[go: up one dir, main page]

JPH0968462A - Device for measuring reflection coefficient - Google Patents

Device for measuring reflection coefficient

Info

Publication number
JPH0968462A
JPH0968462A JP24390195A JP24390195A JPH0968462A JP H0968462 A JPH0968462 A JP H0968462A JP 24390195 A JP24390195 A JP 24390195A JP 24390195 A JP24390195 A JP 24390195A JP H0968462 A JPH0968462 A JP H0968462A
Authority
JP
Japan
Prior art keywords
measured
error
deviation
inclination
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24390195A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mizuno
利幸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24390195A priority Critical patent/JPH0968462A/en
Publication of JPH0968462A publication Critical patent/JPH0968462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an accurate measuring value even if dissociation and inclination are produced on a face to be measured. SOLUTION: A luminous flux from an illumination light source 22 illuminates a face S to be measured from the two directions of 45 degrees. Reflection light from the face S is photo-converted by a photo-diode array 28, transmitted to CPU 31 through an A/D converter 29, and necessary calculation is performed in a reflection coefficient calculation means 43 and a color calculation means 44 in CPU 31. The luminous flux emitted from a detection illumination light source 32 forms a point image on the face S by a light emission optical system 33, the point image is formed on a photo-diode array 36 by a dissociation error detection optical system 34, transmitted to a dissociation error detection means 45 through an A/D converter 38, and the presence of a dissociation error is detected. On the other hand, the luminous flux positively reflected on the face S enters an inclination error detection optical system 35, a point image is formed on an inclination error detection area sensor 37, an electrical signal is transmitted to an inclination error detection means 46, and the presence of an inclination error having corrected the previous dissociation error is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物体の反射光量を
光電変換手段により高精度に測定する反射率測定装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflectance measuring device that measures the amount of reflected light from an object with high accuracy by photoelectric conversion means.

【0002】[0002]

【従来の技術】最近では、反射率測定装置は反射率をそ
のまま使用するだけでなく、分光反射率を測定し、印刷
や物体色の色彩値、光沢度等の測定にも使用されるよう
になり、高精度の要求は強くなっている。
2. Description of the Related Art Recently, reflectance measuring devices have been used not only to directly use the reflectance but also to measure the spectral reflectance and to measure the color value, glossiness, etc. of printing or object color. Therefore, the demand for high precision is becoming stronger.

【0003】反射率を測定し色彩値を求める方法は、日
本工業規格JIS−Z8722「物体色の測定方法」で
種々規定されている。この中に、測定条件a、測定条件
bという2つの測定方法がある。これらは照明系と受光
系の配置が被測定物面の法線に対して、45度離れてい
るか法線上(0度)にあるかの違いであり、幾何学的配
置は同じと考えてよく、一般的には45−0法、又は0
−45法と呼ばれている。
Various methods for measuring reflectance and obtaining color values are specified in Japanese Industrial Standard JIS-Z8722 "Measuring method for object color". Among these, there are two measuring methods, measuring condition a and measuring condition b. These are the differences in whether the illumination system and the light receiving system are arranged 45 degrees apart or on the normal line (0 degree) with respect to the normal line of the object surface, and it can be considered that the geometrical arrangements are the same. , Generally 45-0 method, or 0
It is called the -45 method.

【0004】ここで、一般的には45−0法と呼ばれる
方式について、図3を用いて説明する。図3は45−0
方式の構成を示す概略図である。光源1a及び1bから
発した光束は、照明光学系2a及び2bで平行光束La及
びLbとなり、測定ヘッド部3から出射し、被測定面Sを
斜め45度方向の2個所から照明する。このとき、被測
定面Sを測定ヘッド部3に突き当てる方式と、一定の間
隔を保つ方式がある。図3は測定ヘッド部3と被測定面
Sが一定の間隔dを保っている。
Here, a method generally called the 45-0 method will be described with reference to FIG. Figure 3 is 45-0
It is the schematic which shows the structure of a system. The luminous fluxes emitted from the light sources 1a and 1b become parallel luminous fluxes La and Lb in the illumination optical systems 2a and 2b, which are emitted from the measurement head unit 3 and illuminate the surface S to be measured from two positions in the oblique 45 degree direction. At this time, there are a method of abutting the surface S to be measured against the measurement head unit 3 and a method of maintaining a constant interval. In FIG. 3, the measurement head unit 3 and the surface S to be measured maintain a constant distance d.

【0005】被測定面Sで反射された光束は上方の集光
光学系4を通り、波長毎の光強度を検出するフォトダイ
オードアレイ5に達し、それぞれの素子で検出された光
束は光電変換され、電気信号の強弱に変えられる。その
後に、A/D変換器6でデジタル化された信号は、波長
データと共にCPU7内のメモリ7a、7bに蓄えられ
る。
The light flux reflected by the surface S to be measured passes through the upper condensing optical system 4 and reaches the photodiode array 5 for detecting the light intensity for each wavelength, and the light flux detected by each element is photoelectrically converted. , It can be changed to the strength of the electric signal. After that, the signal digitized by the A / D converter 6 is stored in the memories 7a and 7b in the CPU 7 together with the wavelength data.

【0006】このとき、被測定物として反射率が既知の
標準反射板を選択して、反射の基準設定値をメモリ7a
に記憶し、被測定面Sの反射データをメモリ7bに記憶
して、CPU7内の反射率計算手段8により波長毎の反
射率を算出し、更に色彩値計算手段9によりJIS規定
の計算手法によって色空間の値を得ることができる。
At this time, a standard reflector having a known reflectance is selected as the object to be measured, and the reference set value of reflection is stored in the memory 7a.
The reflectance data of the surface S to be measured is stored in the memory 7b, the reflectance calculation means 8 in the CPU 7 calculates the reflectance for each wavelength, and the color value calculation means 9 uses the JIS prescribed calculation method. You can get the value of the color space.

【0007】[0007]

【発明が解決しようとしている課題】この反射率測定装
置においては、照射光学系2a、2bとフォトダイオー
ドアレイ5に至る集光光学系4が固定されている場合に
は測定の再現性が良い。ところが、従来装置は先に述べ
たように、被測定面Sと測定ヘッド部3を離して測定す
る方法と、密着させて測定する方法の2種類があって何
れかを選択することになるが、図3のような非接触で測
定する型式では、測定ヘッド部3と被測定面Sとの間隔
dや傾きが標準反射面と同じに保持できるとは限らず、
被測定面Sや測定者が代ると変化し易くなり測定誤差の
原因となる。
In this reflectance measuring device, the reproducibility of measurement is good when the irradiation optical systems 2a and 2b and the condensing optical system 4 reaching the photodiode array 5 are fixed. However, as described above, the conventional apparatus has two types of methods, that is, a method of separating the surface S to be measured and the measurement head unit 3 from each other and a method of closely contacting each other, and either method is selected. In the non-contact type as shown in FIG. 3, the distance d and the inclination between the measurement head unit 3 and the surface S to be measured cannot always be kept the same as those of the standard reflection surface.
If the surface S to be measured or the person to be measured is changed, it is likely to change and cause a measurement error.

【0008】この誤差を防ぐために従来方法では、被測
定面Sへの照明光光束を集光光学系4の有効径よりも小
さくする手段等を用いているが必ずしも有効ではない。
一方、測定ヘッド部3と被測定面Sを密着させて測定す
る装置では、間隔は比較的正確に設定できても傾きが発
生したり、測定ヘッド部3により試料面を傷付ける虞れ
や、紙や薄板のような物は測定面が凹凸になったりする
ことがあり、同様に測定の誤差原因となる。
In order to prevent this error, the conventional method uses a means for making the illumination light beam to the surface S to be measured smaller than the effective diameter of the condensing optical system 4, but it is not always effective.
On the other hand, in the device for measuring by closely contacting the measurement head section 3 and the surface S to be measured, there is a risk that the measurement head section 3 may cause an inclination, the measurement head section 3 may scratch the sample surface, or the paper may be damaged. An object such as a thin plate or a thin plate may have an uneven measurement surface, which similarly causes a measurement error.

【0009】拡散性の高い被測定物については、図4に
示す照明系11から照射された被測定面Sは、どの方向
にもほぼ均一な反射特性rを示すため、図5に示すよう
に被測定面Sが受光光学系12、受光部13に対し傾き
εが生じても測光量には変化が少ない。ところが、例え
ば図6のように被測定面Sが基準位置からdだけ乖離す
ると、受光光学系12への見掛けの立体角θ2 が図4の
立体角θ1 と比べて変化することになるため、受光部1
3に達する光量が変化する。
As for the object to be measured having a high diffusivity, the surface S to be measured irradiated from the illumination system 11 shown in FIG. 4 has a substantially uniform reflection characteristic r in any direction. Even if the surface S to be measured has an inclination ε with respect to the light receiving optical system 12 and the light receiving unit 13, there is little change in the photometric amount. However, for example, when the measured surface S deviates from the reference position by d as shown in FIG. 6, the apparent solid angle θ2 to the light receiving optical system 12 changes as compared with the solid angle θ1 in FIG. Part 1
The amount of light reaching 3 changes.

【0010】一方、拡散性が低く光沢のある被測定面S
については、図7に示す被測定面Sからの反射光Rは指
向性が強くなっているため、図8に示すように被測定面
Sが受光光学系12に対し傾きεを生ずると、受光光学
系12に集光される光束が変化し測光量の誤差となる。
ところが、図9に示すように測定面Sが基準位置から乖
離しても正反射した光束方向は変らず、拡散光が僅かに
変化するだけであるので、受光部13に入射する光量も
殆ど変化せず測定誤差が生ずることはない。
On the other hand, the surface S to be measured having a low diffusivity and gloss
As for the reflected light R from the surface S to be measured shown in FIG. 7, the directivity is strong. Therefore, when the surface S to be measured has an inclination ε with respect to the light receiving optical system 12 as shown in FIG. The light flux focused on the optical system 12 changes, resulting in an error in the photometric amount.
However, as shown in FIG. 9, even if the measurement surface S deviates from the reference position, the direction of the specularly reflected light beam does not change, and the diffused light changes only slightly. Without it, measurement error will not occur.

【0011】本発明の目的は、上述の問題点を解消し、
被測定物について乖離や傾きが生じても、正確な測定値
を得る反射率測定装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a reflectance measuring device that can obtain an accurate measurement value even if a deviation or a tilt occurs in the object to be measured.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る反射率測定装置においては、被測定試
料面で反射した光量を測定して反射率を求める測定装置
であって、前記被測定試料面の取付位置について、測定
基準位置からの乖離誤差検出手段と傾き誤差検出手段と
の少なくとも一方を備えたことを特徴とする。
In the reflectance measuring apparatus according to the present invention for achieving the above object, there is provided a measuring apparatus for measuring the amount of light reflected on a sample surface to be measured to obtain the reflectance. It is characterized in that at least one of a deviation error detecting means and a tilt error detecting means from a measurement reference position is provided with respect to the attachment position of the sample surface to be measured.

【0013】[0013]

【発明の実施の形態】本発明を図1、図2に図示の実施
例に基づいて詳細に説明する。図1は反射率測定装置を
使用した色彩測定装置の構成を示すブロック図であり、
JISに規定された45度照明、垂直受光(45−0)
法に基づいた装置である。測定試料取付基準位置からの
乖離量、傾き量の検出機構を作動させ、測定試料取付位
置が不正確である場合に、不正確であることを知らせる
手段と、正しい位置に修正する手段を有するものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a block diagram showing the configuration of a color measuring device using a reflectance measuring device,
45-degree illumination specified by JIS, vertical light reception (45-0)
It is a device based on the law. A means for notifying that the measurement sample mounting position is inaccurate when the deviation and tilt amount detection mechanism from the measurement sample mounting reference position is activated, and a means for correcting it to the correct position Is.

【0014】測定器本体21の内部には、測定用照明光
源22が設けられ、照明光源22の前方には、集光レン
ズ23、ファイバ24の入射端が配置されている。ファ
イバ24は途中でファイバ24a、24bに2岐され、
これらの出射端の前方には照明光学系25a、25bが
配置され、ファイバ24a、24bからの出射光は、平
行光として斜めの2方向から測定器本体21の下部に開
口する測定ヘッド部26に配置された被測定面Sに向け
られている。
A measuring illumination light source 22 is provided inside the measuring device body 21, and a condenser lens 23 and an incident end of a fiber 24 are arranged in front of the illumination light source 22. The fiber 24 is divided into two fibers 24a and 24b on the way,
Illumination optical systems 25a and 25b are arranged in front of these emission ends, and the emitted light from the fibers 24a and 24b is emitted as parallel light from a diagonal two directions to a measurement head portion 26 that opens to the lower part of the measuring device body 21. It is directed to the surface S to be measured.

【0015】被測定面Sの法線に沿った反射方向の上方
には、測定用集光光学系27、フォトダイオードアレイ
28が配置され、フォトダイオードアレイ28の出力は
増幅器を含むA/D変換器29を介してCPU31に接
続されている。
A measuring condensing optical system 27 and a photodiode array 28 are arranged above the reflection direction along the normal line of the surface S to be measured, and the output of the photodiode array 28 is an A / D converter including an amplifier. It is connected to the CPU 31 via the device 29.

【0016】また、測定器本体21の内部には半導体レ
ーザー光源から成る検知用照明光源32が配置され、こ
の検知用照明光源32と測定ヘッド部26間には投光光
学系33が設けられ、この投光光束の被測定面Sの反射
方向には検出光学系34、35を介して、それぞれフォ
トダイオードアレイ36、エリアセンサ37が設けられ
ている。フォトダイオードアレイ36、エリアセンサ3
7の出力はそれぞれ増幅器を含むA/D変換器38、3
9を介してCPU31に接続されている。ここで、検出
光学系34、フォトダイオードアレイ36は反射面の法
線近傍に配置されていて乖離誤差検出に使用され、検出
光学系35、エリアセンサ37は法線を挟んで照明光源
32とほぼ対称的に配置されていて傾き検出に使用され
る。
A measuring illumination light source 32 formed of a semiconductor laser light source is arranged inside the measuring instrument body 21, and a projecting optical system 33 is provided between the detecting illumination light source 32 and the measuring head portion 26. A photodiode array 36 and an area sensor 37 are provided in the reflection direction of the surface S to be measured of the projected light flux via detection optical systems 34 and 35, respectively. Photodiode array 36, area sensor 3
The outputs of 7 are A / D converters 38 and 3 each including an amplifier.
It is connected to the CPU 31 via 9. Here, the detection optical system 34 and the photodiode array 36 are arranged in the vicinity of the normal line of the reflection surface and are used for detecting the deviation error, and the detection optical system 35 and the area sensor 37 are almost the same as the illumination light source 32 across the normal line. They are arranged symmetrically and are used for tilt detection.

【0017】測定器本体21内の筐体41は図示した範
囲の測光用投受光光学系を含み、内部にこれらを一体と
して収納しているが、図示の都合上により、実際の配置
は紙面と直交する位置にある。また、照明光学系25a
及び25bは筐体41に含むように図示しているが、実
際にはこれらは含まれていない。
The housing 41 in the measuring device main body 21 includes the light-transmitting and receiving optical system for photometry within the range shown in the drawing, and these are housed as one unit inside. However, for the sake of convenience in the drawing, the actual arrangement is different from the paper surface. It is in a position orthogonal to each other. Also, the illumination optical system 25a
Although 25 and 25b are illustrated as being included in the housing 41, they are not actually included.

【0018】CPU31はメモリ31a、31b、31
cを内蔵しており、更にシステム制御手段42、反射率
計算手段43、色度値計算手段44、乖離誤差検知手段
45、傾き誤差検知手段46が設けられている。また、
CPU31には乖離・傾き制御手段47、位置良否表示
手段48、表示出力手段49が接続され、乖離・傾き制
御手段47の出力は筐体41を測定器本体21に対して
駆動する乖離・傾き調整駆動部50に接続されている。
The CPU 31 includes memories 31a, 31b and 31.
In addition, a system control means 42, a reflectance calculation means 43, a chromaticity value calculation means 44, a deviation error detection means 45, and a tilt error detection means 46 are provided. Also,
The CPU 31 is connected with a deviation / tilt control means 47, a position quality display means 48, and a display output means 49, and the output of the deviation / tilt control means 47 is a deviation / tilt adjustment for driving the housing 41 with respect to the measuring device main body 21. It is connected to the drive unit 50.

【0019】測定に際して、照明光源22からの光束は
集光レンズ23により集光され、ファイバ24を通り2
方向24a、24bに分割される。ファイバ24a、2
4bの出射端から出射した光束は、照明光学系25a、
25bにより被測定面Sを45度方向の2方向から照明
する。被測定面Sは測定器本体21の測定ヘッド部26
からdだけ乖離して配置されているが、外光により影響
しないように測定器本体21の下部に配置されている。
被測定面Sの保持は作業机などの平面状の所に装置と共
に置けばよく、特別な装置を用いる必要はない。
At the time of measurement, the luminous flux from the illumination light source 22 is condensed by the condenser lens 23, passes through the fiber 24, and
It is divided into directions 24a and 24b. Fibers 24a, 2
The luminous flux emitted from the emission end of 4b is the illumination optical system 25a,
25b illuminates the surface S to be measured from two directions of 45 degrees. The surface S to be measured is the measuring head portion 26 of the measuring device main body 21.
Although they are arranged apart from each other by d, they are arranged below the measuring device main body 21 so as not to be affected by external light.
The surface S to be measured may be held together with the device on a flat surface such as a work desk, and it is not necessary to use a special device.

【0020】集光光学系27は被測定面Sからの反射光
を集光して、被測定面Sに焦点がほぼ一致するようにし
て測定範囲を決め、測定波長毎の光強度を検出するフォ
トダイオードアレイ28に均一な広がりを作る。フォト
ダイオードアレイ28で光電変換された光束は強弱情報
を持つ電気信号となり、A/D変換器29を経てデジタ
ル信号となってCPU31に達しメモリに蓄えられる。
その後に、CPU31内の反射率計算手段43、色計算
手段44において必要な計算がなされ、表示出力手段4
9に結果が表示される。
The condensing optical system 27 condenses the reflected light from the surface S to be measured, determines the measurement range so that the focal point substantially coincides with the surface S to be measured, and detects the light intensity for each measurement wavelength. A uniform spread is made in the photodiode array 28. The light flux photoelectrically converted by the photodiode array 28 becomes an electric signal having strength information, becomes a digital signal through the A / D converter 29, reaches the CPU 31, and is stored in the memory.
After that, necessary calculation is performed in the reflectance calculation means 43 and the color calculation means 44 in the CPU 31, and the display output means 4
The result is displayed at 9.

【0021】誤差検出手段の原理は三角測量方式であ
り、焦点位置のずれをフォトダイオードアレイ36上の
ずれとして検知するものである。検知用照明光源32か
ら出射した光束は、投光光学系33により被測定面S上
に極めて小さな点像を結ぶ。この点像は被測定面Sの法
線近傍に配置された乖離誤差検出光学系34により、フ
ォトダイオードアレイ36上に点像を結ぶ。フォトダイ
オードアレイ36上に形成された点像は、被測定面Sの
乖離量に応じてほぼ線型位置に変動する。更に、光電変
換された点像位置情報を持った電気信号はA/D変換器
38を経て、CPU31内の乖離誤差検知手段45に送
られ乖離誤差の有無が検知される。
The principle of the error detecting means is the triangulation method, and the deviation of the focal position is detected as the deviation on the photodiode array 36. The light flux emitted from the detection illumination light source 32 forms an extremely small point image on the surface S to be measured by the projection optical system 33. This point image is formed on the photodiode array 36 by the deviation error detection optical system 34 arranged near the normal to the surface S to be measured. The point image formed on the photodiode array 36 moves to a substantially linear position according to the amount of deviation of the surface S to be measured. Further, the electric signal having the photoelectrically converted point image position information is sent to the deviation error detection means 45 in the CPU 31 through the A / D converter 38, and the presence or absence of the deviation error is detected.

【0022】一方、光源32及び投光光学系33に対し
て、被測定面Sの法線を挟みほぼ対称的に設置された傾
き誤差検出光学系35には、被測定面Sで正反射された
光束が入射し、傾き誤差検知エリアセンサ37上に点像
を結ぶ。エリアセンサ37上に形成される点像は、乖離
と傾きを含んだ誤差に応じてほぼ線型位置に変動する。
更に、光電変換された点像位置情報を含む電気信号は、
A/D変換器39を経てCPU31内の傾き誤差検知手
段46に送られ、先の乖離誤差を補正した傾き誤差の有
無が検知される。
On the other hand, the tilt error detection optical system 35, which is installed substantially symmetrically with respect to the light source 32 and the projection optical system 33 with the normal line of the surface S to be measured sandwiched, is regularly reflected by the surface S to be measured. Light flux enters and forms a point image on the tilt error detection area sensor 37. The point image formed on the area sensor 37 changes to a substantially linear position according to an error including a deviation and a tilt.
Furthermore, the electric signal containing the photoelectrically converted point image position information is
It is sent to the tilt error detecting means 46 in the CPU 31 via the A / D converter 39, and the presence or absence of the tilt error in which the deviation error is corrected is detected.

【0023】乖離誤差検知手段45は被測定面Sが拡散
面のとき、点像は乖離量として検出できるが傾きは検出
できない。また、被測定面Sが光沢を十分に有する場合
は点像光束が正反射し、受光部に入射せず同様に検出で
きない。傾き誤差検出手段46では、乖離と傾き誤差に
よる点像の動きは同様に変動し、両者を区別することは
できない。このため、本実施例では乖離誤差検知手段4
5及び傾き誤差検出手段46の両者から誤差を精度良く
検出するようにしている。
When the measured surface S is a diffusion surface, the deviation error detecting means 45 can detect the point image as the deviation amount, but cannot detect the tilt. If the surface S to be measured has sufficient gloss, the point image light beam is specularly reflected and does not enter the light receiving portion, and cannot be similarly detected. In the tilt error detection means 46, the movement of the point image due to the deviation and the tilt error similarly fluctuates, and the two cannot be distinguished. Therefore, in this embodiment, the deviation error detecting means 4
The error is accurately detected from both the No. 5 and the inclination error detecting means 46.

【0024】筐体41と測定器本体21との結合部に設
けられた乖離・傾き調整駆動装置部50は、乖離・傾き
制御手段47からの信号により作動するようにされてい
る。乖離・傾き制御手段47はCPU31からのOK、
NGの信号を交信しながら駆動調整部50を駆動し、筐
体41を正しい位置に設定する。乖離や傾き誤差の有
無、調整中の表示は、位置良否表示手段48にCPU3
1からの指示で表示する。
The deviation / tilt adjustment drive unit 50 provided at the connecting portion between the housing 41 and the measuring device main body 21 is operated by a signal from the deviation / tilt control means 47. The deviation / tilt control means 47 is OK from the CPU 31,
The drive adjustment unit 50 is driven while communicating the NG signal to set the housing 41 to the correct position. The presence / absence of deviation or tilt error and the display during adjustment are displayed on the position pass / fail display means 48 by the CPU 3.
Display according to instructions from 1.

【0025】次いで、分光反射率を測定し色彩値を求め
る手順について、図2のフローチャート図により説明す
る。電源を投入後に、ステップ1では乖離誤差、傾き誤
差検出基準を設定する。被測定面Sと同じ位置に置かれ
た位置設定用反射板を使用して、検出機構で正しい取付
位置つまり乖離基準と、傾きとをそれぞれのフォトダイ
オードアレイ36、エリアセンサ37で検出し、基準位
置としてCPU31内の誤差検知手段用メモリに蓄え
る。
Next, the procedure for measuring the spectral reflectance and obtaining the color value will be described with reference to the flow chart of FIG. After the power is turned on, in step 1, deviation error and inclination error detection criteria are set. The position setting reflection plate placed at the same position as the surface S to be measured is used to detect the correct mounting position, that is, the deviation reference and the inclination by the detection mechanism by the respective photodiode array 36 and area sensor 37. The position is stored in the memory for error detecting means in the CPU 31.

【0026】ここで、使用する設定用反射板は中間的な
光沢で平面状の物が望ましい。ステップ3で述べる標準
反射白板は拡散性が良いため、傾きの基準を設定できな
い。つまり、傾き誤差は拡散性の良い物では測定精度に
影響しないが、被測定面Sが拡散性が良く、乖離誤差の
設定だけで良い場合には兼用が可能である。
Here, it is desirable that the setting reflection plate to be used has an intermediate gloss and is flat. Since the standard reflective white plate described in step 3 has good diffusivity, the inclination standard cannot be set. In other words, the inclination error does not affect the measurement accuracy with a substance having good diffusibility, but can be used when the surface S to be measured has good diffusibility and only the deviation error needs to be set.

【0027】ステップ2はダーク測定で測定ヘッド部2
6に覆いをして、暗電流、漏れ電流をフォトダイオード
アレイ36により波長毎に検出し、乖離誤差検知手段4
5のメモリに蓄える。なお、このステップ2はステップ
4の後に行うこともできる。
In step 2, dark measurement is performed on the measuring head unit 2.
6, the dark current and the leakage current are detected by the photodiode array 36 for each wavelength, and the deviation error detecting means 4 is detected.
Store in memory of 5. Note that this step 2 can be performed after step 4.

【0028】ステップ3では、標準反射白板の位置検出
である位置設定用反射板とほぼ同様に置かれた反射率が
高くかつ拡散性を有する標準反射白板の乖離誤差を、乖
離誤差検出用フォトダイオードアレイ36で検出し、C
PU31内の乖離誤差検知手段45に送り、ステップ1
の位置からの乖離誤差を検知する。なお、前述した理由
で傾き誤差は検出しない。
In step 3, the deviation error of the standard reflection white plate having high reflectance and diffusivity placed almost in the same manner as the position setting reflection plate for detecting the position of the standard reflection white plate is detected by the deviation error detecting photodiode. Array 36 detects C
Send to the deviation error detection means 45 in the PU 31, step 1
The deviation error from the position of is detected. The inclination error is not detected for the reason described above.

【0029】ステップ4では、標準反射白板の位置制御
で乖離誤差検知手段45によって乖離誤差を検出した場
合は、CPU31のシステム制御手段42から乖離・傾
き制御手段47に検知信号を送り、乖離・傾き調整駆動
部50を動かして筐体41の姿勢を調整する。一方、位
置良否表示手段48において良否結果をランプ表示し、
正しい位置に設定されると、良のランプが点灯表示され
次ステップに移行する。
In step 4, when the deviation error detecting means 45 detects the deviation error in the position control of the standard reflecting white plate, the system control means 42 of the CPU 31 sends a detection signal to the deviation / tilt control means 47 to detect the deviation / tilt. The adjustment drive unit 50 is moved to adjust the posture of the housing 41. On the other hand, the position pass / fail display means 48 displays the pass / fail result as a lamp,
When it is set to the correct position, the good lamp is lit and displayed, and the process moves to the next step.

【0030】ステップ5では、反射光量測定基準となる
標準反射白板は反射量が既知であるので、この光量を基
準とし、波長毎にフォトダイオードアレイ36で測定
し、CPU31内の乖離誤差検知手段45のメモリに蓄
える。
In step 5, since the reflection amount of the standard reflection white plate serving as a reference for the amount of reflected light is known, the amount of light is used as a reference, the photodiode array 36 measures the wavelength, and the deviation error detecting means 45 in the CPU 31. Stored in memory.

【0031】ステップ6で被測定面Sの取り付けと取付
位置検出を行う。被測定面Sをステップ3で測定した標
準反射白板と同じ個所に置き、乖離誤差検出手段45と
傾き誤差検出手段46で検出した位置が、ステップ1で
設定した基準位置との誤差を乖離誤差検知手段45と傾
き誤差検知手段46が比較する。
In step 6, the surface S to be measured is attached and the attachment position is detected. The surface S to be measured is placed at the same position as the standard reflection white plate measured in step 3, and the difference between the position detected by the deviation error detecting means 45 and the tilt error detecting means 46 and the reference position set in step 1 is detected as a deviation error. The means 45 and the tilt error detection means 46 compare.

【0032】ステップ7で被測定面Sの位置調整で誤差
検知手段45、46によって誤差を検出した場合には乖
離・傾き制御手段47に伝え、乖離・傾き調整駆動部5
0により調整する。一方、位置良否表示手段48で良否
結果をランプ表示する。正しい位置に設定されると良の
ランプが点灯表示され次のステップ8に進む。ステップ
8では被測定面Sの反射光量を測定し、波長毎にフォト
ダイオードアレイ28で検出した光量をCPU31内の
反射率計算手段43のメモリに蓄える。
In step 7, if an error is detected by the error detection means 45, 46 in the position adjustment of the surface S to be measured, it is transmitted to the deviation / tilt control means 47, and the deviation / tilt adjustment driving section 5 is sent.
Adjust by 0. On the other hand, the position pass / fail display means 48 displays the pass / fail result as a lamp. When it is set to the correct position, the good lamp is lit and displayed, and the process proceeds to the next step 8. In step 8, the amount of light reflected by the surface S to be measured is measured, and the amount of light detected by the photodiode array 28 for each wavelength is stored in the memory of the reflectance calculating means 43 in the CPU 31.

【0033】ステップ9で反射率の計算と表示を行い、
ステップ5とステップ8で測定した波長毎のデータと、
ステップ2で測定した暗電流を基に波長毎の反射率を反
射率計算手段43で算出する。
In step 9, the reflectance is calculated and displayed,
Data for each wavelength measured in step 5 and step 8,
The reflectance calculation means 43 calculates the reflectance for each wavelength based on the dark current measured in step 2.

【0034】ステップ10では色度値の計算を行い、C
PU31内の色度値計算手段44により決められた方法
で計算し、色彩値を表示出力手段49で出力し終了す
る。続いて、別の試料を測定するときは、ステップ6か
ら開始することとなる。
In step 10, the chromaticity value is calculated and C
The calculation is performed by the method determined by the chromaticity value calculation means 44 in the PU 31, the color value is output by the display output means 49, and the processing is ended. Then, when another sample is measured, it starts from step 6.

【0035】以上の測定に当って、被測定面Sの光沢度
によっては乖離誤差と傾き誤差の何れか一方の検出を行
い、他方は検出できない場合がある。しかし、従来の技
術の項で説明したように、検出されない誤差は測定精度
に影響のないものであり、本実施例では検出不能時には
位置良否表示手段48のランプを良とするようになって
いる。
In the above measurement, depending on the glossiness of the surface S to be measured, either the deviation error or the inclination error may be detected, and the other may not be detected. However, as explained in the section of the prior art, the undetected error does not affect the measurement accuracy, and in this embodiment, the lamp of the position pass / fail display means 48 is set to be good when it cannot be detected. .

【0036】また、本実施例では色彩測定に限定した例
を挙げたが、ほぼ同様な光学系で測定される濃度系や、
光沢計、写像性測定等、被測定物の設定誤差が光量にも
影響する反射率測定装置に利用可能である。また、測定
試料取付基準位置からの乖離誤差、傾き誤差両方の検出
機構を用いた実施例を述べたが、装置コスト等の都合に
より何れか一方の検出だけであっても支障はない。
In the present embodiment, an example in which the color measurement is limited is given, but the density system measured by almost the same optical system,
It can be used for a reflectance measuring device such as a gloss meter and image clarity measurement in which a setting error of an object to be measured also affects the light amount. In addition, although the embodiment using the detection mechanism for both the deviation error from the measurement sample attachment reference position and the inclination error has been described, there is no problem even if only one of them is detected due to the cost of the device.

【0037】[0037]

【発明の効果】以上説明したように本発明の反射率測定
装置によれば、反射率測定において、光量を測定する前
に被測定面の取付状態が正しいか否かが分かり、測定精
度を向上するので、測定値の解析後に間違いに気付き、
再測定を行うことは不要になる。また、位置の設定誤差
を気にせず測定することが可能となるので、効率良く測
定が進められるなど、コスト的、時間的にも有利であ
る。
As described above, according to the reflectance measuring apparatus of the present invention, in the reflectance measurement, it is possible to know whether or not the mounting state of the surface to be measured is correct before measuring the amount of light, thereby improving the measurement accuracy. So I noticed the mistake after analyzing the measured values,
It is not necessary to perform remeasurement. In addition, since it is possible to perform the measurement without worrying about the setting error of the position, it is possible to perform the measurement efficiently, which is advantageous in terms of cost and time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment.

【図2】測定方法のフローチャート図である。FIG. 2 is a flowchart of a measuring method.

【図3】従来の反射率測定装置を使用した測色機の概略
図である。
FIG. 3 is a schematic view of a colorimeter using a conventional reflectance measuring device.

【図4】従来の反射率測定における拡散試料の誤差の説
明図である。
FIG. 4 is an explanatory diagram of an error of a diffused sample in a conventional reflectance measurement.

【図5】従来の反射率測定における拡散試料の誤差の説
明図である。
FIG. 5 is an explanatory diagram of an error of a diffused sample in the conventional reflectance measurement.

【図6】従来の反射率測定における拡散試料の誤差の説
明図である。
FIG. 6 is an explanatory diagram of an error of a diffused sample in a conventional reflectance measurement.

【図7】従来の反射率測定における光沢試料の誤差の説
明図である。
FIG. 7 is an explanatory diagram of an error of a gloss sample in the conventional reflectance measurement.

【図8】従来の反射率測定における光沢試料の誤差の説
明図である。
FIG. 8 is an explanatory diagram of an error of a gloss sample in the conventional reflectance measurement.

【図9】従来の反射率測定における光沢試料の誤差の説
明図である。
FIG. 9 is an explanatory diagram of an error of a gloss sample in the conventional reflectance measurement.

【符号の説明】[Explanation of symbols]

21 測定器本体 22 測光用照明光源 27 測色用集光光学系 28、36 フォトダイオードアレイ 31 CPU 32 検知用照明光源 37 エリアセンサ 41 筐体 43 反射率計算手段 44 色度値計算手段 45 乖離誤差検知手段 46 傾き誤差検知手段 47 乖離・傾き制御手段 50 乖離・傾き調整駆動部 S 被測定面 21 Measuring instrument main body 22 Illumination light source for photometry 27 Condensing optical system for colorimetry 28, 36 Photodiode array 31 CPU 32 Illumination light source for detection 37 Area sensor 41 Housing 43 Reflectance calculation means 44 Chromaticity value calculation means 45 Deviation error Detecting means 46 Tilt error detecting means 47 Deviation / tilt control means 50 Deviation / tilt adjustment drive section S Surface to be measured

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料面で反射した光量を測定して
反射率を求める測定装置であって、前記被測定試料面の
取付位置について、測定基準位置からの乖離誤差検出手
段と傾き誤差検出手段との少なくとも一方を備えたこと
を特徴とする反射率測定装置。
1. A measuring device for measuring the amount of light reflected on a sample surface to be measured to obtain a reflectance, wherein the mounting position of the sample surface to be measured is deviation error detection means from a measurement reference position and inclination error detection. A reflectance measuring device comprising at least one of:
【請求項2】 前記乖離誤差検出手段と傾き誤差検出手
段は、1個所から照射される光源を共用し、前記乖離誤
差検出手段は被測定面の法線近傍に配置したラインセン
サにより、前記乖離誤差検出手段は前記法線を挟んで前
記光源と対称的に配置したエリアセンサにより光電的に
検出するようにした請求項1に記載の反射率測定装置。
2. The deviation error detecting means and the inclination error detecting means share a light source irradiated from one location, and the deviation error detecting means is a deviation sensor which is arranged near a normal to a surface to be measured. 2. The reflectance measuring device according to claim 1, wherein the error detecting means photoelectrically detects the area by an area sensor arranged symmetrically to the light source with the normal line in between.
【請求項3】 前記被測定試料面の乖離位置や傾きが不
正確である場合に、反射光量を測定する機能を停止し、
該機能が停止したことを知らせる手段又は正しい位置に
修正する手段の少なくとも一方の手段を有する請求項1
に記載の反射率測定装置。
3. When the deviation position or inclination of the sample surface to be measured is inaccurate, the function of measuring the amount of reflected light is stopped,
2. A device having at least one of a device for notifying that the function has stopped and a device for correcting the function to a correct position.
2. The reflectance measuring device according to 1.
JP24390195A 1995-08-30 1995-08-30 Device for measuring reflection coefficient Pending JPH0968462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24390195A JPH0968462A (en) 1995-08-30 1995-08-30 Device for measuring reflection coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24390195A JPH0968462A (en) 1995-08-30 1995-08-30 Device for measuring reflection coefficient

Publications (1)

Publication Number Publication Date
JPH0968462A true JPH0968462A (en) 1997-03-11

Family

ID=17110690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24390195A Pending JPH0968462A (en) 1995-08-30 1995-08-30 Device for measuring reflection coefficient

Country Status (1)

Country Link
JP (1) JPH0968462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385563B1 (en) * 2000-12-01 2003-05-27 한국과학기술원 Spectrophotometer With Driving Means And Intensity Of Light Measurement Method
KR100767772B1 (en) * 2005-09-26 2007-10-18 후지제롯쿠스 가부시끼가이샤 Optical measuring device and image forming device using the same
WO2012147488A1 (en) * 2011-04-28 2012-11-01 コニカミノルタオプティクス株式会社 Multi-angle colorimeter
WO2013146419A1 (en) * 2012-03-29 2013-10-03 コニカミノルタ株式会社 Photometric apparatus and measurement control program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385563B1 (en) * 2000-12-01 2003-05-27 한국과학기술원 Spectrophotometer With Driving Means And Intensity Of Light Measurement Method
KR100767772B1 (en) * 2005-09-26 2007-10-18 후지제롯쿠스 가부시끼가이샤 Optical measuring device and image forming device using the same
WO2012147488A1 (en) * 2011-04-28 2012-11-01 コニカミノルタオプティクス株式会社 Multi-angle colorimeter
CN103492845A (en) * 2011-04-28 2014-01-01 柯尼卡美能达株式会社 Multi-angle colorimeter
US9001329B2 (en) 2011-04-28 2015-04-07 Konica Minolta, Inc. Multi-angle colorimeter
JP5737390B2 (en) * 2011-04-28 2015-06-17 コニカミノルタ株式会社 Multi-angle colorimeter
CN103492845B (en) * 2011-04-28 2015-09-16 柯尼卡美能达株式会社 Multi-angle colorimeter
US9222835B2 (en) 2011-04-28 2015-12-29 Konica Minolta, Inc. Multi-angle colorimeter
WO2013146419A1 (en) * 2012-03-29 2013-10-03 コニカミノルタ株式会社 Photometric apparatus and measurement control program
JPWO2013146419A1 (en) * 2012-03-29 2015-12-10 コニカミノルタ株式会社 Photometric device and measurement control program
US9494423B2 (en) 2012-03-29 2016-11-15 Konica Minolta, Inc. Photometric apparatus and measurement control program

Similar Documents

Publication Publication Date Title
US5831740A (en) Optical characteristic measuring apparatus with correction for distance variation
KR101360252B1 (en) A reflection type optics sensor and a surface coarseness detection method of the measurement side
JP2001215114A (en) Optical measuring apparatus and inclination measuring method
JPH0726806B2 (en) Distance measuring device
JP2009080044A (en) Optical characteristic measuring apparatus
US5715061A (en) Optical measuring apparatus and optical measuring method
JPH0968462A (en) Device for measuring reflection coefficient
JPH0823484B2 (en) Device for orienting, inspecting and / or measuring two-dimensional objects
JPH04260108A (en) Optical sensor
JP3347542B2 (en) Concentration sensor
JP3451525B2 (en) Optical sensor, lens unit and fiber unit
JP2002206967A (en) Photometer and colorimeter
JPH0783828A (en) Angle variable absolute reflectance measuring device
JP2720133B2 (en) Collimator device
JP3519605B2 (en) Ellipsometry equipment
JP2000186910A (en) Optical displacement gauge
KR200144702Y1 (en) Lens focus compensator for semiconductor manufacturing equipment
JPH06102011A (en) Position detector for objective plane
JPS6136884Y2 (en)
JPH03140809A (en) Liquid film thickness measuring apparatus
JPH03115911A (en) Thickness measuring instrument for transparent body
JPH03115915A (en) Laser beam displacement gauge
JPH116798A (en) Method and device for measuring reflection
RU1770850C (en) Method of determining spectral directional - hemispheric refraction coefficients of specimens
JPH05188252A (en) Optical axis position detector and optical axis adjusting method for optical scanning device