JPH0947852A - Continuous casting method and immersion nozzle - Google Patents
Continuous casting method and immersion nozzleInfo
- Publication number
- JPH0947852A JPH0947852A JP19650995A JP19650995A JPH0947852A JP H0947852 A JPH0947852 A JP H0947852A JP 19650995 A JP19650995 A JP 19650995A JP 19650995 A JP19650995 A JP 19650995A JP H0947852 A JPH0947852 A JP H0947852A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- nozzle
- width direction
- center segregation
- unsolidified region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
(57)【要約】
【課題】 連続鋳造に際し、中心偏析改善に対する圧下
鋳造を有効に機能させるために、溶融金属の流動を制御
し、中心偏析改善の阻害となっているW型プロフィール
を解消し、しかも比較的簡単な構成で中心偏析を容易か
つ確実に防止できるようにする。
【解決手段】 浸漬ノズル1の胴部1aの下部における
側部に、吐出方向がノズル中心軸から側方に向かう側部
吐出口10を複数設け、ノズル底部に、吐出方向が下方
に向かう底部吐出口11を複数設け、これら側部吐出口
10および底部吐出口11から溶融金属を吐出すること
により、鋳片の未凝固領域における鋳片幅方向中央部に
下降流を形成して未凝固領域における凝固シェル厚を鋳
片幅方向に制御して従来のW型プロフィールを解消し、
この未凝固領域の最終凝固部を連続的に圧下し、中心偏
析を防止する。
(57) [Abstract] [PROBLEMS] In continuous casting, the flow of molten metal is controlled and the W-shaped profile, which is an obstacle to the improvement of center segregation, is eliminated in order to effectively perform the reduction casting to improve the center segregation. Moreover, it is possible to easily and surely prevent center segregation with a relatively simple structure. SOLUTION: A plurality of side discharge ports 10 whose discharge direction is directed laterally from the nozzle center axis are provided on the side part in the lower part of the body 1a of the immersion nozzle 1, and the bottom discharge of the nozzle bottom part whose discharge direction is directed downward. By providing a plurality of outlets 11 and discharging molten metal from the side discharge port 10 and the bottom discharge port 11, a downward flow is formed in the slab width direction central portion in the unsolidified region of the slab to form the unsolidified region in the unsolidified region. Control the solidified shell thickness in the width direction of the slab to eliminate the conventional W-shaped profile,
The final solidified portion in this unsolidified region is continuously pressed to prevent center segregation.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、連続鋳造鋳片の
幅方向不均一凝固を解消し、中心偏析を防止するための
連続鋳造法および浸漬ノズルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method and a dipping nozzle for eliminating uneven solidification in a width direction of a continuously cast slab and preventing center segregation.
【0002】[0002]
【従来の技術と発明が解決しようとする課題】連続鋳造
は、鋳型内に鋳込まれた溶鋼を鋳型内の冷却水により一
次冷却して外皮に凝固シェルを形成し、続くガイドロー
ル群内で二次冷却して凝固を促進し、完全凝固した鋳片
をピンチロールで引き抜いて連続的に鋳片を製造する方
法であり、このような連続鋳造においては、しばしば、
中心偏析と呼ばれる内部欠陥が問題となる。この中心偏
析は、鋳片の厚み方向中心部(最終凝固部)でC,S,
P,Si,Mnなどの溶鋼成分が正偏析する現象であ
る。中心偏析は厚板用素材において特に深刻な問題であ
り、偏析部分における靱性の低下や、水素誘起割れの原
因となることが知られている。In the continuous casting, the molten steel cast in the mold is primarily cooled by the cooling water in the mold to form a solidified shell on the outer skin, and then in the guide roll group. Secondary cooling to promote solidification, is a method of continuously producing a slab by pulling out a completely solidified slab with a pinch roll, in such continuous casting, often,
Internal defects called central segregation pose a problem. This center segregation is caused by C, S, and C at the center of the slab in the thickness direction (final solidified portion).
This is a phenomenon in which molten steel components such as P, Si and Mn are positively segregated. Center segregation is a particularly serious problem in thick plate materials, and is known to cause deterioration of toughness in the segregated portion and hydrogen-induced cracking.
【0003】このような中心偏析は、凝固末期における
デンドライト(樹枝状晶)間の残溶鋼が、鋳片の凝固収
縮あるいは凝固シェルのバルジング等の原因により、最
終凝固部のクレータエンドに向かってマクロ的に移動す
ることと、濃化溶鋼が局部的に集積するために起こるこ
とが分かっている。従って、中心偏析防止対策として
は、凝固先端部付近を何らかの方法で圧下することによ
り、末期凝固部の凝固収縮分を補償して残溶鋼の移動や
濃化溶鋼の集積を阻止する方法があり、種々の思想に基
づく方法が提案されてきた。Such center segregation causes the residual molten steel between dendrites (dendritic crystals) at the final stage of solidification to be macroscopic toward the crater end of the final solidification part due to solidification shrinkage of the slab or bulging of the solidification shell. It is known that this occurs due to the local migration of concentrated molten steel and the local accumulation of concentrated molten steel. Therefore, as a measure for preventing center segregation, there is a method of compensating for the solidification shrinkage of the final solidification portion by preventing the movement of residual molten steel and the accumulation of concentrated molten steel by reducing the vicinity of the solidification front end by some method, Methods based on various ideas have been proposed.
【0004】例えば、特開昭63−252655号公報
では、鋳片表面に噴射される冷却水量を増量することに
より鋳片最終凝固部の鋳片表面温度を700〜800°
Cの温度範囲とし、凝固シェル厚さを厚くすることによ
りロール間バルジングを抑制し、さらに軽圧下ロール群
により毎分0.2〜0.4%の歪み速度の圧下力を鋳片
に印加することにより、濃化溶鋼の流動を阻止し、中心
偏析を防止する軽圧下方法が提案されている。また、特
開昭61−42460号公報には、凝固完了点の上流側
に電磁攪拌装置あるいは超音波印加装置を設置してデン
ドライトを溶鋼流動により切断してクレータエンド付近
に等軸晶域が形成させるようにした上で、凝固完了点直
前に配置した一対の圧下ロールにより3mm以上の大圧
下を与えて強制的に凝固完了点を形成し、割れを発生さ
せることなく中心偏析を解消する大圧下方法が提案され
ている。For example, in Japanese Unexamined Patent Publication No. 63-252655, the surface temperature of the slab at the final solidification portion of the slab is 700 to 800 ° by increasing the amount of cooling water sprayed on the surface of the slab.
The bulging between rolls is suppressed by increasing the solidified shell thickness within the temperature range of C, and a rolling force of a strain rate of 0.2 to 0.4% per minute is applied to the slab by the light rolling roll group. Therefore, a light reduction method has been proposed which prevents the flow of concentrated molten steel and prevents center segregation. Further, in Japanese Patent Laid-Open No. 61-42460, an electromagnetic stirrer or an ultrasonic wave applicator is installed upstream of the solidification completion point to cut dendrite by molten steel flow to form an equiaxed crystal region near the crater end. In addition, a pair of reduction rolls placed immediately before the completion point of solidification gives a large reduction of 3 mm or more to forcibly form the completion point of solidification, which eliminates center segregation without cracking. A method has been proposed.
【0005】しかし、前述のロール圧下では、鋳片長手
方向に対して点状にしか圧下できないので、凝固収縮や
バルジングを十分に防止することができず、また各圧下
が集中荷重として働くので凝固界面に内部割れが発生し
易く圧下量を大きくとれないない問題点を有している。
また、特開平1−170566号公報には、鋳片の凝固
完了点近傍を平面状の鍛造金型で連続的に鍛圧加工する
大圧下方法が記載されているが、設備コストが非常に高
く、また圧下量が大きいため濃化溶鋼が鋳片中心部に入
りにくくなって逆に負偏析を生じ易いという欠点があっ
た。However, with the above roll reduction, since it can be reduced only in a dot shape in the longitudinal direction of the slab, solidification shrinkage and bulging cannot be sufficiently prevented, and since each reduction acts as a concentrated load, solidification occurs. There is a problem that internal cracks are likely to occur at the interface and a large reduction amount cannot be obtained.
Further, JP-A-1-170566 discloses a large reduction method in which the solidification completion point of a cast slab is continuously forged with a flat forging die, but the equipment cost is very high, Further, since the amount of reduction is large, the concentrated molten steel is difficult to enter the central portion of the slab and conversely tends to cause negative segregation.
【0006】さらに、上記の圧下による従来の中心偏析
改善方法は、ロール圧下,金型圧下のいずれの手段を採
用しても、図5(c),(d)に示すような鋳片4の幅
方向の凝固不均一がある場合、つまり幅中央部(1/4
〜3/4W)に比較して幅端部(1/4W〜エッジ側お
よび3/4W〜エッジ側)において凝固の進行が遅い場
合、鋳片幅方向で均一な圧下ができないため、凝固が遅
れた鋳片幅方向両端部分で中心偏析Aが悪化するという
欠点を有していた。Further, in the conventional center segregation improvement method by the above-mentioned reduction, whichever method of roll reduction or die reduction is adopted, the cast slab 4 as shown in FIGS. When there is uneven solidification in the width direction, that is, the width center part (1/4
When the solidification progresses slowly at the width ends (1 / 4W to the edge side and 3 / 4W to the edge side), the solidification is delayed because uniform rolling cannot be performed in the width direction of the slab. The center segregation A is deteriorated at both end portions in the width direction of the cast slab.
【0007】この鋳片幅方向の凝固不均一は、従来の連
続鋳造機において、通常、図5(a)に示す2つの吐出
孔10を鋳片幅方向の外側に向けて若干下向きに形成し
た2孔ノズルと呼ばれる浸漬ノズル1より水冷鋳型2内
に溶融金属3を吐出するため、大きな循環下降流Fが未
凝固領域B内に形成され、この循環下降流Fにより鋳片
内の均一な冷却が不可能になることによる。The uneven solidification in the width direction of the cast piece is usually caused by forming two discharge holes 10 shown in FIG. 5 (a) slightly downward in the width direction of the cast piece in the conventional continuous casting machine. Since the molten metal 3 is discharged into the water-cooled mold 2 from the immersion nozzle 1 called a two-hole nozzle, a large circulating downward flow F is formed in the unsolidified region B, and the circulating downward flow F uniformly cools the slab. Because it becomes impossible.
【0008】これにより、鋳片横断面では、未凝固領域
Bの最終凝固部における凝固シェルSの厚さが鋳片幅方
向中央部で厚く、両端部で薄くなり、鋳片平面視では、
クレータエンド形状が鋳片幅方向中央部で凹み、両端部
で突出して不均一となる、所謂W型プロフィール(図5
(b)参照)が発生する。このW型プロフィールの発生
メカニズムは、図6に示すように、吐出流FA による鋳
片短辺近傍の凝固シェルの再溶解および鋳片短辺近傍の
下降流FB による凝固遅れによるものである。As a result, in the cross section of the slab, the thickness of the solidified shell S at the final solidified portion of the unsolidified region B is thicker at the central portion in the width direction of the slab and thinner at both ends, and in plan view of the slab,
The so-called W-shaped profile in which the crater end shape is recessed at the central portion in the width direction of the slab and projected at both end portions to be non-uniform (Fig.
(See (b)) occurs. As shown in FIG. 6, the mechanism for generating the W-shaped profile is due to the remelting of the solidified shell near the short side of the cast piece by the discharge flow F A and the delay of solidification due to the downward flow F B near the short side of the cast piece. .
【0009】この状態で、圧下ロール群で圧下を受ける
と、鋳片4の幅方向両端部で凝固収縮に見合った圧下力
が得られず、この両端部に濃化溶鋼が流入,集積して中
心偏析Aが生じることになる。[0009] In this state, when the rolling roll group receives the rolling reduction, the rolling force corresponding to the solidification shrinkage cannot be obtained at both widthwise ends of the slab 4, and the concentrated molten steel flows into and accumulates at the both ends. Central segregation A will occur.
【0010】このような鋳片幅方向の凝固不均一を解消
する中心偏析の改善方法として、特開平5−18518
6号公報には、図7に示すように、鋳型2の長辺2aの
鋳片幅方向中央部の凝固進行の速い部分に長辺長さの5
0〜80%の長さにわたり、深さΔd=1.0〜5.0
mmの凹部2bを形成し、鋳片4の幅方向中央部に形成
された凸部により鋳片幅方向にわたって均等な未凝固溶
鋼厚みを確保する段差厚鋳型が提案されている。しか
し、この方法では、十分な効果を得るためには鋳片凸部
を3mm以上に設定することが必要であるため、鋳片の
パスラインの設定が困難となり、また段差部での鋳片バ
ルジングにより内部割れを誘発し易いという問題点を有
していた。As a method for improving center segregation for eliminating such uneven solidification in the width direction of the cast slab, Japanese Patent Laid-Open No. 18518/1993
No. 6, as shown in FIG. 7, the length of the long side 2a of the long side 2a of the mold 2 is 5 at the central portion of the long side 2a where the solidification progresses rapidly.
Depth Δd = 1.0-5.0 over a length of 0-80%
There is proposed a step thickness mold in which a concave portion 2b of mm is formed, and a convex portion formed in the widthwise central portion of the slab 4 ensures a uniform unsolidified molten steel thickness in the slab width direction. However, with this method, it is necessary to set the slab convexity to 3 mm or more in order to obtain a sufficient effect, so it becomes difficult to set the slab pass line, and slab bulging at the stepped portion becomes difficult. Therefore, there is a problem that internal cracks are easily induced.
【0011】また、同様の凝固不均一解消の改善方法と
して、特開昭62−270260号公報には、浸漬ノズ
ルをタンディッシュノズルに対して回転可能に軸支さ
せ、浸漬ノズルの下端吐出口の吐出方向を中心からの放
射方向に対して周方向に角度を付け、吐出する溶鋼の反
作用により浸漬ノズルを回転させることで、溶鋼吐出流
を旋回させ、溶鋼中心部の冷却・凝固を促進し、中心偏
析を防止することが提案されているが、浸漬ノズルの吐
出口形状制作が困難であり、タンディッシュノズルと浸
漬ノズルの接続部分が複雑になるなどの問題と、偏流が
起きてしまい均一凝固が不可能になるといった問題を有
している。さらに、特願平6−237059号では、鋳
片幅方向に2本以上の浸漬ノズルを配列することによ
り、下降流に起因する鋳片幅方向不均一凝固を解消させ
ることが提案されているが、ノズルコストが増大し、ノ
ズルカセットシールが2箇所以上必要となることによる
清浄性悪化の問題を有している。Further, as a similar method for solving the uneven solidification, Japanese Patent Laid-Open No. 62-270260 discloses a dipping nozzle rotatably supported with respect to a tundish nozzle so that the lower end discharge port of the dipping nozzle is By making the discharge direction an angle to the radial direction from the center and rotating the immersion nozzle by the reaction of the molten steel to be discharged, the molten steel discharge flow is swirled and the cooling and solidification of the molten steel central part is promoted. It has been proposed to prevent center segregation, but it is difficult to make the discharge port shape of the immersion nozzle, the connection part between the tundish nozzle and the immersion nozzle becomes complicated, and uneven flow occurs and uniform solidification occurs. There is a problem that it becomes impossible. Further, in Japanese Patent Application No. 6-237059, it is proposed that two or more immersion nozzles are arranged in the width direction of the slab to eliminate the uneven solidification in the slab width direction due to the downward flow. However, the nozzle cost is increased, and the nozzle cassette seal is required at two or more places, which causes a problem of deterioration of cleanability.
【0012】また、材料とプロセスVol. 2 (1989),P1
159 (特開平1−178355号公報)には、ガイドロ
ール群のガイドロールの鋳片厚さ方向の間隔を段階的に
増加させることにより鋳片に強制的にバルジングを起こ
し、スラブ厚さを鋳型短辺の2〜3倍としたクレータエ
ンド付近で圧下ロール群の小径ロールにより軽圧下を行
い、バルジングにより濃化溶鋼を浮上拡散させると共
に、軽圧下により濃化溶鋼の降下を阻止し、中心偏析を
防止する方法が提案されているが、太鼓型スラブを圧下
するため、幅中央部の圧下量が大きくなり、幅方向で均
一圧下を行うことは困難であると考えられる。Materials and Process Vol. 2 (1989), P1
159 (Japanese Patent Laying-Open No. 1-178355), the slab thickness is set to a mold by forcibly causing bulging in the slab by gradually increasing the interval between the guide rolls of the guide roll group in the slab thickness direction. The diameter of the concentrated molten steel is reduced by a small diameter roll of the reduction roll group near the crater end, which is 2 to 3 times the short side, and the concentrated molten steel is suspended and diffused by bulging. However, since the drum-shaped slab is pressed down, the amount of reduction at the width center portion becomes large, and it is considered difficult to perform uniform rolling down in the width direction.
【0013】なお、その他の中心偏析改善方法として、
特開昭63−157749号公報に記載されているよう
に、電磁攪拌を特定範囲内でかける方法や、特開平1−
113157号公報に記載されているように、超音波振
動を鋳片に印加する方法があるが、いずれも幅方向に不
均一凝固が有る場合には、根本的な解決には至らなかっ
た。As another method for improving center segregation,
As described in JP-A-63-157749, a method of applying electromagnetic stirring within a specific range, and JP-A-1-
As described in Japanese Patent No. 113157, there is a method of applying ultrasonic vibration to a slab, but in all cases, when there is uneven solidification in the width direction, a fundamental solution has not been reached.
【0014】この発明は、前述のような問題点を解消す
べくなされたもので、その目的は、中心偏析改善に対す
る圧下鋳造を有効に機能させるために、溶融金属の流動
を制御し、中心偏析改善の阻害となっているW型プロフ
ィールを解消し、しかも比較的簡単な構成で中心偏析を
容易かつ確実に防止しようとするものである。The present invention has been made to solve the above-mentioned problems, and an object thereof is to control the flow of molten metal and to perform center segregation in order to effectively perform the reduction casting for improving center segregation. The object of the present invention is to eliminate the W-shaped profile, which is an obstacle to improvement, and to easily and surely prevent center segregation with a relatively simple structure.
【0015】[0015]
【課題を解決するための手段】この発明に係る連続鋳造
法は、図1に示すように、鋳型2内に浸漬ノズル1を介
して供給した溶融金属3を冷却しつつ引き抜く連続鋳造
法において、前記浸漬ノズル1の側部吐出口10および
底部吐出口11から溶融金属を吐出することにより、鋳
片の未凝固領域における鋳片幅方向中央部に下降流を形
成して未凝固領域における凝固シェル厚を鋳片幅方向に
制御しつつつ、この未凝固領域の最終凝固部を連続的に
圧下し、中心偏析を防止することを特徴とする。The continuous casting method according to the present invention, as shown in FIG. 1, is a continuous casting method in which a molten metal 3 supplied through a submerged nozzle 1 into a mold 2 is withdrawn while being cooled. By discharging the molten metal from the side discharge port 10 and the bottom discharge port 11 of the immersion nozzle 1, a downflow is formed in the slab width direction central part in the unsolidified region of the slab to solidify the shell in the unsolidified region. While controlling the thickness in the width direction of the slab, the final solidified portion of this unsolidified region is continuously rolled down to prevent center segregation.
【0016】この発明に係る浸漬ノズルは、鋳型2内の
溶融金属3内に下部が浸漬される浸漬ノズルにおいて、
ノズル胴部1aの下部における側部に、吐出方向がノズ
ル中心軸から側方に向かう側部吐出口10を複数設け、
ノズル底部1bに、吐出方向が下方に向かう底部吐出口
11を複数設けたことを特徴とする。The immersion nozzle according to the present invention is the immersion nozzle in which the lower part is immersed in the molten metal 3 in the mold 2.
A plurality of side discharge ports 10 whose discharge directions are directed from the central axis of the nozzle to the sides are provided on the side of the lower part of the nozzle body 1a
The nozzle bottom portion 1b is characterized in that a plurality of bottom discharge ports 11 whose discharge direction is downward are provided.
【0017】スラブ用の通常の浸漬ノズルにおいては、
2つの側部吐出口10がそれぞれ鋳片短辺に向けて若干
下向きに形成されており、このような浸漬ノズルの底部
1bに底部吐出口11をノズル中心軸を挟んで鋳片幅方
向に2つ(全4孔ノズル)あるいは4つ(全6孔ノズ
ル)配列すればよい。In a conventional immersion nozzle for slabs,
Each of the two side discharge ports 10 is formed slightly downward toward the short side of the slab, and the bottom discharge port 11 is formed in the bottom part 1b of such an immersion nozzle in the width direction of the slab with the central axis of the nozzle interposed therebetween. One (all four-hole nozzle) or four (all six-hole nozzle) may be arranged.
【0018】以上のような構成において、本発明の作用
について説明する。従来の2つの側部吐出口を有する2
孔ノズルの場合、図6(b)に示すように、吐出流はメ
ニスカス部分への上昇流および鋳片短辺側への下降流を
形成し、クレータエンド形状は平面視でW型プロフィー
ルとなる。このような未凝固領域が不均一な鋳片を圧下
すると、凝固遅部すなわち鋳片エッジ近傍に圧下が及ば
ず、鋳片エッジ近傍の中心偏析が悪化するといった問題
を含んでいた。The operation of the present invention having the above structure will be described. 2 with conventional two side outlets
In the case of the hole nozzle, as shown in FIG. 6B, the discharge flow forms an ascending flow to the meniscus portion and a descending flow to the short side of the slab, and the crater end shape has a W-shaped profile in plan view. . When a cast slab having such a non-solidified region is non-uniformly rolled, the solidification retarded portion, that is, the vicinity of the cast slab edge is not rolled down, and there is a problem that center segregation near the cast slab edge is deteriorated.
【0019】これに対して、本発明では、図1(a)に
示すように、溶融金属3が側部吐出口10および底部吐
出口11から吐出され、鋳型2の中央部および上部に供
給される。中央に向かう吐出流は、鋳片内部幅方向中央
部において下降流F2 となり、鋳片短辺側の熱供給に比
べはるかに中央部が大きくなる。従って、鋳片横断面内
凝固シェル厚は、鋳片幅方向中央部で薄く、鋳片幅方向
端部で厚くなるといった凝固形態を持ち、従来発生して
いたW型プロフィールが解消される。このような横断面
紡錘形の未凝固領域をもった鋳片は、凝固収縮量に応じ
た圧下が可能となり、濃化溶鋼の流入,集積が阻止さ
れ、中心偏析Aを防止することができる。On the other hand, in the present invention, as shown in FIG. 1A, the molten metal 3 is discharged from the side discharge port 10 and the bottom discharge port 11 and is supplied to the central portion and the upper portion of the mold 2. It The discharge flow toward the center becomes a downward flow F 2 at the central portion in the width direction of the slab, and the central portion is much larger than the heat supply on the short side of the slab. Therefore, the solidified shell thickness in the slab cross-section has a solidification form in which it is thin at the center of the slab width direction and thick at the ends of the slab width direction, and the W-shaped profile that has conventionally occurred is eliminated. Such a slab having an unsolidified region having a spindle-shaped cross section can be rolled down according to the amount of solidification shrinkage, the inflow and accumulation of the concentrated molten steel can be prevented, and the central segregation A can be prevented.
【0020】なお、側部吐出口10からの上昇流F
1 は、メニスカスの温度を上昇させ、皮張り等の問題を
解消する。The upward flow F from the side discharge port 10
1 raises the temperature of the meniscus and solves problems such as skinning.
【0021】また、鋳片内幅方向中央部の下降流F2 の
速度は、底部吐出口11の吐出口径・吐出角度を調節す
ることにより可能である。底部吐出口11を2つ設ける
ことにより(全4孔ノズル)、流動制御が可能となり、
特に下降流の鋳片幅方向中央部に対する熱供給を大とす
ることができ、底部吐出口11を4つ設けることにより
(全6孔ノズル)、流動を全4孔ノズルよりも大きくす
ることができ、また吐出速度も速めることができる。The velocity of the downward flow F 2 at the central portion in the width direction of the cast slab can be controlled by adjusting the diameter and the discharge angle of the bottom discharge port 11. By providing two bottom discharge ports 11 (all four-hole nozzle), flow control becomes possible,
In particular, the heat supply to the central portion of the slab width direction in the downward flow can be increased, and by providing four bottom discharge ports 11 (all 6-hole nozzle), the flow can be made larger than that of all 4-hole nozzle. In addition, the discharge speed can be increased.
【0022】[0022]
【発明の実施の形態】以下、この発明を図示する一実施
例に基づいて詳細に説明する。これは鋼スラブの連続鋳
造に適用した例であり、図3に示すように、レードル,
タンディッシュからの溶鋼3が浸漬ノズル1により水冷
鋳型2内に鋳込まれ、鋳型2内の一次冷却により鋳片4
表面に凝固シェルSが形成され、続くサポートロール群
5でのスプレー水等による二次冷却により凝固が促進さ
れ、圧下ロール群6で完全凝固し、ピンチロール7で引
き出される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings. This is an example applied to continuous casting of steel slabs, and as shown in FIG.
Molten steel 3 from a tundish is cast into a water-cooled mold 2 by a dipping nozzle 1 and a slab 4 is obtained by primary cooling in the mold 2.
The solidified shell S is formed on the surface, and solidification is promoted by the subsequent secondary cooling of the support roll group 5 by spray water or the like, complete solidification by the pressure roll group 6 and extraction by the pinch roll 7.
【0023】このような連続鋳造設備において、本発明
では、図1,図2に示すように、タンディッシュにスラ
イディングノズル装置を介して取付けられる浸漬ノズル
1を、胴部1aの下部に2つの側部吐出口10を設け、
底部1bに2つあるいは4つの底部吐出口11を設けた
全4孔ノズル1−I、あるいは全6孔ノズル1−IIとす
る。In such a continuous casting facility, in the present invention, as shown in FIGS. 1 and 2, an immersion nozzle 1 attached to a tundish via a sliding nozzle device is provided at the bottom of the body 1a on two sides. Part discharge port 10 is provided,
The four-hole nozzle 1-I or the all-six-hole nozzle 1-II in which the bottom portion 1b is provided with two or four bottom discharge ports 11 is used.
【0024】2つの側部吐出口10は、通常の浸漬ノズ
ルと同様に、吐出方向がスラブ幅方向両側すなわちスラ
ブ短辺に向かうように配設され、かつ吐出角度が水平に
対して下向きに数°の角度となるように形成されてい
る。底部吐出口11はノズル中心軸を挟んでスラブ幅方
向両側に配列し、吐出方向は鉛直方向とする。なお、こ
の底部吐出口11の吐出口径および吐出角度は、図1
(a)に示すような横断面紡錘型の最適な未凝固領域B
を有する鋳片4が得られるように適宜決定される。The two side discharge ports 10 are arranged so that the discharge direction is toward both sides of the slab width direction, that is, the short side of the slab, and the discharge angle is several downwards with respect to the horizontal, as in a normal dipping nozzle. It is formed to have an angle of °. The bottom discharge ports 11 are arranged on both sides in the slab width direction with the central axis of the nozzle interposed therebetween, and the discharge direction is the vertical direction. The diameter and the discharge angle of the bottom discharge port 11 are as shown in FIG.
Optimal unsolidified region B having a spindle-shaped cross section as shown in (a)
It is appropriately determined so as to obtain the cast slab 4 having.
【0025】また、凝固末期のクレータエンド部分を前
後の所定範囲にわたって圧下ロール群6により圧下を行
う。Further, the crater end portion in the final stage of solidification is reduced by the reduction roll group 6 over a predetermined range in the front and rear.
【0026】以上のような構成において、次のような条
件で連続鋳造を行った。With the above structure, continuous casting was performed under the following conditions.
【0027】装置仕様・鋳造条件 (1) 連続鋳造機: 湾曲型連鋳機(湾曲半径:12.5
m) (2) 鋳片サイズ: 250mm(厚み)×2000mm
(幅) (3) 鋼種 : C 0.15〜0.20%厚板用4
0K鋼 (4) 溶鋼過熱度: ΔT=20°C (5) 鋳込速度 : 0.8m/min (6) 凝固末期圧下: 圧下ゾーン長 5m,圧下勾配
1mm/m 凝固後の鋳片の厚み中央部には、C,S,P,Si , M
nなどの溶鋼成分が偏析するが、この実施例において
は、濃度の高いCに注目し、C偏析度により評価した。
その結果を図4に示す。同図において、本発明実施例I
は全4孔ノズルを、本発明実施例IIは全6孔ノズルを使
用した場合であり、それぞれ(1) 〜(6) の仕様・条件の
もとで行われたものである。また、実施比較例として、
従来の2孔浸漬ノズルによる連続鋳造も行った。Equipment Specifications / Casting Conditions (1) Continuous casting machine: Curved continuous casting machine (curving radius: 12.5
m) (2) Slab size: 250 mm (thickness) x 2000 mm
(Width) (3) Steel type: C 0.15 to 0.20% for thick plate 4
0K steel (4) Superheated molten steel: ΔT = 20 ° C (5) Casting speed: 0.8m / min (6) Final solidification rolling reduction: Rolling zone length 5m, rolling gradient
1 mm / m C, S, P, Si, M is formed in the center of the thickness of the cast piece after solidification.
Although molten steel components such as n segregate, in this example, attention was paid to C having a high concentration, and evaluation was made by the degree of C segregation.
FIG. 4 shows the results. In the figure, Example I of the present invention
Shows the case where all four-hole nozzles are used, and Example II of the present invention shows the case where all six-hole nozzles are used, which are carried out under the specifications and conditions of (1) to (6). In addition, as an implementation comparative example,
Continuous casting using a conventional two-hole immersion nozzle was also performed.
【0028】図4からも明らかなように、本発明では、
従来の2孔浸漬ノズルにおける偏析度が改善され、スラ
ブ幅方向端部における中心偏析が改善された。また、全
4孔ノズルの方が全6孔ノズルよりも僅かながらも中心
偏析が改善された。これらにより、W型プロフィールが
解消され、幅方向に均一な組成の鋳片を製造することが
できた。As is clear from FIG. 4, in the present invention,
The degree of segregation in the conventional two-hole immersion nozzle was improved, and the center segregation at the end portion in the slab width direction was improved. Further, the center segregation was improved in all 4-hole nozzles as compared with all 6-hole nozzles. As a result, the W-shaped profile was eliminated, and a slab having a uniform composition in the width direction could be manufactured.
【0029】[0029]
【発明の効果】前述の通り、この発明は、連続鋳造する
に際し、浸漬ノズルの下部における側部に複数の側部吐
出口を、ノズル底部に複数の底部吐出口を設けることに
より、鋳片の未凝固領域における鋳片幅方向中央部に下
降流を形成して鋳片の未凝固領域の形状を最適に制御す
ることができ、従来の2孔ノズルで発生するW型プロフ
ィールを解消することができ、未凝固領域の均一な圧下
が可能となり、鋳片幅方向全域において均一組成で、か
つ中心偏析のない良好な鋳片を製造することができる。
しかも、浸漬ノズルは通常の浸漬ノズルに若干の改造を
施すだけでよいので、コストを低減できると共に、中心
偏析を容易かつ確実に防止することができる。As described above, according to the present invention, when continuous casting is performed, a plurality of side discharge ports are provided on the lower side of the immersion nozzle, and a plurality of bottom discharge ports are provided on the bottom of the nozzle, whereby A downward flow can be formed in the central portion of the slab in the width direction in the unsolidified region to optimally control the shape of the unsolidified region of the slab, and the W-shaped profile generated in the conventional two-hole nozzle can be eliminated. As a result, it is possible to uniformly reduce the unsolidified region, and it is possible to manufacture a good cast product having a uniform composition in the entire width direction of the cast product and having no center segregation.
Moreover, since the immersion nozzle needs only a slight modification to the normal immersion nozzle, the cost can be reduced and the center segregation can be easily and surely prevented.
【図1】(a)は、この発明に係る連続鋳造法における
溶融金属の流れ・均一凝固状況を示す縦断面図および横
断面図、(b)はこの発明に係る浸漬ノズルの一例を示
す縦断面図および横断面図、(c)は同様の他の例を示
す縦断面図および横断面図である。FIG. 1 (a) is a longitudinal sectional view and a transverse sectional view showing a flow / uniform solidification state of molten metal in a continuous casting method according to the present invention, and FIG. 1 (b) is a longitudinal section showing an example of a dipping nozzle according to the present invention. A plan view and a cross-sectional view, and (c) is a longitudinal cross-sectional view and a cross-sectional view showing another similar example.
【図2】この発明に係る浸漬ノズルであり、(a)は全
4孔ノズルの場合を示す縦断面図および下面図、(b)
は全6孔ノズルの場合を示す縦断面図および下面図であ
る。FIG. 2 is a submerged nozzle according to the present invention, in which (a) is a vertical cross-sectional view and a bottom view showing a case of an all-four-hole nozzle, (b).
[Fig. 3] is a vertical cross-sectional view and a bottom view showing the case of all 6-hole nozzles.
【図3】この発明に係る連続鋳造機を示す概略断面図で
ある。FIG. 3 is a schematic sectional view showing a continuous casting machine according to the present invention.
【図4】スラブ幅方向に対するC偏析度分布を示すグラ
フである。FIG. 4 is a graph showing a C segregation degree distribution in the slab width direction.
【図5】従来の連続鋳造機における溶融金属の流れ・不
均一凝固状況を示す(a)は縦断面図,(b)は斜視
図,(c)は横断面図,(d)は鋳片の中心偏析状況の
横断面図である。5 (a) is a longitudinal sectional view, FIG. 5 (b) is a perspective view, FIG. 5 (c) is a lateral sectional view, and FIG. 5 (d) is a slab. FIG. 6 is a cross-sectional view of the center segregation situation of FIG.
【図6】従来のW型プロフィールの発生原因メカニズム
を示す(a)はフローチャート、(b)は溶融金属の流
れ・不均一凝固状況を示す断面図である。6A and 6B are a flow chart and a cross-sectional view showing a flow and a non-uniform solidification state of molten metal, respectively, showing a conventional cause mechanism of a W-shaped profile.
【図7】従来の幅方向凝固不均一を解消するための鋳型
を示す断面図である。FIG. 7 is a cross-sectional view showing a conventional mold for eliminating uneven solidification in the width direction.
【符号の説明】 A…中心偏析 B…未凝固領域 S…凝固シェル 1…浸漬ノズル、1a…胴部、1b…底部、 1−I…全4孔ノズル、1−II…全6孔ノズル、 2…鋳型 3…溶融金属(溶鋼) 4…鋳片 5…サポートロール群 6…圧下ロール群 7…ピンチロール 10…側部吐出口、11…底部吐出口。[Explanation of Codes] A ... Central Segregation B ... Unsolidified Region S ... Solidified Shell 1 ... Immersion Nozzle 1a ... Body 1b ... Bottom, 1-I ... All 4-hole Nozzle, 1-II ... All 6-hole Nozzle, 2 ... Mold 3 ... Molten metal (molten steel) 4 ... Cast slab 5 ... Support roll group 6 ... Reduction roll group 7 ... Pinch roll 10 ... Side discharge port, 11 ... Bottom discharge port.
Claims (2)
融金属を冷却しつつ引き抜く連続鋳造法において、前記
浸漬ノズルの側部吐出口および底部吐出口から溶融金属
を吐出することにより、鋳片の未凝固領域における鋳片
幅方向中央部に下降流を形成して未凝固領域における凝
固シェル厚を鋳片幅方向に制御しつつつ、この未凝固領
域の最終凝固部を連続的に圧下し、中心偏析を防止する
ことを特徴とする連続鋳造法。1. In a continuous casting method in which molten metal supplied into a mold through a dipping nozzle is drawn while cooling, the molten metal is discharged from a side discharge port and a bottom discharge port of the dipping nozzle to form a slab. While controlling the solidified shell thickness in the unsolidified region in the slab width direction by forming a downward flow in the central part of the unsolidified region in the unsolidified region, the final solidified part of this unsolidified region is continuously rolled down. , A continuous casting method characterized by preventing center segregation.
浸漬ノズルにおいて、ノズル胴部下部における側部に、
吐出方向がノズル中心軸から側方に向かう側部吐出口を
複数設け、ノズル底部に、吐出方向が下方に向かう底部
吐出口を複数設けたことを特徴とする浸漬ノズル。2. In an immersion nozzle in which a lower part is immersed in a molten metal in a mold, a side part at a lower part of a nozzle body is provided.
An immersion nozzle characterized in that a plurality of side discharge ports whose discharge direction is directed laterally from the central axis of the nozzle are provided, and a plurality of bottom discharge ports whose discharge direction is directed downward are provided at the bottom of the nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19650995A JPH0947852A (en) | 1995-08-01 | 1995-08-01 | Continuous casting method and immersion nozzle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19650995A JPH0947852A (en) | 1995-08-01 | 1995-08-01 | Continuous casting method and immersion nozzle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0947852A true JPH0947852A (en) | 1997-02-18 |
Family
ID=16358942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19650995A Pending JPH0947852A (en) | 1995-08-01 | 1995-08-01 | Continuous casting method and immersion nozzle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0947852A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001066282A1 (en) * | 2000-03-09 | 2001-09-13 | Kawasaki Steel Corporation | Production method for continuous casting cast billet |
CN109570482A (en) * | 2018-12-06 | 2019-04-05 | 莱芜钢铁集团银山型钢有限公司 | A kind of crystallizer submersed nozzle and application method of the casting of Hot Metal in Beam Blank single-point unequal protection |
WO2023109125A1 (en) * | 2021-12-17 | 2023-06-22 | 北京科技大学 | Thin metal strip continuous casting method using momentum flow distribution |
-
1995
- 1995-08-01 JP JP19650995A patent/JPH0947852A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001066282A1 (en) * | 2000-03-09 | 2001-09-13 | Kawasaki Steel Corporation | Production method for continuous casting cast billet |
US6557623B2 (en) | 2000-03-09 | 2003-05-06 | Kawasaki Steel Corporation | Production method for continuous casting cast billet |
CN109570482A (en) * | 2018-12-06 | 2019-04-05 | 莱芜钢铁集团银山型钢有限公司 | A kind of crystallizer submersed nozzle and application method of the casting of Hot Metal in Beam Blank single-point unequal protection |
CN109570482B (en) * | 2018-12-06 | 2021-04-13 | 莱芜钢铁集团银山型钢有限公司 | Crystallizer submerged nozzle for single-point non-equilibrium protection casting of beam blank and using method |
WO2023109125A1 (en) * | 2021-12-17 | 2023-06-22 | 北京科技大学 | Thin metal strip continuous casting method using momentum flow distribution |
US12162065B2 (en) | 2021-12-17 | 2024-12-10 | University Of Science And Technology Beijing | Thin metal strip continuous casting method using momentum flow distribution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8016021B2 (en) | Casting steel strip with low surface roughness and low porosity | |
CN109689247B (en) | Method for continuously casting steel | |
JP6947737B2 (en) | Continuous steel casting method | |
JP2995519B2 (en) | Light reduction of continuous cast strand | |
JPH0947852A (en) | Continuous casting method and immersion nozzle | |
EP0127319A1 (en) | Continuous casting apparatus for the production of cast sheets | |
US20070000637A1 (en) | Method and apparatus for continuous casting | |
JP2867894B2 (en) | Continuous casting method | |
JP3671872B2 (en) | Continuous casting method of steel | |
WO1987002285A1 (en) | Method of and apparatus for continuous casting of metal strip | |
US6880617B2 (en) | Method and apparatus for continuous casting | |
JP3237177B2 (en) | Continuous casting method | |
JP2964888B2 (en) | Continuous casting method | |
JPH08243696A (en) | Continuous casting method | |
JPH11156511A (en) | Steel slab continuous casting method | |
US7089993B2 (en) | Method and apparatus for continuous casting | |
JP3374761B2 (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JP3077572B2 (en) | Continuous casting method | |
JPH11192539A (en) | Continuous casting method of chromium-containing molten steel with excellent internal defect resistance | |
JP3114671B2 (en) | Steel continuous casting method | |
JPH11156509A (en) | Continuous casting method | |
JP3114679B2 (en) | Continuous casting method | |
JP3314036B2 (en) | Continuous casting method and continuous casting device | |
JP3409743B2 (en) | Continuous casting method of round billet slab | |
JP2002178113A (en) | Slab having excellent solidification structure and steel material processed therefrom |