[go: up one dir, main page]

JPH0975451A - Heat exchanger with high bubble removing function - Google Patents

Heat exchanger with high bubble removing function

Info

Publication number
JPH0975451A
JPH0975451A JP7264911A JP26491195A JPH0975451A JP H0975451 A JPH0975451 A JP H0975451A JP 7264911 A JP7264911 A JP 7264911A JP 26491195 A JP26491195 A JP 26491195A JP H0975451 A JPH0975451 A JP H0975451A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange fluid
heat exchanger
end side
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7264911A
Other languages
Japanese (ja)
Other versions
JP2850804B2 (en
Inventor
Yoshitaka Adachi
義孝 安達
Masafumi Sato
雅文 佐藤
Shinichi Yoshida
伸一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP7264911A priority Critical patent/JP2850804B2/en
Publication of JPH0975451A publication Critical patent/JPH0975451A/en
Application granted granted Critical
Publication of JP2850804B2 publication Critical patent/JP2850804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the uniform flow distribution of a heat exchange fluid and improve a bubble removing function by forming a heat fluid inlet at the lower end of a heat exchange fluid chamber and a heat exchange fluid outlet at the upper end of the chamber, and inclining the heat exchange fluid contact surface of at least the upper end seal material of seal materials at both ends, relative to horizontal surface. SOLUTION: A heat exchange fluid introduced via a heat exchange fluid inlet 5 flows vertically upward in a housing to perform a heat exchange process, and flows out from a heat exchange fluid outlet 2. In this case, the wetted surfaces 6 and 7 of seal materials at both ends of a heat exchanger are formed in such a state as inclined for a horizontal surface. In other words, the surfaces 6 and 7 are respectively inclined so as to rise in a direction for parting from the heat exchange fluid inlet and outlet 5 and 2. According to this construction, bubbles entering a heat exchange fluid chamber 8 move upward along a slope and do not stagnate at such a position as the connection of the seal materials and straight tubes. Also, the bubbles are removed from the heat exchange fluid outlet 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は体外血液循環回路に設置
され、血液や心筋保護液等を含む熱交換用流体を加温ま
たは冷却する熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger installed in an extracorporeal blood circulation circuit for heating or cooling a heat exchange fluid containing blood, myocardial protection liquid and the like.

【0002】[0002]

【従来技術】心臓手術を行う場合には、その間心臓や肺
の機能の代替え手段として、血液回路を使用した体外循
環を行う必要がある。この血液回路には、血液に酸素を
冨化(付加)するための人工肺、血液を送血するための
血液ポンプ、回路内の血液量を調整(一定の血液量の確
保)する貯血槽、回路内に混入した気泡を除去するため
の血液フィルター、血液あるいは心筋保護液の温度を冷
却・加温するための熱交換器、等が組み込まれる。心臓
手術において、熱交換器は血液回路内を流通する血液や
晶質液等の心筋保護液を冷却(例えば、約10〜15
℃)し、患者の心臓組織を冷却することにより心臓の代
謝機能を抑制する。また、手術が終了したら、生体温度
に復温した心筋保護液を循環させることにより、心臓の
代謝機能を元の状態に戻すことができる。熱交換器の形
状としては、様々なものが考案されているが、例えば円
筒状のハウジングの中に両端がシール材によって固定さ
れたされた金属製の直管を配設した熱交換器がある。こ
の熱交換器はハウジング内(直管の外部で)に心筋保護
液を流通させ、直管内に熱交換用媒体を流通させること
によって、直管を介して熱媒体と心筋保護液との熱交換
を行う。また、心臓手術以外でも上記と同様に体温を局
部的に降下・上昇することが必要な場合がある。(例え
ば、脳外科の手術や心臓以外の臓器手術において) こ
のような場合にも上記と同様な熱交換器が必要であり、
実際に使用されることも稀ではなかった。
2. Description of the Related Art During cardiac surgery, it is necessary to perform extracorporeal circulation using a blood circuit as an alternative means for the functions of the heart and lungs. In this blood circuit, an artificial lung for enriching (adding) oxygen to blood, a blood pump for sending blood, a blood reservoir for adjusting the blood volume in the circuit (securing a certain blood volume), A blood filter for removing air bubbles mixed in the circuit, a heat exchanger for cooling and heating the temperature of blood or myocardial protection liquid, and the like are incorporated. In heart surgery, a heat exchanger cools blood or cardioplegic solution such as crystalloid that flows in the blood circuit (for example, about 10 to 15).
C.) and then suppress the metabolic function of the heart by cooling the patient's heart tissue. Further, after the operation is completed, the metabolic function of the heart can be returned to the original state by circulating the cardioplegia solution that has been reheated to the living body temperature. Various shapes of the heat exchanger have been devised. For example, there is a heat exchanger in which a straight metal tube whose both ends are fixed by sealing materials is arranged in a cylindrical housing. . This heat exchanger circulates a myocardial protection liquid in the housing (outside the straight pipe) and a medium for heat exchange in the straight pipe so that the heat medium and the myocardial protection liquid exchange heat through the straight pipe. I do. In addition to the cardiac surgery, it may be necessary to locally lower or raise the body temperature as described above. (For example, in brain surgery or organ surgery other than heart) In such a case, a heat exchanger similar to the above is required,
It was not rare that it was actually used.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の熱交換
器では以下のような矛盾する2つの問題があった。1つ
はチャネリング(偏向流;流れの状態が領域によって不
均一になること)による熱交換効率の低下であり、もう
1つは気泡除去性の困難さと圧力損失の増大である。す
なわち、チャネリングによって、熱交換流体が流れ易い
領域(特にハウジング内壁とそれに近接する直管の間の
空間領域)のみに流れるのを防止するためには、前記熱
交換流体が流れ易い領域のみは直管の配設密度を高く
し、その他の領域の部分と直管の配設密度が同じになる
ようにした熱交換器が望ましい。更に熱交換率を高める
観点からは、直管の配設密度を高めためのものが好まし
い。このような熱交換器はチャネリングが少なく、どの
領域も比較的均一に流れるし、また直管の配設密度は高
いので熱交換率は上昇する。ところが、上記のような構
造であると、混入した気泡は流出し難くなる。特に直管
と直管、或いは直管と内壁との間に溜まった気泡は除去
し難い。このように気泡が血液回路内に残留すると、体
外血液循環の際に血液中にその気泡が混入し、生命の危
険性を生じる恐れがある。またチャネリング及び熱交換
効率が改善されるように直管の配設密度を高めたり、あ
るいは上記隙間が小さくなるように熱交換器を設計する
と、熱交換流体の熱交換器内の流動抵抗が増加して、熱
交換流体用流入口とその流出口の間の圧損が大きくなっ
てしまう。かといって、気泡除去性の改善と圧損の低減
のため、気泡の流通媒体である血液の熱交換器内の流動
抵抗が小さくなるように直管同士の配設密度及び内壁と
近接する直管との空間領域のみ変更しても、元と同じよ
うにチャネリングが発生し、熱交換率が低下してしま
う。以上のように、チャネリングや熱交換率を改善する
ため直管同士の配設密度を高くしたり、ハウジングの内
壁と近接する直管の空間を狭めると、気泡の除去性が悪
くなり、且つ圧損が増大する。逆に気泡の除去性や圧損
を改善しようとすると、チャネリングが発生し易くなっ
て熱交換率が低下するというジレンマを抱えていた。従
って本発明の目的は血液や心筋保護液等を含む熱交換流
体の流布状態(流れの状態を表す)がより均一で、且つ
良好であり、また気泡の除去性能を改善した熱交換器を
提供することである。
However, the conventional heat exchanger has the following two contradictory problems. One is a decrease in heat exchange efficiency due to channeling (deflection flow; non-uniform flow state depending on regions), and the other is difficulty in bubble removal and increase in pressure loss. That is, in order to prevent the heat exchange fluid from flowing only to the region where the heat exchange fluid easily flows (particularly, the space region between the inner wall of the housing and the straight pipe adjacent thereto) by the channeling, only the region where the heat exchange fluid easily flows directly. A heat exchanger in which the arrangement density of the tubes is high and the arrangement density of the straight tubes is the same as that of the other regions is desirable. Further, from the viewpoint of increasing the heat exchange rate, a material for increasing the arrangement density of the straight pipes is preferable. Such a heat exchanger has little channeling, flows relatively uniformly in every region, and has a high straight tube arrangement density, so that the heat exchange rate increases. However, the above structure makes it difficult for the mixed bubbles to flow out. Especially, it is difficult to remove bubbles accumulated between the straight pipe and the straight pipe or between the straight pipe and the inner wall. If the air bubbles remain in the blood circuit in this way, the air bubbles may be mixed into the blood during extracorporeal blood circulation, which may cause a risk of life. If the density of straight pipes is increased to improve the channeling and heat exchange efficiency, or if the heat exchanger is designed to reduce the gap, the flow resistance of the heat exchange fluid in the heat exchanger increases. As a result, the pressure loss between the heat exchange fluid inlet and its outlet becomes large. However, in order to improve bubble removal and reduce pressure loss, the distribution density of straight pipes and the straight pipes close to the inner wall should be reduced so that the flow resistance of the blood, which is the flow medium of the bubbles, in the heat exchanger becomes small. Even if only the space region of and is changed, channeling occurs as in the original case, and the heat exchange rate decreases. As mentioned above, if the disposition density of straight pipes is increased to improve the channeling or heat exchange rate, or if the space of the straight pipes close to the inner wall of the housing is narrowed, the ability to remove bubbles becomes poor and the pressure loss is reduced. Will increase. On the contrary, when trying to improve the air bubble removal property and the pressure loss, there is a dilemma that channeling easily occurs and the heat exchange rate decreases. Therefore, an object of the present invention is to provide a heat exchanger in which the distribution state (representing the flow state) of a heat exchange fluid containing blood, cardioplegic solution, etc. is more uniform and good, and the bubble removal performance is improved. It is to be.

【0004】[0004]

【課題を解決するための手段】本発明の第1は、上端部
側および下端部側のうちの一方の端部側に設けられた熱
交換媒体用流出口と他の端部側に設けられた熱交換媒体
用流入口と、前記媒体流入口と該媒体流出口の間の位置
に設けられた熱交換流体用流入口と熱交換流体用流出口
とを有する筒状ハウジング(A)と、該筒状ハウジング
(A)内に配設された多数の熱交換用直管(B)と、該
直管の両端部を両端部に固定し、前記熱交換流体用流入
口と熱交換流体用流出口に連通する熱交換流体室(C)
と、前記熱交換媒体流入口と熱交換媒体流出口に連通す
る熱交換媒体室(D)と、前記複数の熱交換用直管
(B)の両端部を固定し、かつ前記熱交換媒体室(D)
と前記熱交換流体室(C)とを液密に隔絶する両端部の
シール材(E)とを有する熱交換器において、前記熱交
換流体室(C)の下端部側に熱交換流体用流入口、また
上端部に熱交換流体用流出口が設けられ、かつ前記両端
部側のシール材(E)の熱交換流体との接触面(液接触
面)(以下、液接触面とも言う。)の少なくとも一つ
が、水平面に対して傾斜したものを用いることにより、
前記技術課題を解決した。すなわち、前記のようにシ−
ル材(E)の液接触面が傾斜していることにより、熱交
換流体室(C)内に混入した気泡がシ−ル材(E)と直
管(B)の結合部などに停滞しないで、前記傾斜に沿っ
て斜め上方向に移動しやすくなる。本発明の第2は、下
端部側に設けられた熱交換媒体用流出口と上端部側に設
けられた熱交換媒体用流入口と、該媒体流入口と該媒体
流出口の間の位置に設けられた熱交換流体用流入口と熱
交換流体用流出口とを有する筒状ハウジング(A)と、
該筒状ハウジング(A)内に配設された多数の熱交換用
直管(B)と、該直管の両端部を両端部に固定し、前記
熱交換流体用流入口と熱交換流体用流出口に連通する熱
交換流体室(C)と、前記熱交換媒体流入口と熱交換媒
体流出口に連通する前記直管内に形成される熱交換媒体
室(D)と、前記複数の熱交換用直管(B)の両端部を
固定し、かつ前記熱交換媒体室(D)と前記熱交換流体
室(C)とを液密に隔絶する両端部のシール材(E)を
有する熱交換器において、前記熱交換流体室(C)の下
端部側に熱交換流体用流入口、また上端部に熱交換流体
用流出口が設けられ、かつ前記熱交換流体室(C)の内
壁の少なくとも一部に、液流方向に沿った縦長のリブを
設けることにより前記技術課題を解決した。すなわち熱
交換器の熱交換流体室(C)の内壁に縦長のリブ(F)
を鉛直方向に設けることにより、熱交換流体をハウジン
グ(A)の内壁面側のみに偏って流れるチャネリングを
発生することなく、ハウジング内を均等に流通させるこ
とができる。本発明の熱交換器としては、この第2の技
術的解決手段に、さらに前記第1の技術的解決手段を組
み合わせたものが、前記各手段に基づく効果を奏するこ
とができ好ましい。また、本発明の熱交換媒体用流入口
を筒状ハウジングの上端部側、また熱交換媒体用流出口
を筒状ハウジングの下端部側に設け、熱交換流体と反対
向きに熱交換媒体が流れるようにするのが熱交換の効率
の観点から好ましい。さらに本発明の熱交換器として
は、熱交換流体室(C)の下部および/または上部の内
周壁に沿って溝(G)を設けること、好ましくは下部お
よび上部の両方の内周壁に沿ってシ−ル材と同様の傾斜
角度を有する溝(G)を設けることが好ましい。前記溝
(G)は、例えばシール材(E)の液接触面と前記内周
壁に配設したリブ(F)の端部の間の内周壁に形成する
ことができる。そして前記溝(G)の開口部の少なくと
も一部は、熱交換流体用流入口及び熱交換流体流出口に
開口するように設置するのが好ましい。前記溝(G)を
設けることにより、熱交換器の下端部側の熱交換流体用
流入口から導入した熱交換流体は前記溝(G)に均一に
流れ込むので、その後均一に熱交換流体室(C)内部を
鉛直上方向に流れる効果がある。また、同様に熱交換流
体室(C)の上部にも同様な溝(G)を設けることによ
り、熱交換流体がこの溝に流れ込み、リブとシ−ル材
(E)の結合部に気泡が停滞することなく(気泡が存在
しても排出し易く)除去される。前記の本発明の各特徴
点を除けば、本発明の熱交換器は、体外血液循環回路に
設置され、血液や心筋保護液等を含む熱交換用流体を加
温または冷却するのに従来使用されている熱交換器と同
様な構造を有することができる。本発明の熱交換器とし
ては、P.F.(熱交換効率係数)=0.96以上のも
のが好ましい。
A first aspect of the present invention is to provide a heat exchange medium outlet provided on one end side of the upper end side and the lower end side and another heat exchange medium outlet side. A heat exchange medium inlet, a tubular housing (A) having a heat exchange fluid inlet and a heat exchange fluid outlet provided between the medium inlet and the medium outlet, A large number of heat exchange straight pipes (B) arranged in the cylindrical housing (A), and both ends of the straight pipe are fixed to both ends, and the heat exchange fluid inlet and the heat exchange fluid are used. Heat exchange fluid chamber (C) communicating with the outlet
A heat exchange medium chamber (D) communicating with the heat exchange medium inlet and the heat exchange medium outlet, and both ends of the plurality of heat exchange straight pipes (B) are fixed, and the heat exchange medium chamber (D)
A heat exchanger having a sealing material (E) at both ends for liquid-tightly separating the heat exchange fluid chamber (C), and a heat exchange fluid flow at the lower end side of the heat exchange fluid chamber (C). A heat exchange fluid outlet is provided at the inlet and the upper end, and a contact surface (liquid contact surface) of the seal material (E) on both end sides with the heat exchange fluid (hereinafter, also referred to as a liquid contact surface). By using at least one of those inclined to the horizontal plane,
The above technical problems have been solved. That is, as described above,
Since the liquid contact surface of the seal material (E) is inclined, the bubbles mixed in the heat exchange fluid chamber (C) do not stagnate at the joint between the seal material (E) and the straight pipe (B). Thus, it becomes easy to move diagonally upward along the inclination. The second aspect of the present invention is to provide a heat exchange medium outlet provided on the lower end side, a heat exchange medium inlet provided on the upper end side, and a position between the medium inlet and the medium outlet. A cylindrical housing (A) having a heat exchange fluid inlet and a heat exchange fluid outlet provided,
A large number of heat exchange straight pipes (B) arranged in the cylindrical housing (A), and both ends of the straight pipe are fixed to both ends, and the heat exchange fluid inlet and the heat exchange fluid are used. A heat exchange fluid chamber (C) communicating with the outlet, a heat exchange medium chamber (D) formed in the straight pipe communicating with the heat exchange medium inlet and the heat exchange medium outlet, and the plurality of heat exchanges Heat exchange having both ends of the straight pipe (B) fixed, and sealing materials (E) at both ends for liquid-tightly separating the heat exchange medium chamber (D) and the heat exchange fluid chamber (C) In the container, a heat exchange fluid inlet is provided on the lower end side of the heat exchange fluid chamber (C), and a heat exchange fluid outlet is provided on the upper end, and at least the inner wall of the heat exchange fluid chamber (C) is provided. The above technical problem has been solved by providing a part of a vertically long rib along the liquid flow direction. That is, a vertically long rib (F) is formed on the inner wall of the heat exchange fluid chamber (C) of the heat exchanger.
Is provided in the vertical direction, the heat exchange fluid can be evenly distributed in the housing without causing channeling in which the heat exchange fluid is unevenly flowed only to the inner wall surface side of the housing (A). As the heat exchanger of the present invention, it is preferable to combine the second technical solution with the first technical solution because the effects based on the respective means can be exhibited. Further, the heat exchange medium inlet of the present invention is provided on the upper end side of the cylindrical housing, and the heat exchange medium outlet is provided on the lower end side of the cylindrical housing, so that the heat exchange medium flows in the direction opposite to the heat exchange fluid. This is preferable from the viewpoint of heat exchange efficiency. Further, as the heat exchanger of the present invention, the groove (G) is provided along the inner peripheral wall of the lower portion and / or the upper portion of the heat exchange fluid chamber (C), preferably along the inner peripheral wall of both the lower portion and the upper portion. It is preferable to provide a groove (G) having an inclination angle similar to that of the seal material. The groove (G) can be formed, for example, on the inner peripheral wall between the liquid contact surface of the sealing material (E) and the end of the rib (F) arranged on the inner peripheral wall. At least a part of the opening of the groove (G) is preferably installed so as to open to the heat exchange fluid inlet and the heat exchange fluid outlet. By providing the groove (G), the heat exchange fluid introduced from the heat exchange fluid inlet on the lower end side of the heat exchanger uniformly flows into the groove (G), so that the heat exchange fluid chamber ( C) There is an effect of flowing vertically in the inside. Similarly, by providing a similar groove (G) in the upper part of the heat exchange fluid chamber (C), the heat exchange fluid flows into this groove and bubbles are generated in the joint portion between the rib and the seal material (E). It is removed without stagnation (it is easy to discharge even if air bubbles exist). Except for each of the features of the present invention described above, the heat exchanger of the present invention is installed in an extracorporeal blood circulation circuit and conventionally used to heat or cool a heat exchange fluid containing blood, myocardial protection liquid, or the like. The heat exchanger may have a structure similar to that of the conventional heat exchanger. Examples of the heat exchanger of the present invention include P.I. F. (Heat exchange efficiency coefficient) = 0.96 or more is preferable.

【0005】[0005]

【発明の実施の態様】本発明の実施の態様を図面に基づ
いて説明する。図1および2に示す熱交換器は、熱交換
流体用流入口5と熱交換流体用流出入口2は、ハウジン
グの液流方向の軸に対して対称になるように、すなわち
筒状ハウジングの対向する側面に設けた。また、熱交換
流体室の下端部側に熱交換流体用流入口5を、熱交換流
体室の上端部側に熱交換流体用流出口2を有するもので
ある。熱交換流体用流出口2は、図2に示すように多分
岐管であり、分岐管2’は圧力モニターライン接続口で
あり、また2”は温度センサ挿入口である。熱交換流体
用流入口5から導入した熱交換流体は、その後ハウジン
グ内部を鉛直上方向に流れていく。このとき前記熱交換
器の両端部側のシ−ル材の液接触面6および7が水平面
に対して傾斜している。すなわち、前記下端部側のシ−
ル材の液接触面7は、熱交換流体用流入口5から離れる
に従って上がっており、また上端部側のシ−ル材の液接
触面6は、熱交換流体用流出口2から離れるに従って下
がっている。このようにシ−ル材の液接触面7が傾斜し
ていることにより、熱交換流体室8内に混入した気泡が
シ−ル材と直管3の結合部などに停滞しないで、前記傾
斜に沿って斜め上方向に移動しやすくなる。そして、最
終的には、ハウジング内の熱交換流体室8の最上部に移
動した気泡は、前記熱交換流体室8の最上部に近接して
設けられている熱交換流体流出口2から除去される。前
記下端部側および上端部側のシ−ル材の傾斜角度は同一
あるいは異なっていても良い。前記下端部側と上端部側
のシ−ル材の前記傾斜角度異なっている場合、該傾斜角
度の差違が余りに大きいと、熱交換面積が少なくなるの
で、傾斜角度の差違は好ましくは25゜以内、例えば実
質的に同じである場合である。また、前記傾斜部が下端
部側あるいは上端部側のどちらか一つに設ける場合に
は、特に気泡除去性能は上端部側シール材の傾斜に影響
されるため、上端部側に傾斜部を設けるのが好ましい
が、下端部側シール材も傾斜した方が気泡が抜け易いの
で、両端部側のシール材が傾斜しているのが好ましい。
前記下端部側および/または上端部側の傾斜角度は、い
ずれも好ましくは5゜〜40゜、さらに好ましくは10
〜35゜である。前記傾斜角度が、5゜未満では気泡除
去効果が小さく、40゜を越えると熱交換面積が低下し
て熱交換率が低下するからである。特に図2に示すよう
にハウジングが直方体であり、かつ前記シ−ル材例えば
下端部側のシ−ル材とハウジング内壁面が接することに
よって得られる4本の接線L、M、N、およびOが、隣
り合った2本の接線のいづれもが水平面に傾斜している
こと、すなわち前記4本の接線で形成される面の傾きが
3次元的になるようにシ−ル材を設置することが、気泡
除去性能の向上の理由から好ましい。図3に示すように
熱交換室のハウジング壁9の内壁面に、該ハウジング壁
9と近接する直管11の間に配設されるようにリブ10
を設けた。該リブ10は液体や気泡が滞留しないように
R部を有すること、該R部が特に直管の径と類似の径を
有することが均一な流布性が得られるので好ましい。前
記リブ10は、該リブを設けない場合に生ずるハウジン
グ9の内壁面側のみに偏って流れるチャネリングを発生
することなく、ハウジング内を均等に流通させることが
できる。前記リブ10は、筒状ハウジングが図2に示す
ように直方体形状の場合、筒状ハウジングの全側面に設
けてもよいが、通常、熱交換流体用流入口5と熱交換流
体用流出口2が設けられた対向する側面以外の側面の内
壁面に設ければチャネリングは実質的に防止できる。ま
た、筒状ハウジングのコーナーにR部を設けたものは、
気泡の除去性能、流体の滞留しにくさ(これは結果的に
熱交換効率を向上させる)の点で効果を有する。さら
に、前記ハウジングのコーナーのR部に対応して針管1
1の両端部を固定する針管配列板の4隅が面取りされて
R部を有するものが好ましい。以下、本発明の実施例に
基づいて、本発明の熱交換器を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. In the heat exchanger shown in FIGS. 1 and 2, the heat exchange fluid inlet 5 and the heat exchange fluid outlet 2 are symmetric with respect to the liquid flow direction axis of the housing, that is, opposite to each other in the cylindrical housing. It is provided on the side. Moreover, the heat exchange fluid inlet 5 is provided on the lower end side of the heat exchange fluid chamber, and the heat exchange fluid outlet 2 is provided on the upper end side of the heat exchange fluid chamber. The heat exchange fluid outlet port 2 is a multi-branch pipe as shown in FIG. 2, the branch pipe 2'is a pressure monitor line connection port, and 2 "is a temperature sensor insertion port. The heat exchange fluid introduced from the inlet 5 then flows vertically upward inside the housing, at which time the liquid contact surfaces 6 and 7 of the seal material on both ends of the heat exchanger are inclined with respect to the horizontal plane. That is, the seal on the lower end side is
The liquid contact surface 7 of the seal material rises as the distance from the heat exchange fluid inlet 5 increases, and the liquid contact surface 6 of the seal material on the upper end side decreases as the distance from the heat exchange fluid outlet 2 increases. ing. Since the liquid contact surface 7 of the seal material is inclined in this way, the bubbles mixed in the heat exchange fluid chamber 8 do not stay in the joint between the seal material and the straight pipe 3 and the like. It becomes easy to move diagonally upward along the. Finally, the bubbles that have moved to the uppermost part of the heat exchange fluid chamber 8 in the housing are removed from the heat exchange fluid outlet 2 that is provided near the uppermost part of the heat exchange fluid chamber 8. It The angles of inclination of the seal materials on the lower end side and the upper end side may be the same or different. When the inclination angle of the seal material on the lower end side differs from that of the seal material on the upper end side, if the difference in inclination angle is too large, the heat exchange area decreases, so the difference in inclination angle is preferably within 25 °. , For example, when they are substantially the same. Further, when the inclined portion is provided on either the lower end side or the upper end side, since the bubble removal performance is particularly affected by the inclination of the upper end side seal material, the inclined portion is provided on the upper end side. However, it is preferable that the sealing material on the lower end side is also inclined, because bubbles are more likely to escape from the sealing material on the lower end side.
The inclination angle of the lower end side and / or the upper end side is preferably 5 ° to 40 °, more preferably 10 °.
~ 35 °. This is because if the inclination angle is less than 5 °, the bubble removing effect is small, and if it exceeds 40 °, the heat exchange area is reduced and the heat exchange rate is reduced. In particular, as shown in FIG. 2, the housing is a rectangular parallelepiped, and four tangent lines L, M, N, and O obtained by contacting the seal material, for example, the seal material on the lower end side and the inner wall surface of the housing. However, that any two adjacent tangent lines are inclined to the horizontal plane, that is, the seal material is installed so that the inclination of the surface formed by the four tangent lines becomes three-dimensional. However, it is preferable for the reason of improving the bubble removing performance. As shown in FIG. 3, ribs 10 are provided on the inner wall surface of the housing wall 9 of the heat exchange chamber so as to be arranged between the housing wall 9 and the straight pipe 11 adjacent thereto.
Was provided. It is preferable that the rib 10 has an R portion so that liquid or air bubbles do not stay therein, and that the R portion has a diameter particularly similar to the diameter of a straight pipe in order to obtain uniform dispersibility. The ribs 10 can be evenly distributed in the housing without the occurrence of channeling that is unevenly distributed only on the inner wall surface side of the housing 9 when the ribs are not provided. When the tubular housing has a rectangular parallelepiped shape as shown in FIG. 2, the ribs 10 may be provided on all side surfaces of the tubular housing, but normally, the heat exchange fluid inlet 5 and the heat exchange fluid outlet 2 are provided. Channeling can be substantially prevented if it is provided on the inner wall surface of the side surface other than the opposite side surface provided with. In addition, the one with the R part at the corner of the cylindrical housing is
It is effective in terms of bubble removal performance and fluid retention (which results in improved heat exchange efficiency). Further, the needle tube 1 corresponding to the R portion of the corner of the housing
It is preferable that the four corners of the needle array plate for fixing both ends of 1 are chamfered and have R portions. Hereinafter, the heat exchanger of the present invention will be described in detail based on Examples of the present invention.

【0006】[0006]

【実施例】【Example】

実施例1 図1に示す構造のものであって、かつ下表1に示すシー
ル材の傾斜角度、針管本数(本)、有効長(mm)およ
び熱交換面積(cm2)を有する熱交換器を使用し、熱
交換流体として30±1℃の水道水をQB(熱交換流体
流量)300ml/minの流量で熱交換流体用流入口
5から導入し、また熱交換媒体として40±1℃の水道
水を熱交換媒体用流入口1からQW(熱交換媒体流量)
5L/minの流量で導入して血液の熱交換を行った。
前記サンプルAは本発明の比較例に相当する実施の態様
のものであり、サンプルCは本発明の実施の態様に相当
するものである。なお、サンプルAは図4に示す通常の
筒状ハウジングを使用した場合の針管配列であるのに対
し、サンプルCはサンプルAの各コーナーにRを付けた
筒状ハウジングおよび前記図4に示す針管配列の各コー
ナーの針管を2本減らした針管を前記筒状ハウジングの
R部に対応するように配列した場合のものである。前記
サンプルAおよびCに基づいて行った実施の態様により
達成されたP.F.(熱交換効率係数)値を表1に示
す。この実施結果より、サンプルCの針管の有効長(m
m)および熱交換面積(cm2)がサンプルAのそれら
に比べて減少しているにもかかわらず、サンプルCの
P.F.値が、サンプルAのP.F値に比べて変わらな
いことは驚くべきことであり、ハウジングの各コーナー
(4隅)にRを付けることが、P.F.値の改良に有効
であることを示している。またサンプルCは、針管本数
をサンプルAより8本減らしたにもかかわらず、サンプ
ルAと同等のP.F.値を達成しているが、これはハウ
ジングのコーナーの4隅にRを付けることにより熱交換
流体の滞留が減少したと推察される。
Example 1 A heat exchanger having the structure shown in FIG. 1 and having the sealing material inclination angle, the number of needle tubes (pieces), the effective length (mm) and the heat exchange area (cm 2 ) shown in Table 1 below. Is used as a heat exchange fluid, and tap water of 30 ± 1 ° C. is introduced from the heat exchange fluid inlet 5 at a flow rate of Q B (heat exchange fluid flow rate) of 300 ml / min, and 40 ± 1 ° C. as a heat exchange medium. Tap water from the heat exchange medium inlet 1 to Q W (heat exchange medium flow rate)
Blood was introduced at a flow rate of 5 L / min to exchange heat with blood.
The sample A corresponds to the embodiment corresponding to the comparative example of the present invention, and the sample C corresponds to the embodiment corresponding to the present invention. The sample A has a needle tube arrangement when the normal cylindrical housing shown in FIG. 4 is used, whereas the sample C has a cylindrical housing with R at each corner of the sample A and the needle tube shown in FIG. This is a case where needle tubes with two needle tubes at each corner of the array are arranged so as to correspond to the R portion of the cylindrical housing. The P. cerevisiae achieved by the embodiment carried out on the basis of samples A and C above. F. The (heat exchange efficiency coefficient) values are shown in Table 1. From the results of this implementation, the effective length of the needle tube of sample C (m
m) and heat exchange area (cm 2 ) are reduced compared to those of sample A, although the P.I. F. If the value is the P. It is surprising that it does not change compared to the F value, and adding R to each corner (4 corners) of the housing is the same as P.F. F. It shows that it is effective in improving the value. In addition, the sample C has the same P.O. F. Although the value is achieved, it is presumed that the retention of the heat exchange fluid was reduced by adding R to the four corners of the housing.

【0007】[0007]

【表1】 上記R.F.値は、QB(熱交換流体流量)=300m
l/minQW(熱交換媒体流量)=5L/minで測
定したものである。
[Table 1] The R. F. Value is Q B (heat exchange fluid flow rate) = 300 m
1 / min Q W (heat exchange medium flow rate) = 5 L / min.

【0008】実施例2 図1に示す熱交換器を使用し、シール材の液接触面の傾
斜角度を変化させた時の気泡除去性の違いについて調べ
た。図1に示す熱交換器を血液回路に配置し、熱交換用
流体として、室温の水道水を灌流させた。水道水灌流
中、熱交換器上流側より気泡を混入させた時の熱交換媒
体室からの気泡の除去の難易度を評価した。熱交換流体
流量は、300ml/minとした。その結果を次表2
に示す。
Example 2 Using the heat exchanger shown in FIG. 1, differences in bubble removability when the inclination angle of the liquid contact surface of the sealing material was changed were examined. The heat exchanger shown in FIG. 1 was arranged in the blood circuit, and tap water at room temperature was perfused as a heat exchange fluid. The difficulty of removing bubbles from the heat exchange medium chamber when bubbles were mixed from the upstream side of the heat exchanger during tap water perfusion was evaluated. The heat exchange fluid flow rate was 300 ml / min. The results are shown in Table 2 below.
Shown in

【0009】[0009]

【表2】 ×・・・・タッピング操作によっても気泡除去困難 △・・・・気泡除去にタッピング操作必要 ○・・・・熱交換器を傾けたりすることで気泡除去可能 (タッピング操作不要) ◎・・・・気泡自然排出可能 前表2に示す結果から、シール材の液接触面に角度を付
けることが気泡除去に対して有効であることが解る。ま
た、前記角度は、大きな気泡については5°以上、小さ
な気泡については15°以上の大きさが必要であること
が判明した。
[Table 2] × ・ ・ ・ ・ Difficult to remove air bubbles even by tapping operation △ ・ ・ ・ ・ Need tapping operation to remove air bubbles ○ ・ ・ ・ ・ Can remove air bubbles by tilting the heat exchanger (no tapping operation required) ◎ ・ ・ ・ ・Allowing spontaneous discharge of bubbles From the results shown in Table 2 above, it is understood that angling the liquid contact surface of the sealing material is effective for removing bubbles. Further, it has been found that the angle needs to be 5 ° or more for large bubbles and 15 ° or more for small bubbles.

【0010】実施例3 熱交換器としてリブの有るものと無いものを使用して実
施例1と同様にして実施して、熱交換器のリブの有無が
P.F.値に与える影響を試験した。熱交換用流体とし
て30±1℃の水道水を導入した。流量は180、24
0、300ml/minの3通りとした。熱交換媒体と
しては40±1℃の水道水を5L/minの流量で流し
た。その結果を次表3に示す。
Example 3 The same procedure as in Example 1 was carried out using a heat exchanger with and without ribs, and the presence or absence of ribs in the heat exchanger was determined as follows. F. The effect on value was tested. Tap water of 30 ± 1 ° C. was introduced as a heat exchange fluid. Flow rate is 180, 24
It was set to 0, 300 ml / min in three ways. As the heat exchange medium, tap water of 40 ± 1 ° C. was caused to flow at a flow rate of 5 L / min. The results are shown in Table 3 below.

【0011】[0011]

【表3】 [Table 3]

【数1】 TBout:出口側熱交換流体温度 TBin :入口側熱交換流体温度 TWin :入口側熱交換媒体温度 前表の結果は、リブを設けることによって熱交換効率を
向上させることができる、すなわち、効果的にチャネリ
ングを防止できることを示している。
[Equation 1] TBout: Temperature of heat exchange fluid on outlet side TBin: Temperature of heat exchange fluid on inlet side TWin: Temperature of heat exchange medium on inlet side The results of the above table show that the heat exchange efficiency can be improved by providing the ribs, that is, effectively. It shows that channeling can be prevented.

【0012】[0012]

【発明の効果】本発明の熱交換器はチャネリングが発生
しにくいため、熱交換率が向上する。また、熱交換器内
に混入した気泡の除去性能の点で優れており、生体内に
気泡を注入する危険性が減少する。
Since the heat exchanger of the present invention is less likely to cause channeling, the heat exchange rate is improved. Further, it is excellent in the performance of removing bubbles mixed in the heat exchanger, and the risk of injecting bubbles into the living body is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1例の熱交換器の断面模式図であ
る。。
FIG. 1 is a schematic sectional view of a heat exchanger according to an example of the present invention. .

【図2】本発明の1例の熱交換器の斜視図である。FIG. 2 is a perspective view of a heat exchanger of an example of the present invention.

【図3】図2の熱交換器の断面を←方向からみた断面図
である。
FIG. 3 is a cross-sectional view of the heat exchanger of FIG. 2 as seen from the ← direction.

【図4】従来例の熱交換器の針管配列の1例である。FIG. 4 is an example of a needle tube arrangement of a conventional heat exchanger.

【図5】実施例1で使用した4隅部にR部を設けた熱交
換器の針管配列である。
FIG. 5 is a needle tube arrangement of the heat exchanger used in Example 1 in which R portions are provided at four corners.

【符号の説明】[Explanation of symbols]

1 熱交換媒体用流入口 2 熱交換流体用流出口 2’ 圧モニターライン接続口 2” 温度センサ挿入口 3 熱交換用直管 4 熱交換媒体用流出口 5 熱交換流体用流入口 6 上端部シ−ル材液接触面 7 下端部シ−ル材液接触面 8 熱交換流体室 9 ハウジング壁 10 リブ 11 針管 12 R部 L シ−ル材とハウジング内壁面が接する接線 M シ−ル材とハウジング内壁面が接する接線 N シ−ル材とハウジング内壁面が接する接線 O シ−ル材とハウジング内壁面が接する接線 1 Heat exchange medium inlet 2 Heat exchange fluid outlet 2'Pressure monitor line connection port 2 "Temperature sensor insertion port 3 Heat exchange straight pipe 4 Heat exchange medium outlet 5 Heat exchange fluid inlet 6 Upper end Seal material liquid contact surface 7 Lower end seal material liquid contact surface 8 Heat exchange fluid chamber 9 Housing wall 10 Rib 11 Needle tube 12 R part L Tail line between the seal material and housing inner wall surface M Seal material and Tangent line where the inner wall surface of the housing is in contact tangent line where the N seal material is in contact with the inner wall surface of the housing O Tangent line where the seal material is in contact with the inner wall surface of the housing

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 上端部側および下端部側のうちの一方の
端部側に設けられた熱交換媒体用流出口と他方の端部側
に設けられた熱交換媒体用流入口と、前記媒体流入口と
該媒体流出口の間の位置に設けられた熱交換流体用流入
口と熱交換流体用流出口とを有する筒状ハウジング
(A)と、該筒状ハウジング(A)内に配設された複数
の熱交換用直管(B)と、前記熱交換流体用流入口と熱
交換流体用流出口に連通する熱交換流体室(C)と、前
記熱交換媒体流入口と熱交換媒体流出口に連通する熱交
換媒体室(D)と、前記複数の熱交換用直管(B)の両
端部を固定し、かつ前記熱交換媒体室(D)と前記熱交
換流体室(C)とを液密に隔絶する両端部のシール材
(E)を有する熱交換器において、前記熱交換流体室
(C)の下端部側に熱交換流体用流入口、また上端部に
熱交換流体用流出口が設けられ、かつ前記両端部側のシ
ール材のうちの少なくとも上端部側のシ−ル材の熱交換
流体との接触面(以下、液接触面とも言う。)が、水平
面に対して傾斜したものであることを特徴とする熱交換
器。
1. A heat exchange medium outlet provided on one end side of the upper end side and the lower end side, a heat exchange medium inlet port provided on the other end side, and the medium. A tubular housing (A) having a heat exchange fluid inlet and a heat exchange fluid outlet provided between the inlet and the medium outlet, and disposed inside the tubular housing (A) A plurality of heat exchange straight pipes (B), a heat exchange fluid chamber (C) communicating with the heat exchange fluid inlet and the heat exchange fluid outlet, the heat exchange medium inlet and the heat exchange medium A heat exchange medium chamber (D) communicating with the outlet and both ends of the plurality of heat exchange straight pipes (B) are fixed, and the heat exchange medium chamber (D) and the heat exchange fluid chamber (C) are fixed. In a heat exchanger having sealing materials (E) at both ends for liquid-tightly separating the heat exchange fluid from the heat exchange fluid chamber (C), A body inlet, a heat exchange fluid outlet is provided at the upper end portion, and at least the seal material on the upper end portion side of the seal material on the both end side contact surfaces with the heat exchange fluid (hereinafter, (Also referred to as a liquid contact surface) is inclined with respect to a horizontal plane.
【請求項2】 下端部側に設けられた熱交換媒体用流出
口と上端部側に設けられた熱交換媒体用流入口と、該媒
体流入口と該媒体流出口の間の位置に設けられた熱交換
流体用流入口と熱交換流体用流出口とを有する筒状ハウ
ジング(A)と、該筒状ハウジング(A)内に配設され
た複数の熱交換用直管(B)と、前記熱交換流体用流入
口と熱交換流体用流出口に連通する熱交換流体室(C)
と、前記熱交換媒体流入口と熱交換媒体流出口に連通す
る熱交換媒体室(D)と、前記複数の熱交換用直管
(B)の両端部を固定し、かつ前記熱交換媒体室(D)
と前記熱交換流体室(C)とを液密に隔絶する両端部の
シール材(E)を有する熱交換器において、前記熱交換
流体室(C)の下端部側に熱交換流体用流入口、また上
端部に熱交換流体用流出口が設けられ、かつ前記熱交換
流体室(C)の内壁の少なくとも一部に、液流方向に沿
った縦長のリブ(F)が設けられていることを特徴とす
る熱交換器。
2. A heat exchange medium outlet provided on the lower end side, a heat exchange medium inlet provided on the upper end side, and a position provided between the medium inlet and the medium outlet. A tubular housing (A) having a heat exchange fluid inlet and a heat exchange fluid outlet, and a plurality of heat exchange straight pipes (B) arranged in the tubular housing (A), A heat exchange fluid chamber (C) communicating with the heat exchange fluid inlet and the heat exchange fluid outlet
A heat exchange medium chamber (D) communicating with the heat exchange medium inlet and the heat exchange medium outlet, and both ends of the plurality of heat exchange straight pipes (B) are fixed, and the heat exchange medium chamber (D)
In a heat exchanger having sealing members (E) at both ends for liquid-tightly separating the heat exchange fluid chamber (C), a heat exchange fluid inlet port is provided on a lower end side of the heat exchange fluid chamber (C). A heat exchange fluid outlet is provided at the upper end, and a longitudinally long rib (F) along the liquid flow direction is provided on at least a part of the inner wall of the heat exchange fluid chamber (C). A heat exchanger characterized by.
【請求項3】 熱交換媒体用流入口が筒状ハウジングの
上端部側、また熱交換媒体用流出口が筒状ハウジングの
下端部に設けられたものであることを特徴とする請求項
1または2記載の熱交換器。
3. The heat exchange medium inlet is provided at the upper end side of the tubular housing, and the heat exchange medium outlet is provided at the lower end of the tubular housing. The heat exchanger according to 2.
【請求項4】 請求項2または3記載の熱交換器におい
て、前記両端部側のシール材(E)のうちの少なくとも
上端部側のシール材の液接触面が、水平面に対して傾斜
したものであることを特徴とする熱交換器。
4. The heat exchanger according to claim 2 or 3, wherein the liquid contact surface of at least the upper end side seal member of the seal members (E) on both end sides is inclined with respect to a horizontal plane. A heat exchanger characterized in that
【請求項5】 請求項1、3または4記載の熱交換器に
おいて、下端部側シール材(E)の傾斜は、熱交換流体
用流入口から離れるに従って上がっており、また、上端
部側シール材(E)の液接触面側の傾斜は熱交換流体用
流出口から離れるに従って下がっていることを特徴とす
る熱交換器。
5. The heat exchanger according to claim 1, 3 or 4, wherein the inclination of the lower end side seal material (E) increases as the distance from the heat exchange fluid inlet increases, and the upper end side seal is also increased. The heat exchanger characterized in that the inclination of the material (E) on the liquid contact surface side is lowered as the distance from the heat exchange fluid outlet is increased.
【請求項6】 請求項1、3、4または5記載の熱交換
器において、上端部および/または下端部側のシール材
(E)の液接触面の傾斜角度が5〜35゜であることを
特徴とする熱交換器。
6. The heat exchanger according to claim 1, 3, 4 or 5, wherein the inclination angle of the liquid contact surface of the seal material (E) at the upper end portion and / or the lower end portion is 5 to 35 °. A heat exchanger characterized by.
【請求項7】 請求項1、2、3、4、5または6記載
の熱交換器において、熱交換流体室(C)の下部および
/または上部の内周壁に沿って溝(G)を設けたことを
特徴とする熱交換器。
7. The heat exchanger according to claim 1, 2, 3, 4, 5 or 6, wherein a groove (G) is provided along an inner peripheral wall of a lower portion and / or an upper portion of the heat exchange fluid chamber (C). A heat exchanger characterized by that.
【請求項8】 請求項1、2、3、4、5、6または7
記載の熱交換器において、筒状ハウジング(A)が面取
りされたR部を4隅に有するものであって、かつ針管の
両端部を固定する針管配列板(H)の4隅が前記筒状ハ
ウジング(A)のR部に対応するように面取りされたも
のであることを特徴とする熱交換器。
8. The method of claim 1, 2, 3, 4, 5, 6, or 7.
The heat exchanger according to claim 1, wherein the cylindrical housing (A) has chamfered R portions at four corners, and the four corners of the needle tube array plate (H) for fixing both ends of the needle tube are the cylindrical shape. A heat exchanger characterized by being chamfered so as to correspond to the R part of the housing (A).
【請求項9】 請求項1、2、3、4、5、6または7
記載の熱交換器において、縦長のリブが筒状ハウジング
内壁と近接する直管の間に配設されたことを特徴とする
熱交換器。
9. The method of claim 1, 2, 3, 4, 5, 6, or 7.
The heat exchanger according to claim 1, wherein a vertically long rib is provided between the inner wall of the cylindrical housing and a straight pipe adjacent thereto.
【請求項10】 体外血液循環回路設置用である請求項
1、2、3、4、5、6、7、8または9記載の熱交換
器。
10. The heat exchanger according to claim 1, which is for installation in an extracorporeal blood circulation circuit.
JP7264911A 1995-09-19 1995-09-19 Heat exchanger with good air bubble removal Expired - Lifetime JP2850804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7264911A JP2850804B2 (en) 1995-09-19 1995-09-19 Heat exchanger with good air bubble removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7264911A JP2850804B2 (en) 1995-09-19 1995-09-19 Heat exchanger with good air bubble removal

Publications (2)

Publication Number Publication Date
JPH0975451A true JPH0975451A (en) 1997-03-25
JP2850804B2 JP2850804B2 (en) 1999-01-27

Family

ID=17409926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7264911A Expired - Lifetime JP2850804B2 (en) 1995-09-19 1995-09-19 Heat exchanger with good air bubble removal

Country Status (1)

Country Link
JP (1) JP2850804B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515055A (en) * 1997-05-14 2000-11-14 アヴェコー・カーディオバスキュラー・インコーポレーテッド Heat exchanger for medical use
JP2013257051A (en) * 2012-06-11 2013-12-26 Fujifilm Corp Horizontal heat exchanger, and condensation apparatus
JP2014087573A (en) * 2012-10-31 2014-05-15 Kawasumi Lab Inc Heat exchanger and heat exchange implement having heat exchanger and fluid passage closing means for heat exchanger
WO2015046224A1 (en) * 2013-09-24 2015-04-02 株式会社ジェイ・エム・エス Artificial lung with integrated filter and method for producing same
CN112105401A (en) * 2018-05-16 2020-12-18 日机装株式会社 pressure detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515055A (en) * 1997-05-14 2000-11-14 アヴェコー・カーディオバスキュラー・インコーポレーテッド Heat exchanger for medical use
JP2013257051A (en) * 2012-06-11 2013-12-26 Fujifilm Corp Horizontal heat exchanger, and condensation apparatus
JP2014087573A (en) * 2012-10-31 2014-05-15 Kawasumi Lab Inc Heat exchanger and heat exchange implement having heat exchanger and fluid passage closing means for heat exchanger
WO2015046224A1 (en) * 2013-09-24 2015-04-02 株式会社ジェイ・エム・エス Artificial lung with integrated filter and method for producing same
CN105555333A (en) * 2013-09-24 2016-05-04 株式会社Jms Artificial lung with integrated filter and method for producing same
JPWO2015046224A1 (en) * 2013-09-24 2017-03-09 株式会社ジェイ・エム・エス Built-in filter type artificial lung and manufacturing method thereof
CN105555333B (en) * 2013-09-24 2018-05-08 株式会社Jms Filter internally-arranged type artificial lung and its manufacture method
CN112105401A (en) * 2018-05-16 2020-12-18 日机装株式会社 pressure detector
CN112105401B (en) * 2018-05-16 2023-06-23 日机装株式会社 Pressure detector

Also Published As

Publication number Publication date
JP2850804B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
EP0243796B1 (en) Hollow fiber-type artificial lung
US5269749A (en) Heat exchange device for inducing cardioplegia
US20060177343A1 (en) Extracorporeal blood handling system with integrated heat exchanger
EP0176651A2 (en) Heat exchanger and blood oxygenating device furnished therewith
US11724014B2 (en) Membrane oxygenator with built-in filter
JPH0975451A (en) Heat exchanger with high bubble removing function
JP4037913B2 (en) Heat exchanger for medical use
JP5930291B2 (en) Hollow fiber membrane oxygenator
GB1604956A (en) Heat exchangers for regulating the temperature of blood in an extracorporeal circuit
Perlo et al. Distribution of red and white blood cells in alveolar walls
KR900006851B1 (en) Extracorporeal blood circulating apparatus
JPS5955256A (en) Hollow yarn type artificial lung
JP4114020B2 (en) Extracorporeal blood circulation apparatus having gas heat exchange means
JPH0111249Y2 (en)
JPH0223309Y2 (en)
JPH0223310Y2 (en)
JP3597892B2 (en) Artificial lung and artificial lung with heat exchanger
JP3428247B2 (en) Heat exchanger with filter
JPH05317419A (en) Medical liquid processor
JP3092855B2 (en) Blood reservoir
JPS62691Y2 (en)
JP3092856B2 (en) Blood reservoir
KR910005410B1 (en) Extracorporeal blood circulating apparatus
JPWO2020100693A1 (en) Heat exchanger
JPH0737192U (en) Hollow fiber type oxygenator