JPH0970521A - Method for removing carbon dioxide in waste combustion gas - Google Patents
Method for removing carbon dioxide in waste combustion gasInfo
- Publication number
- JPH0970521A JPH0970521A JP7226369A JP22636995A JPH0970521A JP H0970521 A JPH0970521 A JP H0970521A JP 7226369 A JP7226369 A JP 7226369A JP 22636995 A JP22636995 A JP 22636995A JP H0970521 A JPH0970521 A JP H0970521A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hollow fiber
- membrane
- pressure
- lng
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/80—Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/70—Flue or combustion exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/80—Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
- F25J2220/82—Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/904—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は火力発電所からの燃
焼排ガス中のCO2 の除去方法に関する。TECHNICAL FIELD The present invention relates to a method for removing CO 2 in combustion exhaust gas from a thermal power plant.
【0002】[0002]
【従来の技術】煙道排ガス中のCO2 の処理は、CO2
を吸収液に吸収させ、次にこの吸収液からCO2 を放散
させる吸収液法と呼ばれる方法が一般的である。すなわ
ち、この方法は図3に示すように、排ガス1を吸収塔3
に送り、ここで吸収液4と接触させてCO2 を吸収さ
せ、排ガス1は処理ガス2となって大気に放出される。
使用済吸収液5は吸収塔3の塔底より抜き出され、使用
済吸収液送液ポンプ6にて熱交換器7で昇温後、再生塔
8に送られる。再生塔8では、リボイラ9で発生した水
蒸気と使用済吸収液5と接触させることにより、CO2
が使用済吸収液より放散されて凝縮器10に送られ、こ
こでCO2 ガス11と水12(液)に分離され、CO2
ガス11は更に液化塔13にて冷却されて液化CO
2 (符号14)に液化され、系外に取り出される。一
方、再生塔8で再生された吸収液(再生吸収液15)は
再生塔8の塔底より抜き出され、再生吸収液送液ポンプ
16にて熱交換器7で冷却後、吸収塔3の頂部にフィー
ドされ再使用される。2. Description of the Related Art The treatment of CO 2 in flue gas is carried out using CO 2
Is generally used for absorbing CO 2 and then CO 2 is diffused from the absorbing solution. That is, in this method, as shown in FIG.
The CO 2 is absorbed by contacting the absorption liquid 4 therewith, and the exhaust gas 1 becomes the processing gas 2 and is released to the atmosphere.
The used absorption liquid 5 is withdrawn from the bottom of the absorption tower 3, heated by the used absorption liquid transfer pump 6 in the heat exchanger 7, and then sent to the regeneration tower 8. In the regeneration tower 8, the steam generated in the reboiler 9 is brought into contact with the used absorption liquid 5 to generate CO 2
Is emitted from the used absorption liquid and sent to the condenser 10, where it is separated into CO 2 gas 11 and water 12 (liquid), and CO 2
The gas 11 is further cooled in the liquefaction tower 13 and liquefied CO
2 (reference numeral 14) is liquefied and taken out of the system. On the other hand, the absorption liquid regenerated in the regeneration tower 8 (regenerated absorption liquid 15) is withdrawn from the bottom of the regeneration tower 8, cooled by the regenerated absorption liquid feed pump 16 in the heat exchanger 7, and then stored in the absorption tower 3. It is fed to the top and reused.
【0003】[0003]
【発明が解決しようとする課題】煙道排ガス中のCO2
処理の実用化に際して最も重要なことはCO2 処理に必
要なエネルギの低減とそのための装置のコンパクト化で
ある。従来法では大量の排ガスと吸収液を接触させるた
め、吸収塔が大きくなったり、CO2 を吸収した使用済
吸収液を再生塔で熱によってCO2 を放散させるため、
これに要す熱量が高いというような問題点があった。CO 2 in flue gas
The most important factor in the practical application of the treatment is the reduction of the energy required for the CO 2 treatment and the downsizing of the apparatus therefor. Since the conventional method of contacting the absorption liquid with a large amount of exhaust gas, for dissipating CO 2 by heat or increased absorption tower, the spent absorbent that has absorbed CO 2 in the regeneration tower,
There was a problem that the amount of heat required for this was high.
【0004】また、LNG焚き火力発電所では、ほぼ大
気圧、−162℃で貯蔵されているLNGを燃料として
使用する際にポンプで昇圧し、外部より熱(例えば、海
水保有熱)を加えて気化し、常温程度まで加熱するがこ
の時に発生する冷熱の大部分は有効に利用されず捨てら
れていた。In the LNG-fired thermal power plant, when LNG stored at about atmospheric pressure and -162 ° C. is used as a fuel, the pressure is increased by a pump and heat (for example, seawater holding heat) is added from the outside. It vaporizes and heats to about room temperature, but most of the cold heat generated at this time was not used effectively and was discarded.
【0005】本発明は上記技術水準に鑑み、従来法にお
けるCO2 ガス吸収除去に伴う装置の大型化、必要エネ
ルギの増大化という問題を解決すると共に、LNG焚き
火力発電所におけるLNGの有効利用を図ることができ
る火力発電所からの燃焼排ガスから合目的にCO2 を除
去する方法を提供しようとするものである。In view of the above-mentioned state of the art, the present invention solves the problems of increasing the size of equipment and increasing the required energy associated with CO 2 gas absorption and removal in the conventional method, and at the same time, makes effective use of LNG in an LNG-fired power plant. An object of the present invention is to provide a method for purposefully removing CO 2 from combustion exhaust gas from a thermal power plant.
【0006】[0006]
【課題が解決するための手段】本発明は火力発電所の脱
硝・脱硫処理した燃焼排ガスあるいは脱硝処理した燃焼
排ガスをCO2 選択透過性中空糸膜型ガス分離膜によっ
て該排ガス中のCO2を分離するに際し、該ガス分離装
置からの透過ガスであるCO2 を液化天然ガスの冷熱を
用いて冷却、固化して減容化することにより該ガス分離
装置の中空糸膜内部を減圧し、燃焼排ガスの圧力と中空
糸内部の圧力との差圧を駆動力として燃焼排ガス中のC
O2 を膜分離することを特徴とする燃焼排ガス中のCO
2 の除去方法である。Means for problem is solved of the present invention the CO 2 in the exhaust gas combustion exhaust gas flue gas or denitration process was denitration and desulfurization process of thermal power plants by CO 2 selectively permeable hollow fiber membrane type gas separation membrane At the time of separation, CO 2 which is a permeating gas from the gas separation device is cooled by using cold heat of liquefied natural gas, solidified to reduce the volume, and the inside of the hollow fiber membrane of the gas separation device is decompressed and burned. C in the combustion exhaust gas using the pressure difference between the exhaust gas pressure and the internal pressure of the hollow fiber as the driving force.
CO in flue gas characterized by membrane separation of O 2
Method 2 of removal.
【0007】[0007]
【発明の実施の形態】まず、本発明は装置のコンパクト
化のためにCO2 を排ガスから分離する手段として、単
位体積当りガスとの接触面積が大きくとれる中空糸膜型
ガス分離膜を採用し、これを煙道の一部を拡大し、この
中に設置する。中空糸膜型ガス分離膜としては官能基,
分子量により多数の種類があるが、一般に内径:数百μ
m,肉厚:数十μmのポリイミド膜が使用される。BEST MODE FOR CARRYING OUT THE INVENTION First, the present invention employs a hollow fiber membrane-type gas separation membrane capable of taking a large contact area with a gas per unit volume as means for separating CO 2 from exhaust gas in order to make the apparatus compact. , Expand this part of the flue and install it in this. The hollow fiber membrane type gas separation membrane has a functional group,
There are many types depending on the molecular weight, but generally the inner diameter is several hundred μ
m, wall thickness: a polyimide film of several tens of μm is used.
【0008】次にエネルギ低減のために中空糸膜型ガス
分離膜は通例加圧あるいは中空糸膜内部を真空ポンプで
減圧して使用されるが、中空糸膜型ガス分離膜の透過ガ
スをLNG冷熱により液化減容することにより中空糸膜
内部を減圧し、大気圧との差圧を駆動力として排ガス中
のCO2 を膜透過することにより分解する。これはCO
2 の沸点が−78.48℃(1atm=1.03kg/
cm2 )で、−100℃の飽和圧力が0.12kg/c
m2 であるため、約−162℃のLNG冷熱を用いれば
原理的に可能である。Next, in order to reduce energy, the hollow fiber membrane type gas separation membrane is usually used by pressurizing or depressurizing the inside of the hollow fiber membrane with a vacuum pump. The permeated gas of the hollow fiber membrane type gas separation membrane is LNG. The inside of the hollow fiber membrane is decompressed by liquefying and reducing the volume by cold heat, and CO 2 in the exhaust gas is permeated through the membrane using the pressure difference from the atmospheric pressure as a driving force to decompose. This is CO
2 has a boiling point of −78.48 ° C. (1 atm = 1.03 kg /
cm 2 ), the saturation pressure at −100 ° C. is 0.12 kg / c
Since it is m 2, it is possible in principle by using LNG cold heat of about -162 ° C.
【0009】なお、中空糸膜型ガス分離膜を透過したC
O2 中には少量のN2 ,O2 等の不純物が含有される
が、これらはLNG冷熱によるCO2 ガスの固化の際に
残存ガスとして分解され、真空ポンプにより除去され
る。C passed through the hollow fiber membrane type gas separation membrane
Although O during 2 small N 2, impurities such as O 2 is contained, they are decomposed as a residual gas during the solidification of the CO 2 gas by LNG cold, it is removed by a vacuum pump.
【0010】本発明をLNG焚き火力発電所等の脱硝・
脱硫処理した燃焼排ガスあるいは脱硝処理した燃焼排ガ
スの煙道排ガス中のCO2 処理として適用した場合、従
来装置に比べ装置がコンパクトになるとともにエネルギ
消費量が低減できる。更にLNG冷熱の有効利用をも可
能とする。The present invention is applied to denitration of LNG-fired thermal power plants, etc.
When applied as CO 2 treatment in flue gas of desulfurized combustion exhaust gas or denitration-treated combustion exhaust gas, the device becomes more compact and energy consumption can be reduced as compared with the conventional device. It also enables effective use of LNG cold heat.
【0011】[0011]
【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を明らかにする。EXAMPLES The effects of the present invention will be clarified by giving concrete examples of the present invention.
【0012】(実施例1) (実施例1の構成)本発明をLNG焚きの火力発電所の
煙道排ガス中のCO2 処理に適用した場合の実施例を、
以下図1を参照しながら説明する。排ガス1はCO2 と
他のN2 ,O2 等の分離能をもった中空糸膜型ガス分離
膜17に導かれる。中空糸膜内部はLNG冷熱19によ
り冷却される固化塔20内の飽和圧まで減圧されている
ため、CO2 と少量のN2 ,O2 等18が優先的にその
分圧に従って膜を透過する。中空糸膜を透過したガスは
固化塔20でLNG冷熱19により冷却され、固化CO
2 21とN2 ,O2 等よりなる少量の不純ガス22に分
離される。固化CO221は系外に取り出され、不純ガ
ス22は真空ポンプ23で吸引され、中空糸膜型ガス分
離膜17で中空糸膜を透過しなかったガスと合流し、処
理ガス2として大気中に放出される。(Example 1) (Structure of Example 1) An example in which the present invention is applied to CO 2 treatment in flue gas of a LNG-fired thermal power plant,
Hereinafter, description will be given with reference to FIG. The exhaust gas 1 is guided to the hollow fiber membrane type gas separation membrane 17 having the ability to separate CO 2 and other N 2 , O 2 and the like. Since the inside of the hollow fiber membrane is depressurized to the saturation pressure in the solidification tower 20 cooled by the LNG cold heat 19, CO 2 and a small amount of N 2 , O 2, etc. 18 preferentially permeate the membrane according to the partial pressure. . The gas that has passed through the hollow fiber membrane is cooled by the LNG cold heat 19 in the solidification tower 20 and solidified CO
Is separated into two 21 and N 2, a small amount of impure gas consisting O 2 or the like 22. The solidified CO 2 21 is taken out of the system, the impure gas 22 is sucked by the vacuum pump 23, merges with the gas that has not permeated the hollow fiber membrane in the hollow fiber membrane-type gas separation membrane 17, and is used as a treatment gas 2 in the atmosphere. Is released to.
【0013】(実施例1の実験例)圧力:大気圧(1.
03ata),温度:100℃のCO2 :8.55vo
l%,O2 :2.41vol%,N2 :71.77vo
l%,H2 O:17.27vol%からなる排ガスを、
径:約300μm,膜厚:約40μmのポリイミド膜の
中空糸膜と接触させ、中空糸膜を透過するCO2 を主成
分とするガスを−160℃の冷熱によって冷却すると、
中空糸膜内は0.8〜0.9ata程度に減圧され、そ
の差圧が駆動力となって、排ガス中のCO2 の0〜40
%が分離採取される。(Experimental Example 1) Pressure: atmospheric pressure (1.
03ata), temperature: CO 2 at 100 ° C .: 8.55 vo
1%, O 2 : 2.41 vol%, N 2 : 71.77vo
1%, H 2 O: 17.27vol% exhaust gas,
When a gas having CO 2 as a main component which permeates the hollow fiber membrane is cooled by cold heat of −160 ° C., it is brought into contact with a hollow fiber membrane of a polyimide membrane having a diameter of about 300 μm and a film thickness of about 40 μm.
The inside of the hollow fiber membrane is depressurized to about 0.8 to 0.9 ata, and the differential pressure acts as a driving force, and 0 to 40% of CO 2 in the exhaust gas is reduced.
% Is separated and collected.
【0014】(実施例2)図2は煙道排ガス中のCO2
処理装置のCO2 ガス分離部の1例を示す。煙道の一部
を拡大したCO2 分離部24の中に中空糸膜型分離膜1
7が設置されている。排ガス1がCO2 分離部24に導
かれ、中空糸膜型分離膜17にてCO2 (少量のN2 ,
O2 等を含む)18と処理ガス2に分離される。(Embodiment 2) FIG. 2 shows CO 2 in flue gas.
An example of a CO 2 gas separation unit of the processing apparatus is shown. The hollow fiber membrane type separation membrane 1 is placed in the CO 2 separation section 24 in which a part of the flue is enlarged.
7 is installed. The exhaust gas 1 is guided to the CO 2 separation unit 24, and CO 2 (a small amount of N 2 ,
18 (including O 2 etc.) and the processing gas 2.
【0015】[0015]
(1) 単位面積当りのガスとの接触面積が大きくとれ
る中空糸膜型ガス分離膜を使い、これを煙道の一部を拡
大して設置することにより従来装置に比べコンパクトに
できる。 (2) 中空糸膜型ガス分離膜の透過ガスをLNG冷熱
により液化減容することにより中空糸内部を減圧し大気
圧を利用してCO2 を透過させ、又、CO2 中の少量の
N2 ,O2 等の不純物はLNG冷熱によるCO2 の固化
の際に分離し真空ポンプにより除去することにより、エ
ネルギ消費量を従来装置に比べ低減できる。 (3) 更に、これまで大部分が捨てられていたLNG
冷熱の有効利用が可能となる。(1) By using a hollow fiber membrane type gas separation membrane that allows a large contact area with gas per unit area and installing a part of the flue gas in an enlarged manner, it can be made more compact than the conventional device. (2) The permeated gas of the hollow fiber membrane-type gas separation membrane is liquefied and reduced by LNG cold heat to reduce the pressure inside the hollow fiber and use atmospheric pressure to permeate CO 2 and also to permeate a small amount of N 2 in CO 2. Impurities such as 2 , O 2 and the like are separated when the CO 2 is solidified by LNG cold heat and removed by a vacuum pump, so that the energy consumption can be reduced as compared with the conventional device. (3) Furthermore, most of the LNG that has been discarded so far
Effective use of cold heat becomes possible.
【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.
【図2】本発明の他の実施例の説明図。FIG. 2 is an explanatory view of another embodiment of the present invention.
【図3】従来の排ガス中のCO2 除去方法の説明図。FIG. 3 is an explanatory view of a conventional method for removing CO 2 in exhaust gas.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿久津 信男 神奈川県横浜市鶴見区江ケ崎町4−1 東 京電力株式会社エネルギー・環境研究所内 (72)発明者 北村 光 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 安藤 喜昌 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 松本 曠世 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 影山 靖夫 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Akutsu 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toki Electric Power Co., Inc. Energy and Environmental Laboratory (72) Inventor, Hikaru Kitamura Wadazaki, Hyogo-ku, Kobe-shi, Hyogo Prefecture 1-1-1 Machi Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Yoshimasa Ando 1-1-1, Wadasakicho, Hyogo-ku, Kobe, Hyogo Prefecture Mitsubishi Heavy Industries Ltd. Kobe Shipyard (72) Inventor Matsumoto Hikiyo 2-1-1 Niihama, Arai-cho, Takasago, Hyogo Mitsubishi Heavy Industries Ltd. Takasago Research Laboratory (72) Inventor Yasuo Kageyama 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.
Claims (1)
ガスあるいは脱硝処理した燃焼排ガスをCO2 選択透過
性中空糸膜型ガス分離膜によって該排ガス中のCO2 を
分離するに際し、該ガス分離装置からの透過ガスである
CO2 を液化天然ガスの冷熱を用いて冷却、固化して減
容化することにより該ガス分離装置の中空糸膜内部を減
圧し、燃焼排ガスの圧力と中空糸内部の圧力との差圧を
駆動力として燃焼排ガス中のCO2 を膜分離することを
特徴とする燃焼排ガス中のCO 2 の除去方法。1. A combustion exhaust gas subjected to denitration / desulfurization treatment of a thermal power plant.
CO or flue gas that has undergone denitration treatment2Selective transparency
Of CO in the exhaust gas by a gas-permeable hollow fiber membrane type gas separation membrane2To
When separating, it is the permeated gas from the gas separation device.
CO2Is cooled and solidified by using the cold heat of liquefied natural gas.
Volume inside the hollow fiber membrane of the gas separator
The pressure difference between the combustion exhaust gas pressure and the hollow fiber pressure.
CO in combustion exhaust gas as driving force2The membrane separation
Characteristic CO in combustion exhaust gas 2Removal method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7226369A JPH0970521A (en) | 1995-09-04 | 1995-09-04 | Method for removing carbon dioxide in waste combustion gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7226369A JPH0970521A (en) | 1995-09-04 | 1995-09-04 | Method for removing carbon dioxide in waste combustion gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0970521A true JPH0970521A (en) | 1997-03-18 |
Family
ID=16844067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7226369A Withdrawn JPH0970521A (en) | 1995-09-04 | 1995-09-04 | Method for removing carbon dioxide in waste combustion gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0970521A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024070A (en) * | 2008-07-16 | 2010-02-04 | Nissan Motor Co Ltd | Hydrogen generator |
WO2012162690A3 (en) * | 2011-05-26 | 2015-04-02 | Baxter Larry L | Systems and methods for separating condensable vapors from light gases or liquids by recuperative cryogenic processes |
US11883778B2 (en) * | 2017-01-10 | 2024-01-30 | Cameron International Corporation | Carbon dioxide and hydrogen sulfide recovery system using a combination of membranes and low temperature cryogenic separation processes |
-
1995
- 1995-09-04 JP JP7226369A patent/JPH0970521A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024070A (en) * | 2008-07-16 | 2010-02-04 | Nissan Motor Co Ltd | Hydrogen generator |
WO2012162690A3 (en) * | 2011-05-26 | 2015-04-02 | Baxter Larry L | Systems and methods for separating condensable vapors from light gases or liquids by recuperative cryogenic processes |
US11883778B2 (en) * | 2017-01-10 | 2024-01-30 | Cameron International Corporation | Carbon dioxide and hydrogen sulfide recovery system using a combination of membranes and low temperature cryogenic separation processes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5273572A (en) | Process for removing an organic compound from water | |
US5256295A (en) | Two-stage membrane process and apparatus | |
JP4017387B2 (en) | Carbon dioxide recovery under high pressure | |
SU831053A3 (en) | Method of natural gas purification from carbon dioxide and hydrogen sulfide | |
US5209762A (en) | Method and system for controlling emissions from glycol dehydrators | |
US5256296A (en) | Membrane process and apparatus for removing a component from a fluid stream | |
US6789288B2 (en) | Natural gas dehydration process and apparatus | |
EP0571997A1 (en) | Moisture removal from a wet gas | |
CA2162575A1 (en) | Controlling emissions from glycol dehydrators | |
JP2012529364A (en) | Method and recycling device for recycling CO2 absorbent | |
JPH0732483U (en) | Device for producing dry high-purity nitrogen and / or dry high-purity oxygen from supply air | |
EP1405662A3 (en) | CO2 recovery process for supercritical extraction | |
JP3238317B2 (en) | Low-temperature rectification system for fluorine compound recovery | |
EP0641244A1 (en) | Treatment of acid gas using hybrid membrane separation systems | |
RU2006135928A (en) | USE OF CRYOGENIC TEMPERATURES IN THE PROCESSING OF GASES CONTAINING LIGHT COMPONENTS USING PHYSICAL SOLVENTS | |
JPH0970521A (en) | Method for removing carbon dioxide in waste combustion gas | |
JP2012236123A (en) | Carbon dioxide separation and recovery system in exhaust gas by zeolite membrane | |
US7132008B2 (en) | Natural gas dehydration apparatus | |
CN207628185U (en) | The joint of carbon dioxide in flue gas and nitrogen traps retracting device | |
JPH11142053A (en) | Cryogenic rectification system for recovering fluorine compound | |
US12017180B2 (en) | Improving sulfur recovery operations with processes based on novel CO2 over SO2 selective membranes and its combinations with SO2 over CO2 selective membranes | |
CN1030821C (en) | Method for recovering hydrogen from catalytic dry gas by membrane separation technology | |
JP2773858B2 (en) | Method and apparatus for separating air | |
JP2832371B2 (en) | Organic solvent vapor recovery method | |
JP2004003836A (en) | Method and device for manufacturing nitrogen-enriched vapor product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021105 |