JPH0955706A - Optical transmitter - Google Patents
Optical transmitterInfo
- Publication number
- JPH0955706A JPH0955706A JP7205736A JP20573695A JPH0955706A JP H0955706 A JPH0955706 A JP H0955706A JP 7205736 A JP7205736 A JP 7205736A JP 20573695 A JP20573695 A JP 20573695A JP H0955706 A JPH0955706 A JP H0955706A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- optical
- polarization
- modulation
- modulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 102
- 230000010287 polarization Effects 0.000 claims abstract description 80
- 230000005540 biological transmission Effects 0.000 claims abstract description 27
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 claims description 6
- LKJPSUCKSLORMF-UHFFFAOYSA-N Monolinuron Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C=C1 LKJPSUCKSLORMF-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 13
- 239000013598 vector Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 5
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Landscapes
- Optical Communication System (AREA)
Abstract
(57)【要約】
【課題】 光送信器の偏波スクランブル方式に関し、受
信側でスペクトルの拡大の少ない光信号が受信できるよ
うな偏波スクランブルを行う光送信器を提供することを
目的とする。
【解決手段】 送信データ信号により直線偏波光を変調
し該変調後も直線偏波状態を保持する光信号について、
該直線偏波状態をスクランブルして出力する光送信器に
おいて、該変調された光信号を2分岐する分岐手段と、
該分岐した一方の光信号を所定の周波数ω1 を持つ変調
信号により変調して出力する第1の変調手段と、該分岐
した他方の光信号を該所定の周波数ω1 を持つ変調信号
の位相を所定量だけずらせた信号により変調して出力す
る第2の変調手段と、該第1および第2の変調手段の光
出力を各直線偏波軸を直交させて加算して出力する合波
手段とで構成する。
(57) Abstract: A polarization scrambling method for an optical transmitter, and an object thereof is to provide an optical transmitter that performs polarization scrambling so that an optical signal with a small spectrum expansion can be received on the receiving side. . An optical signal that modulates linearly polarized light with a transmission data signal and maintains the linearly polarized state after the modulation,
In the optical transmitter that scrambles and outputs the linearly polarized state, a branching unit that branches the modulated optical signal into two.
First modulating means and, said branched other optical signal of the modulation signal having the predetermined frequency omega 1 phase modulating and outputting the modulation signal having the branched first predetermined frequency omega optical signal on one Is modulated by a signal shifted by a predetermined amount and is output, and a combining means is provided for adding and outputting the optical outputs of the first and second modulating means with their linear polarization axes orthogonal to each other. It consists of and.
Description
【0001】[0001]
【発明の属する技術分野】本発明は光送信器に係り、特
に光増幅器を用いた多中継長距離光伝送システムにおい
て、伝送路の偏波依存性損失、更に光増幅中継器の偏波
依存性利得などの影響による受信側での光信号波形の劣
化を軽減するために送信側で行う光信号の偏波スクラン
ブル方式に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmitter, and more particularly, in a multi-relay long-distance optical transmission system using an optical amplifier, polarization dependent loss of a transmission line, and further polarization dependent of an optical amplifier repeater. The present invention relates to a polarization scrambling method of an optical signal performed on the transmission side in order to reduce deterioration of the optical signal waveform on the reception side due to the influence of gain and the like.
【0002】光増幅中継器を用いた高速長距離光伝送シ
ステムにおける中継距離拡大の需要は益々増え続ける方
向にあり、ファイバの非線形効果と分散の相互作用や中
継増幅器の累積自然放出光(ASE)が問題視されるな
か、伝送路の偏波分散や偏波依存性損失、光増幅中継器
の偏波依存性利得の要因も無視できないことが判明し、
対応策が議論され始めている。The demand for increasing the repeater distance in a high-speed long-distance optical transmission system using an optical amplifier repeater is increasing more and more, and the interaction between the nonlinear effect and dispersion of the fiber and the cumulative spontaneous emission (ASE) of the repeater amplifier are increasing. However, it was found that factors such as polarization dispersion of the transmission line, polarization dependent loss, and polarization dependent gain of the optical amplification repeater cannot be ignored.
Countermeasures are beginning to be discussed.
【0003】[0003]
【従来の技術】図7は第1の従来例の光送信器の構成図
である。図において、レーザー発振器(LD)1から出
射される直線偏波のCW光を偏波方向を合わせて振幅変
調器(LiNbO3(リチウムニオブ酸)変調器など)2に入
力し、送信信号6により振幅変調をして出力する。この
出力について偏波制御子3により偏波面を45度回転さ
せて位相変調器(PM)(LiNbO3 変調器など)4に入力
する。2. Description of the Related Art FIG. 7 is a block diagram of a first conventional optical transmitter. In the figure, linearly polarized CW light emitted from a laser oscillator (LD) 1 is input to an amplitude modulator (LiNbO 3 (lithium niobate) modulator, etc.) 2 with its polarization direction aligned and transmitted by a transmission signal 6. Output after amplitude modulation. This output is input to a phase modulator (PM) (LiNbO 3 modulator, etc.) 4 by rotating the plane of polarization by 45 degrees by a polarization controller 3.
【0004】すると位相変調器4では、光信号の伝搬方
向に垂直な面内で入力光の直線偏波軸方向が位相変調器
4の変調駆動ベクトル軸(例えばX軸とする)に対して
45度の角度をなすため、入力光の電界ベクトルは平行
成分(X成分)と垂直成分(Y成分)に均等に分割され
ると考えられる。この位相変調器4に正弦波(πcos
ω1t)、又は三角波(2×sin-1〔cos(ω
1t)〕)信号5を加えることにより、一方の偏波成分
(例えばX成分)のみ位相変調されて出力する。Then, in the phase modulator 4, the linear polarization axis direction of the input light is 45 with respect to the modulation drive vector axis (for example, X axis) of the phase modulator 4 in a plane perpendicular to the propagation direction of the optical signal. It is considered that the electric field vector of the input light is evenly divided into the parallel component (X component) and the vertical component (Y component) because the angle is in degrees. This phase modulator 4 has a sine wave (πcos
ω 1 t) or triangular wave (2 × sin −1 [cos (ω
1 t)]) By adding the signal 5, only one polarization component (for example, X component) is phase-modulated and output.
【0005】この結果、X成分とY成分との間の位相差
が−π〜+πの範囲でω1 の周期で変化するので、図6
に示すように偏波状態には、上向きの直線偏光、左まわ
りの楕円偏光、左まわりの円偏光、左まわりの楕円偏
光、横向きの直線偏光、左まわりの楕円偏光、左まわり
の円偏光、左まわりの楕円偏光、上向きの直線偏光、更
に右まわりの楕円偏光、右まわりの円偏光、右まわりの
楕円偏光、横向きの直線偏光、右まわりの楕円偏光、右
まわりの円偏光、右まわりの楕円偏光、上向きの直線偏
光のサイクルが生じ、同じω1 の周期で繰り返される。As a result, the phase difference between the X component and the Y component changes in the period of ω 1 in the range of −π to + π, and therefore FIG.
As shown in, the polarization state is upward linear polarization, counterclockwise elliptical polarization, counterclockwise circular polarization, counterclockwise elliptical polarization, sideways linear polarization, counterclockwise elliptical polarization, counterclockwise circular polarization, Left-handed elliptically polarized light, upward linearly polarized light, further right-handed elliptically polarized light, right-handed circularly polarized light, right-handed elliptically polarized light, sideways linearly polarized light, right-handed elliptically polarized light, right-handed circularly polarized light, right-handed circularly polarized light, right-handed circularly polarized light A cycle of elliptically polarized light and upward linearly polarized light occurs and is repeated with the same period of ω 1 .
【0006】これが基本的な偏波スクランブルの出力状
況の一例であり、ω1 が送信データ信号の速度より速い
ものが高速スクランブル、ω1 が送信データ信号の速度
の数十分の一以下のものが低速スクランブルと呼ばれて
いる。これらは光信号送出ポイントにおける時間的な偏
波状態の変化と見ることができ、出力される光信号デー
タの“1”の部分における各特定の位相での光信号の偏
波状態は、理想特性を有すると仮定した場合の光伝送路
上の伝搬によっては不変であり、その特定の位相の前後
では偏波状態が変化している状況と見ることができる。This is an example of the basic polarization scrambling output situation. One in which ω 1 is faster than the speed of the transmission data signal is high-speed scramble, and one in which ω 1 is several tenths or less of the speed of the transmission data signal. Is called slow scrambling. These can be seen as changes in the polarization state over time at the optical signal transmission point, and the polarization state of the optical signal at each specific phase in the "1" portion of the output optical signal data is the ideal characteristic. It is invariable depending on the propagation on the optical transmission line when it is assumed to have, and it can be considered that the polarization state changes before and after the specific phase.
【0007】図8は第2の従来例の光送信器の構成図で
ある。図において、波長の異なる2個のレーザー発振器
(LD)7及び9(それぞれの周波数をωP 、ωS とす
る)から出射される直線偏波のCW光をそれぞれ振幅変
調器8及び10に入力し、同一の送信信号6により振幅変
調をして出力する。そして、一方の振幅変調器10の出力
の偏波面を偏波制御子11によりπ/2回転させた信号と
他方の振幅変調器8の出力光信号とを偏波合成器12に加
え、これら偏波ベクトルの直交した2個の光信号を加算
する。FIG. 8 is a block diagram of a second conventional optical transmitter. In the figure, linearly polarized CW lights emitted from two laser oscillators (LDs) 7 and 9 having different wavelengths (respective frequencies are ω P and ω S ) are input to amplitude modulators 8 and 10, respectively. Then, the same transmission signal 6 is amplitude-modulated and output. Then, a signal obtained by rotating the polarization plane of the output of the one amplitude modulator 10 by π / 2 by the polarization controller 11 and the output optical signal of the other amplitude modulator 8 are added to the polarization combiner 12, and these polarizations are combined. Two optical signals having orthogonal wave vectors are added.
【0008】この結果、偏波合成器12からは、2個のレ
ーザー発振器7、及び9の周波数差(ωP −ωS ) の周
期で出力偏光状態が図6の同様な変化をする光出力が得
られる。As a result, from the polarization combiner 12, the optical output whose output polarization state changes in the same manner as in FIG. 6 at the cycle of the frequency difference (ω P −ω S ) of the two laser oscillators 7 and 9. Is obtained.
【0009】[0009]
【発明が解決しようとする課題】しかしながら上述した
光送信器の偏波スクランブル方式においては、第1の従
来例の場合、受信側で光信号のスペクトルが拡大するこ
とによりS/N比が劣化するほか、光伝送路の分散によ
る波形劣化量が大きく、光伝送路の非線形効果による悪
影響を受け易いという問題がある。However, in the above-mentioned polarization scrambling method of the optical transmitter, in the case of the first conventional example, the S / N ratio is deteriorated due to the spread of the spectrum of the optical signal on the receiving side. In addition, there is a problem that the amount of waveform deterioration due to dispersion of the optical transmission line is large and is easily affected by the nonlinear effect of the optical transmission line.
【0010】本発明は上述した問題点を解決するために
なされたもので、受信側でスペクトル拡大の少ない光信
号が受信できるような偏波スクランブルを行う光送信器
を提供することを目的とする。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an optical transmitter that performs polarization scrambling so that an optical signal with a small spectrum expansion can be received on the receiving side. .
【0011】[0011]
【課題を解決するための手段】上記問題点は下記の構成
によって解決される。即ち、 (請求項1)及び(請求項2) 送信データ信号により
直線偏波光を変調し該変調後も直線偏波状態を保持する
光信号について、該直線偏波状態をスクランブルして出
力する光送信器において、該変調された光信号を2分岐
する分岐手段と、該分岐した一方の光信号を所定の周波
数ω1 を持つ変調信号により変調して出力する第1の変
調手段と、該分岐した他方の光信号を該所定の周波数ω
1 を持つ変調信号の位相を所定量だけずらせた信号によ
り変調して出力する第2の変調手段と、該第1および第
2の変調手段の光出力を各直線偏波軸を直交させて加算
して出力する合波手段とで構成する。The above problems can be solved by the following constitution. That is, (Claim 1) and (Claim 2) For an optical signal that modulates linearly polarized light with a transmission data signal and maintains the linearly polarized state after the modulation, an optical signal that scrambles and outputs the linearly polarized state. In the transmitter, branching means for branching the modulated optical signal into two, first modulating means for modulating one of the branched optical signals with a modulation signal having a predetermined frequency ω 1 and outputting the branched optical signal, and the branching means The other optical signal is
Second modulation means for modulating and outputting the phase of a modulation signal having 1 by a predetermined amount and the optical outputs of the first and second modulation means are added with their respective linear polarization axes orthogonal to each other. And a multiplexing means for outputting.
【0012】この結果、例えば第1および第2の変調手
段で行う変調が振幅変調である場合に、所定の周波数を
持つ信号としてsinω1tおよびcosω1tの信号を使
用するとき、合波手段で該両信号の直線偏波軸を互いに
直交させて加算するため、合波手段からは光信号は直線
偏光のままω1 の速度で偏波面上を回転しながら出力す
る。[0012] Consequently, for example when the modulation performed by the first and second modulating means is an amplitude modulation, when using a signal of sin .omega 1 t and cos .omega 1 t as a signal having a predetermined frequency, multiplexing means Then, since the linear polarization axes of the both signals are made orthogonal to each other and are added, the optical signal is output from the multiplexing means as linearly polarized light while rotating on the polarization plane at the speed of ω 1 .
【0013】また、sin2 ω1t+cos2 ω1t=1に
より合波手段から送出される光信号パワーは一定であ
る。 (請求項3) 請求項1に記載の第1および第2の変調
手段で行う変調が振幅変調である場合に、所定の信号と
してそれぞれ|cos(ω1t) |及び|sin(ω1t)
|を使用することにより、偏光状態は2ω1 の周期で互
いに直交する偏波軸の間を往復することになり、第1お
よび第2の変調手段(例えば振幅変調器)の駆動条件が
緩和される。Further, the optical signal power transmitted from the multiplexing means is constant because sin 2 ω 1 t + cos 2 ω 1 t = 1. (Claim 3) When the modulation performed by the first and second modulating means according to Claim 1 is amplitude modulation, | cos (ω 1 t) | and | sin (ω 1 t) are given as predetermined signals, respectively. )
By using |, the polarization state reciprocates between the polarization axes orthogonal to each other with a period of 2ω 1 , and the driving conditions of the first and second modulation means (for example, the amplitude modulator) are relaxed. It
【0014】(請求項4) 請求項1に記載の第1およ
び第2の変調手段で行う変調が位相変調である場合に、
前記第1の変調手段での所定の周波数を持つ信号として
(π/2)cos(ω1t) 、前記第2の変調手段での該
信号の位相を所定量だけずらせた信号として(−π/
2)cos(ω1t) を使用する。(Claim 4) When the modulation performed by the first and second modulating means according to claim 1 is phase modulation,
(Π / 2) cos (ω 1 t) as a signal having a predetermined frequency in the first modulating means, and (−π) as a signal obtained by shifting the phase of the signal in the second modulating means by a predetermined amount. /
2) Use cos (ω 1 t).
【0015】この結果、合波手段から出力される光信号
は、ω1 の周期で直線偏光、楕円偏光、円偏光といった
一連の偏光状態のサイクルを繰り返すことになる。 (請求項5) 請求項4に記載の第1および第2の変調
手段で使用する信号(π/2)cos(ω1t) および
(−π/2)cos(ω1t) をsin-1〔cos(ω
1t) 〕および−sin-1〔cos(ω1t)〕で置き換え
る。但し、正弦波逆関数sin-1の値域は−π/2〜π
/2とする。As a result, the optical signal output from the combining means repeats a cycle of a series of polarization states such as linearly polarized light, elliptically polarized light and circularly polarized light at a cycle of ω 1 . (Claim 5) The signals (π / 2) cos (ω 1 t) and (−π / 2) cos (ω 1 t) used in the first and second modulation means according to claim 4 are converted to sin − 1 [cos (ω
1 t)] and −sin −1 [cos (ω 1 t)]. However, the range of the sinusoidal inverse function sin −1 is −π / 2 to π
/ 2.
【0016】これは請求項4に記載の信号を三角波で置
き換えたものであり、請求項4と同様の作用効果を奏す
る。 (請求項6) 2個の光源から出力する互いに異なる周
波数(ωS 、ωP ) の2個の直線偏波の光信号を同一の
送信データ信号により変調し、これらを合波することで
偏波面スクランブルを実現する光送信器において、該変
調された一方の光信号を右円偏波信号に変換して出力す
る第1の偏波制御手段と、該変調された他方の光信号を
左円偏波信号に変換して出力する第2の偏波制御手段と
を設け、該第1及び第2の偏波制御手段の出力を加算し
て出力するように構成する。This is a signal obtained by replacing the signal described in claim 4 with a triangular wave, and has the same operation and effect as in claim 4. (Claim 6) Two linearly polarized optical signals of different frequencies (ω S , ω P ) output from two light sources are modulated by the same transmission data signal, and these are multiplexed to combine the polarized light. In an optical transmitter that realizes wavefront scrambling, first polarization control means for converting the one modulated optical signal into a right-hand circularly polarized signal and outputting the converted signal, and the other modulated optical signal to the left-hand circular signal. Second polarization control means for converting and outputting the polarization signal is provided, and the outputs of the first and second polarization control means are added and output.
【0017】この結果、同一の送信データ信号により変
調された2個の光信号(各周波数をωS 、ωP とする)
がそれぞれ右円偏波信号、および左円偏波信号に変換さ
れるため、両者を加算することにより、直線偏光の光信
号が周波数差(ωP −ωs )に相当する速度で偏波ベク
トルを回転しながら出力することになる。As a result, two optical signals modulated by the same transmission data signal (each frequency is ω S , ω P )
Are converted into a right-hand circularly polarized signal and a left-hand circularly polarized signal, respectively, and by adding them, the linearly polarized optical signal has a polarization vector at a speed corresponding to the frequency difference (ω P − ω s ). Will be output while rotating.
【0018】[0018]
【発明の実施の形態】図1は本発明の第1の実施例の構
成図である。図において、レーザーダイオード(LD)
1から出射される直線偏波のCW光を偏波ベクトル方向
を合わせて振幅変調器(LiNbO3変調器など)2に入力
し、送信信号6により振幅変調をして出力するまでは、
前述した第1の従来例(図7)と同じである。1 is a block diagram of the first embodiment of the present invention. In the figure, laser diode (LD)
The linearly polarized CW light emitted from 1 is input to the amplitude modulator (LiNbO 3 modulator, etc.) 2 with the polarization vector direction aligned, and the amplitude is modulated by the transmission signal 6 and output.
This is the same as the first conventional example (FIG. 7) described above.
【0019】本第1の実施例では、振幅変調器2の出力
を光カプラ13で偏波ベクトル方向を保持しながら2分岐
しそれぞれ振幅変調器16及び18に入力する。振幅変調器
16では、発振器15の出力の正弦波信号(sinω1t)を
遅延回路14によりπ/2遅延された信号(cosω1t)
により振幅変調され、もう一方の振幅変調器18では、該
正弦波信号により振幅変調される。上記振幅変調器16の
出力の偏波面を偏波制御子17によりπ/2回転させた光
信号と、振幅変調器18の出力光信号とを光カプラ19によ
り加算する。この様子を図2に示す。In the first embodiment, the output of the amplitude modulator 2 is branched into two by the optical coupler 13 while maintaining the polarization vector direction, and is input to the amplitude modulators 16 and 18, respectively. Amplitude modulator
In 16, the output of the sine wave signal of the oscillator 15 (sinω 1 t) to the delay circuit 14 [pi / 2 delayed signal (cosω 1 t)
Is amplitude-modulated by, and the other amplitude modulator 18 is amplitude-modulated by the sine wave signal. An optical signal obtained by rotating the polarization plane of the output of the amplitude modulator 16 by π / 2 by the polarization controller 17 and an output optical signal of the amplitude modulator 18 are added by the optical coupler 19. This state is shown in FIG.
【0020】図2において、(1) は振幅変調器2の光出
力波形であり、ディジタル信号の“1110011”の
場合を示している。“1”の部分に周波数ω0 の光が存
在する。(2) 、(3) はそれぞれ振幅変調器16、及び18の
光出力波形であり、(2) の(b) の部分はcosω1tが負
値の領域のため(点線で示す)、(b) の部分の周波数ω
0 の光の位相は、隣接する(a) 、(c) の位相とは逆位相
となっている。(3) についても(e) の部分の周波数ω0
の光の位相は隣接する(d) 、(f) の位相とは逆位相とな
っている。(4) は光カプラ19の光出力波形を示す。In FIG. 2, (1) is the optical output waveform of the amplitude modulator 2, and shows the case of "1110011" of the digital signal. Light of frequency ω 0 exists in the “1” part. (2) and (3) are the optical output waveforms of the amplitude modulators 16 and 18, respectively. The part (b) of (2) is because cosω 1 t is a negative value region (shown by the dotted line), Frequency of part b) ω
The phase of 0 light is opposite to that of adjacent (a) and (c). Also for (3), the frequency ω 0 of the part of (e)
The phase of the light is opposite to that of adjacent (d) and (f). (4) shows the optical output waveform of the optical coupler 19.
【0021】この結果、光カプラ19の出力光信号は、図
3に示すように、直線偏光のままω 1 の速度で偏光面上
を回転しながら出力される。この際、偏波ベクトルの回
転を無視して、時間軸に沿って常に偏波ベクトル軸方向
の電界の複素振幅をトレースして観測した場合、光信号
の振幅および位相歪みは観測されず、特定の時間軸上の
ポイントが光信号の位相条件にとっての特異点になるこ
とがなく、伝送路の分散特性による波形劣化を増長しな
いことが期待できる。As a result, the output optical signal of the optical coupler 19 is
As shown in 3, the linear polarization remains ω 1On the plane of polarization at the speed of
Is output while rotating. At this time, the polarization vector
The polarization vector axis direction is always along the time axis, ignoring the rotation.
When the complex amplitude of the electric field of is observed by tracing, the optical signal
No amplitude and phase distortion of
The point becomes a singular point for the phase condition of the optical signal.
Do not increase waveform deterioration due to dispersion characteristics of the transmission line.
Can be expected to be
【0022】なお、上記発振器15による変調信号の周波
数ω1 は、レーザー発振器1の出射光を変調する送信信
号6の周波数の2〜3倍程度に設定する。即ち、送信信
号の1ビット(ディジタル信号の場合)の間に少なくと
も2回以上偏波スクランブルのサイクルが起こるように
する。The frequency ω 1 of the modulation signal from the oscillator 15 is set to about 2 to 3 times the frequency of the transmission signal 6 that modulates the emitted light of the laser oscillator 1. That is, the polarization scrambling cycle is made to occur at least twice in one bit (in the case of digital signal) of the transmission signal.
【0023】一方、振幅変調器16及び18でcosω1tお
よびsinω1tにより変調をしているため、(sin2
ω1t+cos2 ω1t=1により)光カプラ19から送出さ
れる光信号パワーは一定である(図2の(4) 参照)。On the other hand, since the modulation by the amplitude modulator 16 and 18 cos .omega 1 t and sinω 1 t, (sin 2
The optical signal power transmitted from the optical coupler 19 is constant (due to ω 1 t + cos 2 ω 1 t = 1) (see (4) in FIG. 2).
【0024】また、図1において、振幅変調器16及び18
で振幅変調信号を|cosω1t|と|sinω1t|に置
き換えると、偏光状態は2ω1 の周期でX偏光とY偏光
の間を往復することになるため、振幅変調器16及び18の
駆動条件が緩和される。Further, in FIG. 1, the amplitude modulators 16 and 18 are shown.
In the amplitude modulation signal | cosω 1 t | a | sinω 1 t | when the replace, polarization state because that will shuttle between X-polarized light and Y-polarized light with a period of 2 [omega 1, the amplitude modulator 16 and 18 Driving conditions are eased.
【0025】次に本発明の第2の実施例について説明す
る。図4は本第2の実施例の構成図である。図におい
て、レーザー発振器(LD)1から出射される直線偏波
のCW光を偏波方向を合わせて振幅変調器(LiNbO3変調
器など)2に入力し、送信信号6により振幅変調をして
出力し、該出力を光カプラ20で2分岐するまでは、上記
第1の実施例と同じである。Next, a second embodiment of the present invention will be described. FIG. 4 is a block diagram of the second embodiment. In the figure, linearly polarized CW light emitted from a laser oscillator (LD) 1 is input to an amplitude modulator (LiNbO 3 modulator, etc.) 2 with its polarization direction aligned and amplitude-modulated by a transmission signal 6. It is the same as the first embodiment until the output and the output is branched into two by the optical coupler 20.
【0026】本第2の実施例では、該2分岐した光信号
を位相変調器23及び25に入力し、一方の位相変調器25で
は、発振器22からの信号((π/2)cosω1t)によ
り、また、他方の位相変調器23ではこれを遅延回路21に
よりπだけ遅延された信号((−π/2)cosω1t)
により、それぞれ位相変調をして出力する。そして、位
相変調器23の出力の偏波面を偏波制御子24によりπ/2
回転させた信号と位相変調器25の出力とを光カプラ26に
より加算する。In the second embodiment, the two-branched optical signal is input to the phase modulators 23 and 25, and one of the phase modulators 25 has a signal ((π / 2) cosω 1 t from the oscillator 22. ), And in the other phase modulator 23, a signal ((−π / 2) cosω 1 t) delayed by π by the delay circuit 21.
, Respectively, phase-modulates and outputs. Then, the polarization plane of the output of the phase modulator 23 is set to π / 2 by the polarization controller 24.
The optical coupler 26 adds the rotated signal and the output of the phase modulator 25.
【0027】この結果、別々に位相変調され最終的に光
カプラ26により合波された2つの偏波ベクトル間の位相
差はω1 の周期で−π〜+πの範囲で変化する筈である
から、偏波スクランブルの出力状況はこの場合も図6に
示すようになる。しかし、個々の位相変調器による変調
駆動範囲が−π/2〜π/2であり、光信号の帯域拡大
の抑圧が行われるので、従来例(図7)に比べ分散によ
る波形劣化が緩和される。As a result, the phase difference between the two polarization vectors separately phase-modulated and finally multiplexed by the optical coupler 26 should change in the range of -π to + π in the cycle of ω 1. The output status of polarization scrambling is also as shown in FIG. However, since the modulation drive range of each phase modulator is -π / 2 to π / 2, and the band expansion of the optical signal is suppressed, the waveform deterioration due to dispersion is alleviated as compared with the conventional example (FIG. 7). It
【0028】なお、発振器22から出力する位相制御信号
として正弦波の代わりに三角波(2sin-1〔cos
(ω1t)〕、但しsin-1関数の値域は−π/2〜π/
2とする)を使用しても、上述したと同じ効果が得られ
る。As a phase control signal output from the oscillator 22, instead of a sine wave, a triangular wave (2 sin -1 [cos
(Ω 1 t)], where the range of the sin −1 function is −π / 2 to π /
2), the same effect as described above can be obtained.
【0029】次に本発明の第3の実施例について説明す
る。前述したように第2の従来例(図8)において、波
長の異なる2個のレーザー発振器7及び9(それぞれの
周波数をωP 、ωS とする)を用いて光送信器から偏波
面がスクランブルされた光信号を出力するスクランブル
方式について説明した。Next, a third embodiment of the present invention will be described. As described above, in the second conventional example (FIG. 8), the polarization plane is scrambled from the optical transmitter by using the two laser oscillators 7 and 9 having different wavelengths (the respective frequencies are ω P and ω S ). The scramble system for outputting the generated optical signal has been described.
【0030】本第3の実施例では波長の異なる2個のレ
ーザー発振器を用いた別のスクランブル方法について提
案する。図5は本第3の実施例の構成図である。図にお
いて、波長の異なる2個のレーザー発振器7及び9(そ
れぞれの周波数をωP 、ωSとする)から出射される直
線偏波のCW光をそれぞれ振幅変調器8及び10に入力
し、同じ送信信号6により振幅変調をして出力するまで
は前述した第2の従来例と同じである。The third embodiment proposes another scrambling method using two laser oscillators having different wavelengths. FIG. 5 is a block diagram of the third embodiment. In the figure, linearly polarized CW lights emitted from two laser oscillators 7 and 9 having different wavelengths (respective frequencies are ω P and ω S ) are input to amplitude modulators 8 and 10, respectively, and the same. It is the same as the above-mentioned second conventional example until the amplitude modulation by the transmission signal 6 and the output.
【0031】本実施例では、一方の振幅変調器8の出力
の偏波面を偏波制御子27により135度回転させて、更
にλ/4板28を通すことにより右円偏波信号に変換す
る。他方の振幅変調器10の出力についても偏波制御子29
によりその偏波面を45度回転させて、更にλ/4板30
を通すことにより左円偏波信号に変換する。In the present embodiment, the polarization plane of the output of one of the amplitude modulators 8 is rotated 135 degrees by the polarization controller 27, and is further passed through the λ / 4 plate 28 to be converted into a right circular polarization signal. . The polarization controller 29 is also used for the output of the other amplitude modulator 10.
Rotate the plane of polarization by 45 degrees with λ / 4 plate 30
It is converted into a left-hand circularly polarized signal by passing through.
【0032】上記右円偏波信号及び左円偏波信号を光カ
プラ31で加算すると、これら2波長成分は等しいパワー
に設定されているので、出力信号は、前述した第1の実
施例の場合に似ていて、直線偏光が2波の周波数差(ω
P −ωS ) に相当する速度で偏波面上を回転しながら出
力する(図3参照)。When the right circular polarized signal and the left circular polarized signal are added by the optical coupler 31, these two wavelength components are set to have the same power, so that the output signal is the same as in the case of the first embodiment. , The frequency difference between two linearly polarized waves (ω
It outputs while rotating on the plane of polarization at a speed equivalent to P − ω S ) (see Fig. 3).
【0033】この際、2波の周波数差(ωP −ωS ) を
送信信号6の周波数の2〜3倍程度に設定する。即ち、
送信信号の1ビット(ディジタル信号の場合)の間に少
なくとも2回以上偏波スクランブルのサイクルが起こる
ようにする。At this time, the frequency difference (ω P −ω S ) between the two waves is set to about 2 to 3 times the frequency of the transmission signal 6. That is,
The polarization scrambling cycle is made to occur at least twice during one bit (in the case of digital signal) of the transmission signal.
【0034】[0034]
【発明の効果】以上説明したように、本発明による光送
信器を使用することにより、受信側でスペクトルの拡大
の少ない光信号を受信することが可能となる。As described above, by using the optical transmitter according to the present invention, it becomes possible for the receiving side to receive an optical signal with a small spectrum expansion.
【図1】は本発明の第1の実施例の構成図、FIG. 1 is a configuration diagram of a first embodiment of the present invention,
【図2】は本第1の実施例の説明図、FIG. 2 is an explanatory diagram of the first embodiment,
【図3】は本第1の実施例における偏波スクランブルさ
れた光信号ベクトルの様子を示す図、FIG. 3 is a diagram showing a state of a polarization-scrambled optical signal vector in the first embodiment.
【図4】は本発明の第2の実施例の構成図、FIG. 4 is a configuration diagram of a second embodiment of the present invention,
【図5】は本発明の第3の実施例の構成図、FIG. 5 is a configuration diagram of a third embodiment of the present invention,
【図6】は一例の偏波スクランブルされた光信号ベクト
ルの様子を示す図、FIG. 6 is a diagram showing an example of a polarization-scrambled optical signal vector,
【図7】は第1の従来例の光送信器の構成図、FIG. 7 is a configuration diagram of an optical transmitter of a first conventional example,
【図8】は第2の従来例の光送信器の構成図である。FIG. 8 is a configuration diagram of an optical transmitter of a second conventional example.
1は半導体レーザ(LD)、 2は振幅変調器、 3は偏波制御子、 4は位相変調器、 5は発振器、 6は送信信号、 7、9は半導体レーザ(LD)、 8、10は振幅変調器、 11は偏波制御子、 12は偏波合成器、 13は光カプラ、 14は遅延回路、 15は発振器、 16、18は振幅変調器、 17は偏波制御子、 19、20は光カプラ、 21は遅延回路、 22は発振器、 23、25は位相変調器、 24は偏波制御子、 26は光カプラ、 27、29は偏波制御子、 28、30はλ/4板、 31は光カプラ を示す。 1 is a semiconductor laser (LD), 2 is an amplitude modulator, 3 is a polarization controller, 4 is a phase modulator, 5 is an oscillator, 6 is a transmission signal, 7 and 9 are semiconductor lasers (LD), 8 and 10 are Amplitude modulator, 11 is polarization controller, 12 is polarization combiner, 13 is optical coupler, 14 is delay circuit, 15 is oscillator, 16 and 18 are amplitude modulators, 17 is polarization controller, 19 and 20 Is an optical coupler, 21 is a delay circuit, 22 is an oscillator, 23 and 25 are phase modulators, 24 is a polarization controller, 26 is an optical coupler, 27 and 29 are polarization controllers, and 28 and 30 are λ / 4 plates. , 31 are optical couplers.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/152 10/142 10/02 10/18 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H04B 10/152 10/142 10/02 10/18
Claims (6)
し該変調後も直線偏波状態を保持する光信号について、
該直線偏波状態をスクランブルして出力する光送信器に
おいて、 該変調された光信号を2分岐する分岐手段と、 該分岐した一方の光信号を所定の周波数ω1 を持つ変調
信号により変調して出力する第1の変調手段と、 該分岐した他方の光信号を該所定の周波数ω1 を持つ変
調信号の位相を所定量だけずらせた信号により変調して
出力する第2の変調手段と、 該第1および第2の変調手段の光出力を各直線偏波軸を
直交させて加算して出力する合波手段とを有することを
特徴とする光送信器。1. An optical signal which modulates linearly polarized light with a transmission data signal and maintains the linearly polarized state after the modulation,
In an optical transmitter that scrambles and outputs the linearly polarized state, a splitting unit that splits the modulated optical signal into two, and one of the split optical signals is modulated by a modulation signal having a predetermined frequency ω 1. First modulating means for outputting the optical signal, and second modulating means for modulating and outputting the other branched optical signal by a signal obtained by shifting the phase of the modulated signal having the predetermined frequency ω 1 by a predetermined amount. An optical transmitter, comprising: a combining unit that adds the optical outputs of the first and second modulating units with their respective linear polarization axes orthogonal to each other and outputs the added signals.
調が振幅変調である場合に、前記第1および第2の変調
手段における所定の周波数ω1 を持つ変調信号は余弦波
cos(ω1t)および正弦波sin(ω1t) の関係にな
るような位相関係に設定し、また該変調信号が負値をと
る範囲では前記第1および第2の変調手段の出力光信号
の光周波数ω0 の位相が相対的にπずれるように前記第
1および第2の変調手段が設定されていることを特徴と
する請求項1に記載の光送信器。2. When the modulation performed by the first and second modulating means is amplitude modulation, the modulation signal having a predetermined frequency ω 1 in the first and second modulating means is a cosine wave cos (ω 1 t) and the sinusoidal wave sin (ω 1 t) are set to a phase relationship, and the optical signals of the output optical signals of the first and second modulating means are set in a range in which the modulated signal has a negative value. The optical transmitter according to claim 1, wherein the first and second modulators are set so that the phase of the frequency ω 0 is relatively deviated by π.
の変調手段における余弦波および正弦波を余弦波および
正弦波の絶対値で置き換えたことを特徴とする請求項1
に記載の光送信器。3. The first and second sets according to claim 2.
2. The cosine wave and the sine wave in the modulating means of claim 1 are replaced with the absolute values of the cosine wave and the sine wave.
The optical transmitter described in 1.
手段で行う変調が位相変調である場合に、 前記第1の変調手段における所定の周波数を持つ信号は
(π/2)cos(ω 1t) 、前記第2の変調手段におけ
る所定の周波数を持つ信号の位相を所定量だけずらした
信号は(−π/2)cos(ω1t) であることを特徴と
する請求項1に記載の光送信器。4. The first and second modulations according to claim 1.
When the modulation performed by the means is phase modulation, the signal having the predetermined frequency in the first modulating means is
(Π / 2) cos (ω 1t), in the second modulating means
The phase of a signal with a specified frequency is shifted by a specified amount
The signal is (-π / 2) cos (ω1t)
The optical transmitter according to claim 1.
手段で使用する信号(π/2)cos(ω1t) および
(−π/2)cos(ω1t) をsin-1〔cos(ω
1t) 〕および−sin-1〔cos(ω1t)〕で置き換
え、正弦波逆関数sin-1の値域は−π/2〜π/2で
あることを特徴とする請求項4に記載の光送信器。5. The signals (π / 2) cos (ω 1 t) and (−π / 2) cos (ω 1 t) used in the first and second modulating means according to claim 4 are sin −. 1 [cos (ω
1 ) and -sin -1 [cos (ω 1 t)], and the range of the sinusoidal inverse function sin -1 is -π / 2 to π / 2. Optical transmitter.
波数(ωS 、ωP )の2個の直線偏波の光信号を同一の
送信データ信号により変調し、これらを合波することで
偏波面スクランブルを実現する光送信器において、 該変調された一方の光信号を右円偏波信号に変換して出
力する第1の偏波制御手段と、 該変調された他方の光信号を左円偏波信号に変換して出
力する第2の偏波制御手段とを設け、 該第1及び第2の偏波制御手段の出力を加算して出力す
る構成としたことを特徴とする光送信器。6. The two linearly polarized optical signals of different frequencies (ω S , ω P ) output from the two light sources are modulated by the same transmission data signal, and these are multiplexed to obtain a polarized wave. In an optical transmitter that realizes wavefront scrambling, first polarization control means for converting the one modulated optical signal into a right-hand circularly polarized signal and outputting the right-hand circularly polarized signal, and the other modulated optical signal to the left-hand circular signal. An optical transmitter having a second polarization control means for converting into a polarization signal and outputting the polarization signal and adding the outputs of the first and second polarization control means for output. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7205736A JPH0955706A (en) | 1995-08-11 | 1995-08-11 | Optical transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7205736A JPH0955706A (en) | 1995-08-11 | 1995-08-11 | Optical transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0955706A true JPH0955706A (en) | 1997-02-25 |
Family
ID=16511819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7205736A Withdrawn JPH0955706A (en) | 1995-08-11 | 1995-08-11 | Optical transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0955706A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008067075A (en) * | 2006-09-07 | 2008-03-21 | Nippon Telegr & Teleph Corp <Ntt> | Light transmitting system and light transmitting method |
JP2008085612A (en) * | 2006-09-27 | 2008-04-10 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission system and optical transmission method |
JP2008270873A (en) * | 2007-04-16 | 2008-11-06 | Nec Corp | Quantum key distribution system, and transmission device and receiving device thereof |
CN109634041A (en) * | 2014-04-02 | 2019-04-16 | 深圳光峰科技股份有限公司 | A kind of light-source system and optical projection system |
-
1995
- 1995-08-11 JP JP7205736A patent/JPH0955706A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008067075A (en) * | 2006-09-07 | 2008-03-21 | Nippon Telegr & Teleph Corp <Ntt> | Light transmitting system and light transmitting method |
JP4493634B2 (en) * | 2006-09-07 | 2010-06-30 | 日本電信電話株式会社 | Optical transmission system and optical transmission method |
JP2008085612A (en) * | 2006-09-27 | 2008-04-10 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission system and optical transmission method |
JP4493636B2 (en) * | 2006-09-27 | 2010-06-30 | 日本電信電話株式会社 | Optical transmission system |
JP2008270873A (en) * | 2007-04-16 | 2008-11-06 | Nec Corp | Quantum key distribution system, and transmission device and receiving device thereof |
CN109634041A (en) * | 2014-04-02 | 2019-04-16 | 深圳光峰科技股份有限公司 | A kind of light-source system and optical projection system |
CN109634041B (en) * | 2014-04-02 | 2020-12-15 | 深圳光峰科技股份有限公司 | A light source system and a projection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6459518B1 (en) | Optical transmitting apparatus | |
JP3094950B2 (en) | Optical transmission device and optical transmission method | |
JP2626896B2 (en) | Optical signal processing method and device, optical signal receiving method, and optical transmission device | |
US9832055B2 (en) | Method and arrangement for transmitting an optical transmission signal with reduced polarisation-dependent loss | |
JPH01500240A (en) | optical transmission equipment | |
WO2009114804A1 (en) | Optical system for reducing stimulated brillouin scattering by controllably changing polarization direction of an optical signal | |
CN1169318C (en) | Method and device for dispersion compensation | |
US20120002978A1 (en) | Optical single-sideband transmitter | |
US7146109B2 (en) | Analog modulation of optical signals | |
EP2882118B1 (en) | Polarization multiplexing optical transmitter and method for controlling operation | |
JP6456489B2 (en) | Dummy light generation device, optical transmission device, and dummy light generation method | |
US6940638B2 (en) | Optical frequency conversion systems and methods | |
US6522438B1 (en) | High-speed optical duobinary modulation scheme | |
JPH10206661A (en) | Polarization scrambler and optical integrated circuit using the same | |
US6535316B1 (en) | Generation of high-speed digital optical signals | |
JPH0955706A (en) | Optical transmitter | |
CN112098951B (en) | Baseband noise-free double frequency phase coding pulse optical generation method capable of inhibiting power periodic fading | |
US20020080454A1 (en) | Method, system and apparatus for optically transferring information | |
Wang et al. | Photonic-assisted FSK signal generation based on carrier phase-shifted double sideband modulation | |
CN115225155B (en) | System and method for realizing multichannel common carrier frequency phase coding based on array structure | |
JP2003315739A (en) | Polarization scrambler | |
WO2022009324A1 (en) | Optical transmitter | |
EP1749357A1 (en) | Method and apparatus for producing high extinction ratio data modulation formats | |
WO2022044113A1 (en) | Optical amplifier exciter | |
Ma et al. | Optical sinc-shaped Nyquist pulse generation by using of an intensity modulator in a Sagnac Loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021105 |