吹きつける転炉操業方法において、出
鋼後直ちに該鉄皮の測温部近傍の炉内耐火物厚みを測定
し、上記測温値と該厚みとで各部位に操業中かかる局所
熱負荷量を推定し、各部位の局所熱負荷量が均一になる
よう次回の操業条件を設定することを特徴とする転炉操
業方法である。また、本発明は、上記局所熱負荷量を下
記式で推定することを特徴とする転炉操業方法でもあ
る。
That is, the present invention is a converter operating method in which oxygen is blown from the upper blowing lance to the molten iron surface held in the furnace while measuring the iron shell temperature at a plurality of locations on the outer periphery of the furnace body, immediately after tapping. The thickness of the refractory in the furnace near the temperature measuring part of the iron skin is measured, and the local heat load applied to each part during operation is estimated by the temperature measurement value and the thickness, and the local heat load of each part is uniform. The converter operating method is characterized by setting the next operating condition so that The present invention is also a converter operating method characterized by estimating the above-mentioned local heat load by the following formula.

【0008】 Qi=K/Li×(Ti2−Ti1)…(1) ここで、Qi: 局所熱負荷(kcal/m2 ・hr
・℃) Ti1:鉄皮温度(℃) Ti2:炉内耐火物の表面温度(℃) Li:耐火物厚み測定値(m) K: 耐火物の熱伝導度(kcal/m・hr・
℃)。
Qi = K / Li × (Ti 2 −Ti 1) (1) where Qi: Local heat load (kcal / m 2 · hr)
・ ° C) Ti1: iron shell temperature (° C) Ti2: surface temperature of refractory in furnace (° C) Li: refractory thickness measurement value (m) K: thermal conductivity of refractory (kcal / m · hr ・
° C).

【0009】さらに、本発明は、上記鉄皮の測温部位を
3ケ所以上とすることを特徴としたり、上記操業条件
を、上吹ランスの吐出孔位置、吐出孔数、吐出孔角度、
ランス高さ及び吐出精練ガスの流量から選ばれた1以上
とすることを特徴とする転炉操業方法である。これら発
明を用いて操業すれば、既存転炉での計測技術を有効に
活用して、内張耐火物の溶損速度を遅く、且つ炉周全体
で均一に溶損を進行させることができるようになる。
Further, the present invention is characterized in that the temperature measuring portion of the iron skin is three or more, and the operating conditions are as follows: the discharge hole position of the upper blowing lance, the discharge hole number, the discharge hole angle,
The converter operating method is characterized in that it is one or more selected from the lance height and the flow rate of the discharged refining gas. By operating using these inventions, it is possible to effectively utilize the measurement technology in the existing converter, to slow down the erosion rate of the refractory lining, and to promote the erosion uniformly over the entire circumference of the furnace. become.

【0010】[0010]

【発明の実施の形態】まず、本発明に係る転炉操業方法
のポイントになる局所熱負荷の推定方法を、図1を用い
て説明する。転炉1の外周を囲む鉄皮3の任意部位に温
度計5を設置し、該温度計5の測定値をTi1(℃)、
該温度計設置部位の炉内側に内張りした耐火物4の表面
の温度をTi2(℃)、各吹練終了後に測定する耐火物
の残厚をLi(m)、該耐火物の熱伝導度をK(kca
l/m・hr・℃)とする。ここで、転炉操業中あるい
は出鋼終了近傍では、耐火物断面に関する温度分布は定
常状態が擬似的に成立しているとみなされるので、鉄皮
の測温部位近傍の耐火物への炉内の所謂局所熱負荷Qi
(kcal/m2 ・hr・℃)は、以下の式で表わせる
ことになる。
BEST MODE FOR CARRYING OUT THE INVENTION First, a method of estimating a local heat load, which is a key point of a converter operating method according to the present invention, will be described with reference to FIG. A thermometer 5 is installed at an arbitrary portion of the iron shell 3 surrounding the outer periphery of the converter 1, and the measured value of the thermometer 5 is Ti1 (° C.),
The temperature of the surface of the refractory 4 lined inside the furnace at the site where the thermometer is installed is Ti2 (° C), the residual thickness of the refractory measured after each blowing is Li (m), and the thermal conductivity of the refractory is K (kca
1 / m · hr · ° C). Here, during the converter operation or near the end of tapping, the temperature distribution related to the refractory cross section is considered to be a pseudo steady state. So-called local heat load Qi
(Kcal / m 2 · hr · ° C) can be expressed by the following formula.

【0011】 Qi=K/Li×(Ti2−Ti1) …(1) (1)式で、耐火物表面の温度Ti2(℃)は、炉内の
雰囲気温度や鋼浴温度にほぼ等しいため、本発明では操
業末期の鋼浴温度を代表値として選択することとする。
したがって、測定値Ti1とLiを(1)式に代入すれ
ば、局所熱負荷Qiの大きさが所定部位で算出できる。
Qi = K / Li × (Ti 2 −Ti 1) (1) In the formula (1), the temperature Ti 2 (° C.) of the refractory surface is almost equal to the atmosphere temperature in the furnace and the steel bath temperature. In the invention, the steel bath temperature at the end of the operation is selected as a representative value.
Therefore, by substituting the measured values Ti1 and Li into the equation (1), the magnitude of the local heat load Qi can be calculated at a predetermined portion.

【0012】本発明では、この局所熱負荷を転炉外周で
多数求め(例えば、図2は3点、i、j、lの位置にお
いてTi1、Tj1、T11を鉄皮測温測定値として
得)、さらに該測温部位のレンガ残厚を出鋼後ただちに
Li、Lj、L1として得ることで、転炉の同一高さに
ある耐火物への局所熱負荷Qi、Qj、Qlが知れるこ
とになる。一方、同一転炉の高さ方向に、例えば2点、
ここでは、m、nの位置においてT1ml、Tnlを鉄
皮測温値として得、かつ該測温部位近傍のレンガ残厚を
Lm、Lnとして得ることで、転炉の高さ方向の耐火物
に対する局所熱負荷Qm、Qnが知れることになる。
In the present invention, a large number of local heat loads are obtained on the outer circumference of the converter (for example, in FIG. 2, Ti1, Tj1, and T11 are obtained as iron skin temperature measurement values at three points, i, j, and l positions). Further, by obtaining the brick residual thickness of the temperature measurement portion as Li, Lj, and L1 immediately after tapping, local heat loads Qi, Qj, and Ql on refractories at the same height of the converter can be known. . On the other hand, for example, two points in the height direction of the same converter,
Here, by obtaining T1ml and Tnl at the positions of m and n as iron skin temperature measurement values and the brick residual thickness near the temperature measurement site as Lm and Ln, the refractory in the height direction of the converter is obtained. The local heat loads Qm and Qn will be known.

【0013】そして、本発明では、同一高さの周方向に
おいてQi、Qj、Q1の大きさを、あるいは高さの異
なる部位においてQm、Qnの大きさを、それぞれ比較
し、これら熱負荷の差ができるだけ生じないように、次
回の吹練条件を定めるのである。一方、該局所熱負荷量
を変更する方法としては、炉内での二次燃焼(酸素吹練
で鋼浴面上に生じたCOガスを燃焼する)域の位置を変
更する、具体的には精錬ガスである酸素を供給する上吹
ランス2の高さを変更するとか、送酸速度を変更する方
法、該ランスからの酸素の吐出速度を向上するために吐
出孔の大きさを変えたり、吐出孔の数を変えたランスに
交換する方法がある。また、同一高さの周方向で該局所
熱負荷を変更する方法としては、該上吹ランスの吐出孔
位置を周方向で不均一分配させたり、吐出孔数を周方向
で不均一分配させたり、あるいは吐出孔の径を周方向で
不均一分配させたランスに交換する方法が考えられる。
In the present invention, the sizes of Qi, Qj, Q1 in the circumferential direction at the same height or the sizes of Qm, Qn at different heights are respectively compared, and the difference in these heat loads is compared. The next blowing condition should be set so that the above will not occur as much as possible. On the other hand, as a method for changing the local heat load, the position of the secondary combustion (combusting CO gas generated on the steel bath surface by oxygen blowing) region in the furnace is changed, specifically, Changing the height of the top blowing lance 2 for supplying oxygen as a refining gas, changing the acid transfer rate, changing the size of the discharge hole to improve the discharge rate of oxygen from the lance, There is a method of replacing the lance with a different number of discharge holes. As a method of changing the local heat load in the circumferential direction of the same height, the positions of the discharge holes of the upper blowing lance may be unevenly distributed in the circumferential direction, or the number of discharge holes may be unevenly distributed in the circumferential direction. Alternatively, a method may be considered in which the diameters of the discharge holes are replaced with lances that are non-uniformly distributed in the circumferential direction.

【0014】[0014]

【実施例】160トン/chの溶銑を、Cr鉱石の鉄浴
式溶融還元が可能な上底吹き転炉型反応容器に装入し溶
融還元によりステンレス粗溶鋼を多数チャ−ジ溶製し
た。いずれの場合も、上吹酸素の供給流量を900Nm
3 /分、Cr鉱石の供給速度を1.4トン/分とし、還
元用炭材には塊状コークスを1.7トン/分で炉上より
連続投入した。上吹ランスは、35mmφの吐出孔を1
0孔有するものを基本形として用いた。底吹撹拌ガスと
しては、酸素と窒素の混合ガスを90Nm3 /分の一定
流量で流した。
EXAMPLE 160 tons / ch of hot metal was charged into an upper-bottom blow converter type reactor vessel capable of smelting reduction of Cr ore in an iron bath, and a large number of crude stainless steel melts were melted by smelting reduction. In either case, the supply flow rate of top blowing oxygen is 900 Nm.
3 / min, the feed rate to 1.4 t / min of Cr ores, the reduction carbon material was continuously charged from the furnace 1.7 t / min lump coke. The top blowing lance has a 35 mmφ discharge hole.
The one having 0 holes was used as a basic form. As the bottom blowing stirring gas, a mixed gas of oxygen and nitrogen was caused to flow at a constant flow rate of 90 Nm 3 / min.

【0015】ここでは、酸素吹練中、図3に示すi1、
j1、11、i2、j2、12の位置の鉄皮に、JIS
K型SUS被覆熱電対を鉄皮に溶接し、連続的に鉄皮
温度を測定した。そして、レーザ式耐火物残厚測定装置
を用いて毎チャージの出鋼後10分以内に、上記記号部
位に対応する部位の耐火物残厚を測定し、Li1、Lj
1、L11、Li2、Lj2、L12の値とした。各部
位の局所熱負荷は、(1)式により算定し、各々Qi
1、Qj1、Q11、Qi2、Qj2、Q12と定め
た。
Here, during oxygen blowing, i1, shown in FIG.
JIS on the iron skin at the position of j1, 11, i2, j2, 12
A K-type SUS-coated thermocouple was welded to the iron shell, and the iron shell temperature was continuously measured. Then, using a laser type refractory residual thickness measuring device, the refractory residual thickness of the portion corresponding to the above symbol portion is measured within 10 minutes after tapping of each charge, and Li1, Lj are measured.
The values were 1, L11, Li2, Lj2, and L12. The local heat load of each part was calculated by the equation (1), and Qi
1, Qj1, Q11, Qi2, Qj2, Q12.

【0016】(本発明−1)新しい耐火物を内張りした
該容器で、その使用開始から400チャージ以降で上記
温度と残厚の計測を行なったところ、Qj1が2530
0kcal/m2 ・hrとその他の値18900kca
l/m2 ・hrに比べて大きいことがわかり、次のチャ
ージの吹錬から該Qj1該当部位の酸素供給量を減少す
るよう上吹ランスの吐出孔径を35mmφから20mm
φへと縮小した。縮小に際し、ランス交換の煩雑さを回
避するため、内径20mmφ,外径35mmφのパイプ
を吐出孔に挿入することで対処した。
(Invention-1) When the above-mentioned temperature and residual thickness were measured after 400 charges from the start of use in the container lined with a new refractory, Qj1 was 2530.
0kcal / m 2 · hr and other values 18900kca
It was found that it was larger than 1 / m 2 · hr, and the discharge hole diameter of the upper blowing lance was changed from 35 mmφ to 20 mm so as to reduce the oxygen supply amount at the relevant part of Qj1 from the next blowing of the charge.
Reduced to φ. At the time of reduction, in order to avoid the complexity of lance replacement, a pipe having an inner diameter of 20 mmφ and an outer diameter of 35 mmφ was inserted into the discharge hole.

【0017】(本発明−2)引続き、計測を行い続けて
いたところ、本発明−1実施後400チャージでQi
2、Qj2、Q12が34000〜36000kcal
/m2 ・hrで共に、その他の18000〜20000
kcal/m2 ・hrに比べて大きいことがわかった。
そこで、次回のチャージから該上吹ランスの高さを3.
2mから4.5mへ変更し、従来より高い位置で吹錬を
行うようにした。
(Invention-2) While continuing the measurement, Qi was measured at 400 charges after the implementation of Invention-1.
2, Qj2, Q12 is 34000-36000 kcal
/ M 2 · hr, other 18,000 to 20,000
It was found to be larger than kcal / m 2 · hr.
Therefore, from the next charge, the height of the top blowing lance is set to 3.
It was changed from 2m to 4.5m, and blowing was performed at a higher position than before.

【0018】(本発明−3)さらに、引続いて計測を行
って操業を続けていたところ、本発明−2実施後400
チャージ目でQj1が26、500kcal/m2 hr
とその他の部位での値22、000kcal/m2 hr
に比べて大きいことがわかり、次のチャージの吹錬から
該Qj1該当部位の酸素供給量が減少するようその部位
での吐出孔をなくした上吹ランスを使用した。これを実
施するに際し、ランス交換の煩雑さを避けるため、銅製
の丸棒を従来の吐出孔に挿入することで対処した。
(Invention-3) Furthermore, when the measurement was continued and the operation was continued, 400 after the implementation of Invention-2.
Qj1 is 26,500 kcal / m 2 hr on charge
And values at other parts 22,000 kcal / m 2 hr
It was found that it was larger than that of No. 1, and the upper blowing lance without the discharge hole was used so that the oxygen supply amount of the relevant portion of Qj1 would decrease from the next blowing of the charge. In implementing this, in order to avoid the complexity of lance replacement, a copper round bar was inserted into the conventional discharge hole.

【0019】(本発明−4)再び新しい耐火物を内張り
した該容器で操業を始め、その使用開始から400チャ
ージ以降で上記温度と残厚の計測を行ったところ、Qi
1,Qj1,Q11が28、000kcal/m2 hr
で共に、その他の部位での値18、000〜20、00
0kcal/m2 hrに比べ大きいことがわかった。そ
こで、次回のチャージから該上吹ランスの吐出孔角度
(鉛直線からの角度)12°を24°に変更した。その
変更は、そのような吐出孔角度を有する別のランスに交
換することで行った。
(Invention-4) The operation was started again in the container lined with a new refractory material, and the temperature and the residual thickness were measured after 400 charges from the start of its use.
1, Qj1 and Q11 are 28,000 kcal / m 2 hr
In both cases, the value of other parts is 18,000 to 20,000.
It was found to be larger than 0 kcal / m 2 hr. Therefore, from the next charge, the discharge hole angle (angle from the vertical line) 12 ° of the upper blowing lance was changed to 24 °. The change was made by replacing it with another lance having such a discharge hole angle.

【0020】(本発明−5)本発明−4に引続き計測を
続けながら操業を行ったところ、400チャージ目でQ
i2,Qj2,Q12が30、000〜32、000k
cal/m2 hrとその他の部位の値21、000〜2
1、500kcal/m2 hrに比べ大きいことがわか
り、次のチャージの吹錬から酸素供給量を全体的に上昇
するよう上吹ランスからの酸素供給量を600Nm3
minから850Nm3 /minに上昇させた。
(Invention-5) The present invention-4 was operated while continuing measurement, and Q was measured at the 400th charge.
i2, Qj2 and Q12 are 30,000 to 32,000k
Cal / m 2 hr and other values of 21,000-2
It was found to be larger than 1,500 kcal / m 2 hr, and the oxygen supply amount from the upper blowing lance was 600 Nm 3 / in order to increase the oxygen supply amount from the next charge blowing.
It was increased from min to 850 Nm 3 / min.

【0021】(比較例)一方、新しい耐火物を内張りし
た別の容器で、吹錬400チャージ目以降から上記計測
を開始し始めたところ、Qi1、Qj1が25000k
cal/m2 ・hrでその他の値17000kcal/
2 ・hrに比べて大きいことがわかったが、次回のチ
ャージ以降も操業条件の変更を行わずに吹錬を継続し
た。
(Comparative Example) On the other hand, in another container lined with a new refractory, when the above measurement was started after the 400th charge of blowing, Qi1 and Qj1 were 25000k.
Other values of 17,000 kcal / cal / m 2 · hr
It was found to be larger than m 2 · hr, but continued blowing after the next charge without changing operating conditions.

【0022】以上の操業成績を表1にまとめて示す。評
価は、i1、j1、11、i2、j2、12の位置に相
当する耐火物厚みと、各々の位置の中間位置に相当する
耐火物厚みを測定して、本発明適用後の合計300チャ
ージでの耐火物平均溶損速度(mm/チャージ)の分布
が均一に近いか否かで行った。比較例においては、合計
800チャージでの平均溶損速度(mm/チャージ)の
分布で評価した。それらの結果を、表1に一括して示
す。
The above operation results are summarized in Table 1. The evaluation was performed by measuring the refractory thickness corresponding to the positions of i1, j1, 11, i2, j2, and 12 and the refractory thickness corresponding to the intermediate position of each position, with a total charge of 300 after application of the present invention. The average erosion rate (mm / charge) of the refractory was measured according to whether the distribution was almost uniform. In the comparative example, the distribution of the average erosion rate (mm / charge) at a total of 800 charges was evaluated. The results are collectively shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、本発明−1、
2、3、4及び5においては、それぞれ本発明適用後3
00チャージ後の平均溶損速度は、0.4mm/チャー
ジで炉内において均一な損耗が達成できた。本発明を試
みた炉は、それ以降もさらに局所熱負荷の分布を比較し
つつ、本発明を適応し、全体で1800チャージの炉寿
命を達成した。一方、比較例においては、局所熱負荷の
大きかった部位近傍の平均損耗速度は、0.7〜1.0
mm/チャージとその周囲に比べ2倍程度大きく、炉内
観察においても、目視で凹みが認識される程度まで悪化
した。比較例では、本損耗部位の残厚が900チャージ
目で無くなり、永久レンガが露出したため、炉の巻き替
え修理に入った。
As is clear from Table 1, the present invention-1,
In 2, 3, 4 and 5, after applying the present invention, 3 respectively.
The average erosion rate after the 00 charge was 0.4 mm / charge, and uniform wear could be achieved in the furnace. The furnace in which the present invention has been attempted has been adapted to the present invention while further comparing the distributions of local heat loads thereafter, and has achieved a total furnace life of 1800 charges. On the other hand, in the comparative example, the average wear rate near the site where the local heat load was large was 0.7 to 1.0.
mm / charge and its size were about twice as large as the surrounding area, and even when the inside of the furnace was observed, it deteriorated to the extent that a dent was visually recognized. In the comparative example, the remaining thickness of this worn part disappeared at the 900th charge and the permanent brick was exposed, so the repair of the furnace was started.

【0025】[0025]

【発明の効果】以上述べたように、本発明により、炉内
の熱負荷分布を炉内の各所で均等にしたから、転炉内張
耐火物の損耗を均等にでき、炉体耐火物を局所溶損させ
ることなく、均一に安全な耐火物厚さまで最も有効に使
用でき、耐火物及び混合ガスの使用量を共に大幅に低減
できた。
As described above, according to the present invention, since the heat load distribution in the furnace is made uniform at each place in the furnace, the wear of the refractory lining the converter can be made uniform, and the refractory body It was possible to use the refractory evenly and safely to the maximum thickness without causing local erosion, and it was possible to greatly reduce the amounts of refractory and mixed gas used.

【0026】また、均一に熱負荷を与えることができる
ようになったので、鉄皮の温度も均一な温度分布とな
り、局所加熱の場合のような異常変形を生じることなく
健全な状態で運用でき、転炉鉄皮寿命の大幅な向上が達
成できるといった効果もあった。
Further, since the heat load can be applied uniformly, the temperature of the iron shell also has a uniform temperature distribution, and it can be operated in a healthy state without causing abnormal deformation as in the case of local heating. There was also an effect that the life of the converter iron shell can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る転炉操業方法の測温部位を示す縦
断面図である。
FIG. 1 is a vertical cross-sectional view showing a temperature measurement portion of a converter operating method according to the present invention.

【図2】本発明に係る転炉操業方法での測温部位を示す
別例である。
FIG. 2 is another example showing a temperature measurement portion in the converter operating method according to the present invention.

【図3】本発明に係る転炉操業方法の1実施例を示す図
である。
FIG. 3 is a diagram showing an embodiment of a converter operating method according to the present invention.

【符号の説明】[Explanation of symbols]

1 転炉 2 上吹ランス 3 鉄皮 4 炉内内張耐火物 5 温度計 6 スラグ 7 溶鋼 1 Converter 2 Top blowing lance 3 Iron skin 4 Refractory lined in the furnace 5 Thermometer 6 Slag 7 Molten steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 隆 千葉市中央区川崎町1番地 川崎製鉄株式 会社千葉製鉄所内 (72)発明者 桐谷 厚志 千葉市中央区川崎町1番地 川崎製鉄株式 会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Kuroki 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Chiba Works (72) Inventor Atsushi Kiriya 1 Kawasaki-cho, Chuo-ku Chiba Steel Co., Ltd. Chiba Steel Co., Ltd. In-house

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炉体外周の複数部位で鉄皮温度を測定し
つつ、上吹ランスから炉内に保持した溶鉄面に酸素を吹
きつける転炉操業方法において、 出鋼後直ちに該鉄皮の測温部近傍の炉内耐火物厚みを測
定し、上記測温値と該厚みとで各部位に操業中かかる局
所熱負荷量を推定し、各部位の局所熱負荷量が均一にな
るよう次回の操業条件を設定することを特徴とする転炉
操業方法。
1. A converter operating method in which oxygen is blown from a top blowing lance to a molten iron surface held in the furnace while measuring the temperature of the iron shell at a plurality of locations on the outer periphery of the furnace body. Measure the thickness of the refractory in the furnace near the temperature measuring unit, estimate the local heat load applied to each part during operation with the temperature measurement value and the thickness, next time to make the local heat load of each part uniform A converter operating method, characterized in that the operating conditions are set.
【請求項2】 上記局所熱負荷量を下記式で推定するこ
とを特徴とする請求項1記載の転炉操業方法。 Qi=K/Li×(Ti2−Ti1) …(1) ここで、Qi: 局所熱負荷(kcal/m2 ・hr
・℃) Ti1: 鉄皮温度(℃) Ti2: 炉内耐火物の表面温度(℃) Li: 耐火物厚み測定値(m) K: 耐火物の熱伝導度(kcal/m・hr・
℃)。
2. The converter operating method according to claim 1, wherein the local heat load is estimated by the following equation. Qi = K / Li * (Ti2-Ti1) (1) where Qi: Local heat load (kcal / m 2 · hr)
・ ° C) Ti1: iron shell temperature (° C) Ti2: surface temperature of refractory in furnace (° C) Li: refractory thickness measurement value (m) K: thermal conductivity of refractory (kcal / m ・ hr ・
° C).
【請求項3】上記鉄皮の測温部位を3ケ所以上とするこ
とを特徴とする請求項1または2記載の転炉操業方法。
3. The converter operating method according to claim 1 or 2, wherein the temperature measuring portion of the iron skin is three or more.
【請求項4】上記操業条件を、上吹ランスの吐出孔位
置、吐出孔数、吐出孔角度、ランス高さ及び吐出精練ガ
スの流量から選ばれた1以上とすることを特徴とする請
求項1〜3いずれか記載の転炉操業方法。
4. The operating condition is one or more selected from the discharge hole position of the upper blowing lance, the discharge hole number, the discharge hole angle, the lance height and the flow rate of the discharged refining gas. The converter operating method according to any one of 1 to 3.
JP23012595A 1995-09-07 1995-09-07 Operation of converter Pending JPH0978117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23012595A JPH0978117A (en) 1995-09-07 1995-09-07 Operation of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23012595A JPH0978117A (en) 1995-09-07 1995-09-07 Operation of converter

Publications (1)

Publication Number Publication Date
JPH0978117A true JPH0978117A (en) 1997-03-25

Family

ID=16902968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23012595A Pending JPH0978117A (en) 1995-09-07 1995-09-07 Operation of converter

Country Status (1)

Country Link
JP (1) JPH0978117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174029A (en) * 2008-01-28 2009-08-06 Jfe Steel Corp Method for operating converter
JP2010031338A (en) * 2008-07-30 2010-02-12 Nippon Steel Corp Method for operating converter
JP2015178930A (en) * 2014-03-19 2015-10-08 株式会社神戸製鋼所 Furnace refractory product life prediction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174029A (en) * 2008-01-28 2009-08-06 Jfe Steel Corp Method for operating converter
JP2010031338A (en) * 2008-07-30 2010-02-12 Nippon Steel Corp Method for operating converter
JP2015178930A (en) * 2014-03-19 2015-10-08 株式会社神戸製鋼所 Furnace refractory product life prediction method

Similar Documents

Publication Publication Date Title
WO2013010575A1 (en) A method and a control system for controlling a melting process
CA2851604A1 (en) Method of reduction processing of steel-making slag
CA2755845A1 (en) Steel production facility, method of steelmaking and method using electric energy therein
US20170280519A1 (en) Inert gas blanketing of electrodes in an electric arc furnace
JP7028365B2 (en) Method for manufacturing chromium-containing molten iron
JPH0978117A (en) Operation of converter
Harada et al. Development of the Molten Slag Reduction Process-2 Optimization of Slag Reduction Process with Molten Slag Charging
JP7028366B2 (en) Method for manufacturing chromium-containing molten iron
JP2001181727A (en) Method for monitoring condition in electric furnace
Rodd et al. SNNC: a new ferronickel smelter in Korea
JP5411466B2 (en) Iron bath melting furnace and method for producing molten iron using the same
Dutta et al. Electric Furnace Processes
KR101159969B1 (en) lance apparatus of electric furnace
RU2810028C9 (en) Method for detecting fluctuations of hardened layer and method of operating blast furnace
RU2810028C1 (en) Method for detecting fluctuations of hardened layer and method of operating blast furnace
JP2760155B2 (en) Hot metal production method
JP3788392B2 (en) Method for producing high Cr molten steel
KR100396089B1 (en) Method for Cleaning Line of Electric Furnace
JPH04316982A (en) Operating method of metallurgic furnace and metallurgic furnace
JP2783894B2 (en) Iron bath smelting reduction method
Harada et al. Optimization of Slag Reduction Process with Molten Slag Charging (Development of the Molten Slag Reduction Process-2)
JPH09133468A (en) Method and apparatus for judgement of time for additional instruction of stock material into electric furnace or tapping of molten metal
JP3247855B2 (en) Water cooling panel for metal smelting furnace and metal smelting furnace
Thyssen Edelstahlwerke et al. The Bottom Pouring Combined Process Arc
JP3249935B2 (en) Cooling method for metal smelting furnace inner wall

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010116