[go: up one dir, main page]

JPH0947650A - Heat diffusion reaction process - Google Patents

Heat diffusion reaction process

Info

Publication number
JPH0947650A
JPH0947650A JP20214895A JP20214895A JPH0947650A JP H0947650 A JPH0947650 A JP H0947650A JP 20214895 A JP20214895 A JP 20214895A JP 20214895 A JP20214895 A JP 20214895A JP H0947650 A JPH0947650 A JP H0947650A
Authority
JP
Japan
Prior art keywords
reaction
vessel
container
temperature
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20214895A
Other languages
Japanese (ja)
Inventor
Takao Kokugan
孝雄 国眼
Satoshi Kawai
智 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20214895A priority Critical patent/JPH0947650A/en
Publication of JPH0947650A publication Critical patent/JPH0947650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat diffusion reaction process of improved productivity. SOLUTION: A couple of container walls are disposed face to face, and respective container walls are provided with the temperature difference so that one wall is of high temperature and the other wall is of low temperature, and a filler is filled in a reaction space formed between the container walls of a reaction container. Reactive raw material gas is introduced into a reaction space of the reaction container, and the reaction is carried out on the high temperature container wall side, and a formed material of large molecular weight of a plurality of reaction materials to be formed is diffused and moved to the low temperature container wall side key heat diffusion, and exhausted out of the reaction space of the reaction container.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は熱拡散反応方法に関す
る。
TECHNICAL FIELD The present invention relates to a thermal diffusion reaction method.

【0002】[0002]

【従来の技術】温度勾配を有する反応系において炭化水
素を反応させると、高温発熱体表面で生成した炭化水素
ラジカルが、いわゆる熱拡散効果によって直ちに分離さ
れ、逆反応や逐次反応などの副反応が抑制されること
が、最近、報告されている。この方法は、熱的に不安定
で反応原料より反応性に富むような生成物でも高い選択
率で取得しうるので、興味ある方法として注目されてい
る。
2. Description of the Related Art When a hydrocarbon is reacted in a reaction system having a temperature gradient, hydrocarbon radicals generated on the surface of a high-temperature heating element are immediately separated by a so-called thermal diffusion effect, and a side reaction such as a reverse reaction or a sequential reaction is caused. Suppression has recently been reported. This method has been attracting attention as an interesting method because a product which is thermally unstable and more reactive than the reactants can be obtained with high selectivity.

【0003】たとえば、この方法によって、タングステ
ンワイヤ又は炭素棒(Pt触媒担持)を熱源(高温の器
壁)とした、温度勾配を有する反応系を用いて、メタン
からエチレンを効率的に得る方法等が提案されている。
For example, by this method, a method of efficiently obtaining ethylene from methane using a reaction system having a temperature gradient using a tungsten wire or a carbon rod (supporting a Pt catalyst) as a heat source (high temperature vessel wall), and the like. Has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法においては、熱源がワイヤ等のために(i)熱源
が触媒を兼ねているため触媒の選択が限られる、(ii)
反応に預かる気体の接触面が小さく、反応量が少ない、
(iii)反応系における対流を制御し難い、等の難点を有
する。そこで、本発明者は、これらの難点を解決するた
め種々検討を行ない、意外にも充填物を反応空間に充填
するという簡単な構成で生産性の著しく向上した熱拡散
反応を達成しうることを見出し、本発明に到達した。
However, in these methods, since the heat source is a wire or the like, (i) the heat source also serves as a catalyst, so that the selection of the catalyst is limited, (ii)
The contact surface of the gas deposited in the reaction is small, and the reaction amount is small,
(Iii) Difficulty in controlling convection in the reaction system. Therefore, the present inventor has conducted various studies in order to solve these difficulties, and surprisingly found that the thermal diffusion reaction with significantly improved productivity can be achieved with a simple configuration of filling the reaction space with a filling material. Heading, arrived at the present invention.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の要旨
は、一対の器壁を対向させて配置し、その各器壁は、一
方が高温に他方が低温になるように温度差を有してお
り、かつ器壁間に形成される反応空間に充填材を充填し
てなる反応容器において、該反応容器の反応空間内に反
応原料ガスを導入し、高温の器壁側で反応を行ない、得
られる複数の反応生成物のうちの分子量の大きい生成物
を熱拡散により低温の器壁側に拡散移動させて該反応容
器の反応空間から導出させることを特徴とする熱拡散方
法にある。
That is, the gist of the present invention is to arrange a pair of vessel walls facing each other, and each of the vessel walls has a temperature difference such that one is high and the other is low. In addition, in the reaction vessel formed by filling the reaction space formed between the vessel walls with the filler, the reaction raw material gas is introduced into the reaction space of the reaction vessel, and the reaction is performed on the high temperature vessel wall side, A thermal diffusion method is characterized in that a product having a large molecular weight among the obtained plurality of reaction products is diffused and moved to a low temperature vessel wall side by thermal diffusion and is led out from a reaction space of the reaction vessel.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
まず、本発明の反応容器においては、各々上下方向に伸
びた一対の器壁が対向して配置され、その各器壁は、一
方が高温に他方が低温になるように温度差を有してい
る。このような反応容器としては、たとえば、二枚の平
板を対向させて一方を高温に他方を低温に保持するも
の、2個の同心円筒により二重管としたもの、等が挙げ
られる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
First, in the reaction container of the present invention, a pair of vessel walls extending in the vertical direction are arranged to face each other, and each vessel wall has a temperature difference such that one is high temperature and the other is low temperature. There is. Examples of such a reaction vessel include one in which two flat plates are opposed to each other and one is kept at a high temperature and the other is kept at a low temperature, and a double tube is formed by two concentric cylinders.

【0007】上記の温度は、後述する反応温度により決
定されるが、高温側を700〜1400℃程度から選択
するのが一般的であり、低温側との温度勾配は500〜
2000℃/cm程度とするのが好適である。熱源は、
特に制限されず、電力又はガスを燃料とするバーナを用
いるのが通常である。
The above-mentioned temperature is determined by the reaction temperature which will be described later, but it is general to select the high temperature side from about 700 to 1400 ° C., and the temperature gradient with the low temperature side is 500 to.
Preferably, the temperature is about 2000 ° C./cm. The heat source is
There is no particular limitation, and a burner using electric power or gas as a fuel is usually used.

【0008】たとえば、上記の二重管型を採用する場合
には、内管内に加熱用高温ガスを流通させて、内管の外
壁を高温側の器壁とすることができる。また、二つの平
板を対向させる場合には、それぞれを高温及び低温側と
することができる。これらの反応容器は、いわゆる縦型
とするのが一般的であり、たとえば上方部(上端〜中間
部)もしくは下方部(下端〜中間部)に反応原料ガス導
入口を設け、それぞれ下方部もしくは上方部に反応生成
物の導出口を設ける。
For example, in the case of adopting the above-mentioned double pipe type, a high temperature heating gas can be circulated in the inner pipe to make the outer wall of the inner pipe a high temperature side wall. When two flat plates are opposed to each other, they can be on the high and low temperature sides, respectively. These reaction vessels are generally of a so-called vertical type. For example, a reaction raw material gas inlet is provided at an upper part (upper end-middle part) or a lower part (lower end-middle part), and a lower part or an upper part, respectively. An outlet for the reaction product is provided in the section.

【0009】本発明においては、このような温度差を有
する器壁間に形成される反応空間に充填材を充填するこ
とが必要である。充填材としては、触媒であっても反応
に不活性なものであってもよいが、好適には触媒が選択
される。すなわち、充填材の材質、形状、大きさ等は特
に制限されないが、一般的には、無機酸化物、金属、等
を、円筒形、球形、タブレット形等に成形したものが用
いられる。
In the present invention, it is necessary to fill the reaction space formed between the vessel walls having such a temperature difference with a filler. The filler may be a catalyst or one that is inert to the reaction, but a catalyst is preferably selected. That is, the material, shape, size, etc. of the filler are not particularly limited, but in general, inorganic oxide, metal, etc. molded into a cylindrical shape, a spherical shape, a tablet shape, etc. are used.

【0010】たとえば、管を直径と同じ長さに切断した
形のラシヒリング、さらにその中に仕切膜が入った形の
レッシングリング、さらには粒度調整した破砕固体等が
挙げられる。これらの大きさは反応空間によっても異な
るが1mm程度から10mm程度が一般的である。
For example, a Raschig ring in the form of a tube cut into the same length as the diameter, a Lessing ring in which a partition film is contained therein, and a crushed solid with a controlled particle size can be used. The size of these varies depending on the reaction space, but is generally about 1 mm to 10 mm.

【0011】また、充填の態様も特に制限されず、適宜
の空隙率とすることができるが、好適には反応条件に応
じて器壁間の温度勾配、自然対流を制御するように調節
される。充填材の種類によっても異なるが、空隙率40
〜85%程度の範囲から選ぶのが通常である。必要に応
じて2種類以上の材質、形状又は大きさの充填材を用い
て、さらには場所により空間率を変化させることによ
り、生成物の熱拡散速度等について一層の最適化を図る
こともできる。
The mode of filling is not particularly limited and may be an appropriate porosity, but is preferably adjusted so as to control the temperature gradient between the vessel walls and natural convection according to the reaction conditions. . Depending on the type of filler, porosity 40
It is usually selected from the range of about 85%. It is possible to further optimize the thermal diffusion rate of the product by using two or more kinds of materials, shapes or sizes of fillers and changing the porosity depending on the location, if necessary. .

【0012】本発明においては、このような反応容器に
反応原料ガスを導入する。反応原料ガスとしては、炭化
水素類もしくは炭化水素含有ガスが一般的であり、たと
えばメタン等のパラフィン系炭化水素、エチルベンゼ
ン、クメン、t−ブチルベンゼン等の芳香族炭化水素の
脱水素反応が好適に適用される。上記の反応原料ガスの
導入は、たとえばメタンからエチレンを製造する場合に
は上方部から下方に向かって行なわれ、一方、エチレン
からベンゼン、スチレン及びナフタレン等の芳香族化合
物を製造する場合には下方部から上方に向けて行なうの
が好適である。
In the present invention, the reaction raw material gas is introduced into such a reaction vessel. As the reaction raw material gas, a hydrocarbon or a hydrocarbon-containing gas is generally used. For example, a dehydrogenation reaction of a paraffinic hydrocarbon such as methane or an aromatic hydrocarbon such as ethylbenzene, cumene or t-butylbenzene is suitable. Applied. The above-mentioned introduction of the reaction raw material gas is performed from the upper part to the lower part in the case of producing ethylene from methane, for example, while it is downward in the case of producing aromatic compounds such as benzene, styrene and naphthalene from ethylene. It is preferable to carry out from the part upward.

【0013】導入速度は、目的とする反応条件により異
なるが、反応空間内の自然対流を阻害しない程度の速度
で行なうのが好適である。反応温度は、反応の種類、用
いる触媒の種類により異なるが、反応原料ガスの少なく
とも熱分解温度以上から選ばれ、700〜1400℃程
度の範囲から、目的とする反応生成物の転換率等を考慮
して選ぶのが好適である。
The rate of introduction varies depending on the intended reaction conditions, but it is preferable that the rate of introduction be such that natural convection in the reaction space is not hindered. The reaction temperature varies depending on the type of reaction and the type of catalyst used, but is selected from at least the thermal decomposition temperature of the reaction raw material gas, and from the range of about 700 to 1400 ° C., the conversion rate of the target reaction product is considered. It is preferable to select it.

【0014】たとえば、メタンからエチレン及び水素を
生成させる場合について説明すると、反応容器内に上方
部たとえば上端部から下方に向けて導入されたメタンガ
スは、高温(たとえば触媒としてPtを使用する場合に
は約1000℃、Wを使用する場合には約1300℃が
好適である)の器壁面からの熱によって脱水素二量化反
応によりエチレンと水素を生成する。 2CH4 →CH2 =CH2 +2H2
For example, the case of producing ethylene and hydrogen from methane will be described. The methane gas introduced into the reaction vessel from the upper portion, for example, the upper end downward, is at a high temperature (for example, when Pt is used as a catalyst). About 1000 ° C., about 1300 ° C. is preferable when W is used) to generate ethylene and hydrogen by the dehydrogenation dimerization reaction by heat from the wall surface of the vessel. 2CH 4 → CH 2 = CH 2 + 2H 2

【0015】この場合、熱拡散効果により、相対的に重
いエチレンは、メタン及び水素に対して優先的に低温
(たとえば30〜70℃)の器壁側に充填材のある空間
部を拡散移動し、反応容器の下端部まで降下する。一
方、軽い水素は熱拡散効果により高温の器壁に沿って上
昇する(この水素を上端部から導出させることもでき
る)が、自然対流によって下降に転じて反応容器の下端
部まで降下する。
In this case, due to the heat diffusion effect, the relatively heavy ethylene diffuses and moves preferentially with respect to methane and hydrogen in the space having the filler on the side of the vessel wall at a low temperature (for example, 30 to 70 ° C.). , Descend to the lower end of the reaction vessel. On the other hand, light hydrogen rises along the hot wall due to the thermal diffusion effect (this hydrogen can also be led out from the upper end), but due to natural convection, it turns down and falls to the lower end of the reaction vessel.

【0016】このようにして、反応容器の下端部等の下
方部より、未反応メタンを含む反応生成物が得られる。
また、反応原料ガスとしてエチレンガスを下方部、たと
えば下端部から上方に向けて導入すると、エチレンガス
は高温の器壁面からの熱によって脱水素縮合反応し、芳
香族化合物と水素が生成する。そして、熱拡散効果によ
り芳香族化合物は水素に対して優先的に低温の器壁側に
移動し、ここで冷却されて液状物質となり器壁によって
下方に移動し、下方部たとえば下端部より取り出され
る。一方、軽い反応ガスと生成ガスとは高温の器壁に沿
って上方に移動し上方部、たとえば上端部から取り出さ
れる。
In this way, a reaction product containing unreacted methane is obtained from the lower part such as the lower end of the reaction vessel.
Further, when ethylene gas is introduced as a reaction raw material gas from the lower part, for example, from the lower end part to the upper part, the ethylene gas undergoes a dehydrogenative condensation reaction by the heat from the high temperature wall surface, and an aromatic compound and hydrogen are produced. Then, due to the heat diffusion effect, the aromatic compound preferentially moves to the low temperature side of the vessel wall with respect to hydrogen, is cooled there to become a liquid substance, moves downward by the vessel wall, and is taken out from the lower portion, for example, the lower end portion. . On the other hand, the light reaction gas and the product gas move upward along the hot chamber wall and are taken out from the upper portion, for example, the upper end portion.

【0017】[0017]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1 三本の同心円筒により内側から芯管、内管及び外管を形
成した熱拡散反応器を用いて、メタンの脱水素二量化を
主とする反応を行なった。
The present invention will be described in more detail with reference to the following examples. Example 1 A reaction mainly involving dehydrogenation and dimerization of methane was carried out using a thermal diffusion reactor in which a core tube, an inner tube and an outer tube were formed from the inside by three concentric cylinders.

【0018】管の大きさは、次のとおりである。(長さ
約100cm) 芯管(Ni−Cr−W−Mo系合金):内径17.7mm,外
径21.7mm 内管(炭素鋼):内径41.6mm,外径48.6mm 外管(炭素鋼):内径93.2mm,外径101.6m
The sizes of the tubes are as follows. (Approximately 100 cm in length) Core tube (Ni-Cr-W-Mo alloy): Inner diameter 17.7 mm, outer diameter 21.7 mm Inner tube (carbon steel): Inner diameter 41.6 mm, outer diameter 48.6 mm Outer tube ( Carbon steel): Inner diameter 93.2 mm, outer diameter 101.6 m
m

【0019】芯管内には、約1000℃の加熱ガスを流
通させ、一方、内管と外管の間の環状部には常温の冷却
水を流通させた。芯管と内管の間の環状部(すなわち反
応空間)は、触媒(白金)を化学的に担持させた多孔質
セラミックボール(シリカアルミナ系,4mmφ)を充
填し(空隙率75%)、常温の原料ガス(メタン100
%)を上端部から流通させた。流速(空塔速度)は20
m/hとし、反応生成物を下端部から取得した。
A heating gas of about 1000 ° C. was passed through the core tube, while cooling water at room temperature was passed through the annular portion between the inner tube and the outer tube. The annular portion (that is, the reaction space) between the core tube and the inner tube is filled with a porous ceramic ball (silica-alumina system, 4 mmφ) chemically supporting a catalyst (platinum) (porosity 75%), and at room temperature. Raw material gas (methane 100
%) Was circulated from the upper end. Flow velocity (superficial velocity) is 20
m / h, and the reaction product was obtained from the lower end.

【0020】管内温度は次のとおりであった。 芯管内 約1000℃ 芯管外表面 約970℃ 内管内表面 約50℃ 内管外表面 約30℃The temperature inside the tube was as follows. Inner core tube approx. 1000 ° C Outer core tube surface approx. 970 ° C Inner tube inner surface approx. 50 ° C Inner tube outer surface approx. 30 ° C

【0021】反応成績は、メタン転換率12%、エチレ
ン、アセチレン選択率85%(エチレン71%,アセチ
レン14%)であった。比較のために、芯管の外表面に
白金を担持させて触媒層を形成させて、充填材を用いな
いで上記と同様に反応させたところ、メタン転換率6
%、エチレン、アセチレン選択率85%であった。
The reaction results were a methane conversion rate of 12% and an ethylene / acetylene selectivity of 85% (ethylene 71%, acetylene 14%). For comparison, platinum was supported on the outer surface of the core tube to form a catalyst layer, and the reaction was carried out in the same manner as above without using a filler.
%, Ethylene and acetylene selectivity was 85%.

【0022】[0022]

【発明の効果】本発明によれば、生産性の向上した熱拡
散反応方法を提供しうる。
According to the present invention, a thermal diffusion reaction method with improved productivity can be provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の器壁を対向させて配置し、その各
器壁は、一方が高温に他方が低温になるように温度差を
有しており、かつ器壁間に形成される反応空間に充填材
を充填してなる反応容器において、該反応容器の反応空
間内に反応原料ガスを導入し、高温の器壁側で反応を行
ない、得られる複数の反応生成物のうちの分子量の大き
い生成物を熱拡散により低温の器壁側に拡散移動させて
該反応容器の反応空間から導出させることを特徴とする
熱拡散方法。
1. A reaction formed by arranging a pair of vessel walls facing each other, each of the vessel walls having a temperature difference such that one is at a high temperature and the other is at a low temperature, and is formed between the vessel walls. In a reaction vessel having a space filled with a filler, a reaction raw material gas is introduced into the reaction space of the reaction vessel, the reaction is performed on the side of the high temperature wall, and the molecular weight of a plurality of reaction products obtained is A method for thermal diffusion, characterized in that a large product is diffused and moved to a low temperature vessel wall side by thermal diffusion to be led out from a reaction space of the reaction vessel.
JP20214895A 1995-08-08 1995-08-08 Heat diffusion reaction process Pending JPH0947650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20214895A JPH0947650A (en) 1995-08-08 1995-08-08 Heat diffusion reaction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20214895A JPH0947650A (en) 1995-08-08 1995-08-08 Heat diffusion reaction process

Publications (1)

Publication Number Publication Date
JPH0947650A true JPH0947650A (en) 1997-02-18

Family

ID=16452766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20214895A Pending JPH0947650A (en) 1995-08-08 1995-08-08 Heat diffusion reaction process

Country Status (1)

Country Link
JP (1) JPH0947650A (en)

Similar Documents

Publication Publication Date Title
KR100664545B1 (en) Carbon nanotube mass synthesis device and mass synthesis method
RU2730518C2 (en) Oxidative dehydrogenation of alkanes (od)
JP5379944B2 (en) Hydrocarbon catalytic oxidation method
US4822944A (en) Energy efficient process for upgrading light hydrocarbons and novel oxidative coupling catalysts
TW200812908A (en) Process for the production of chlorine by gas phase oxidation
KR20100027141A (en) Zone reactor incorporating reversible hydrogen halide capture and release
NO179140B (en) Process for the preparation of mono-olefins by catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbons having at least two carbon atoms
JP5535319B2 (en) Production of benzene from methane
US4229603A (en) Method of dehydrogenation of alkyl aromatics to alkenyl aromatics
SA520420455B1 (en) Method and reactor for oxidative coupling of methane
TWI375594B (en) Dehydrogenation process
WO1991006520A1 (en) Process for production of ethylene from ethane
AU2003255444B2 (en) Isothermal method for dehydrogenating alkanes
JP2006517957A5 (en)
CA1334676C (en) Process for carrying out a chemical equilibrium reaction
WO2004074219A2 (en) Process for producing para-xylene
JPH0947650A (en) Heat diffusion reaction process
JP2006511467A5 (en)
JP2021161089A (en) Method for producing aromatic compounds
CN1738784A (en) Process for the production of olefins
JPH09202601A (en) Thermal diffusion reactor
WO2004108279A1 (en) Catalyst and process for the production of olefins
GB2201159A (en) Process and apparatus for the dehydrogenation of organic compounds
JP3924039B2 (en) Reactor
US2843638A (en) Dehydrochlorination of tetrachloroethane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207