[go: up one dir, main page]

JPH0945981A - Laser beam wavelength control method and laser thereof - Google Patents

Laser beam wavelength control method and laser thereof

Info

Publication number
JPH0945981A
JPH0945981A JP7212413A JP21241395A JPH0945981A JP H0945981 A JPH0945981 A JP H0945981A JP 7212413 A JP7212413 A JP 7212413A JP 21241395 A JP21241395 A JP 21241395A JP H0945981 A JPH0945981 A JP H0945981A
Authority
JP
Japan
Prior art keywords
laser
wavelength
light
deflector
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7212413A
Other languages
Japanese (ja)
Inventor
Koichi Taniguchi
浩一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP7212413A priority Critical patent/JPH0945981A/en
Publication of JPH0945981A publication Critical patent/JPH0945981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

(57)【要約】 【目的】 各光学素子を静止系に配置できて回転手段等
の必要を回避でき、波長可変を高速制御できて装置を小
型化でき、波長制御の長期信頼性に優れるレーザ光の波
長制御方法を得ること。 【構成】 レーザ発振器(1)より発振させたレーザ光
を光透過型の偏向器(2)を介しその進行方向を制御し
て、入射角により戻り光の波長が変化する波長選択素子
(3)に入射させ、その波長選択素子からの戻り光をレ
ーザ発振機に帰還させてレーザ光の発振波長を制御する
レーザ光の波長制御方法。 【効果】 光透過型の偏向器を介し波長選択素子に入射
するレーザ光の入射角を制御できて各光学素子を静止系
に配置でき、光学素子の可動制御の不要化で長期信頼性
に優れるレーザが得られる。
(57) [Abstract] [Purpose] A laser that allows each optical element to be placed in a stationary system, avoids the need for rotating means, etc., enables high-speed control of wavelength tunability, can downsize the device, and has excellent long-term reliability of wavelength control. To obtain a light wavelength control method. A wavelength selection element (3) that controls the traveling direction of laser light oscillated by a laser oscillator (1) through a light transmission type deflector (2) and changes the wavelength of return light depending on the incident angle. A method of controlling the wavelength of a laser beam in which the return light from the wavelength selection element is fed back to the laser oscillator to control the oscillation wavelength of the laser beam. [Effect] The incident angle of the laser beam incident on the wavelength selection element can be controlled through the light transmission type deflector, each optical element can be arranged in the stationary system, and the long-term reliability is excellent because the movement control of the optical element is unnecessary. A laser is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、偏向器を介し入射角を制
御して帰還レーザ光の波長を変化させレーザ発振器によ
る発振波長を制御するようにしたレーザ光の波長制御方
法、及びそのレーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light wavelength control method for controlling an incident angle via a deflector to change a wavelength of a feedback laser light to control an oscillation wavelength of a laser oscillator, and a laser thereof. .

【0002】[0002]

【背景技術】従来、レーザ光の波長制御方法としては、
レーザ発振器より発振させたレーザ光をリトロー配置の
回折格子(グレーティング)に入射させ、回折格子の配置
角の制御のもとに入射角を変化させて戻り光の波長を変
化させ、その戻り光をレーザ発振器に帰還させてレーザ
光の発振波長を制御する方法が知られていた。しかしな
がら、回折格子配置角の制御の必要から回転ステージ等
の機械的回転手段が必要となり、高速に波長可変するこ
とが困難で装置が大型化し、波長制御の長期信頼性に乏
しい問題点があった。
BACKGROUND ART Conventionally, as a method for controlling the wavelength of laser light,
The laser light oscillated from the laser oscillator is made incident on the Littrow diffraction grating (grating), and the wavelength of the return light is changed by changing the incident angle under the control of the arrangement angle of the diffraction grating. A method of controlling the oscillation wavelength of laser light by feeding it back to a laser oscillator has been known. However, there is a problem that mechanical rotation means such as a rotary stage is required because of the need to control the arrangement angle of the diffraction grating, it is difficult to tune the wavelength at high speed, the apparatus becomes large, and long-term reliability of wavelength control is poor. .

【0003】[0003]

【発明の技術的課題】本発明は、各光学素子を静止系に
配置できて回転手段等の必要を回避でき、波長可変を高
速制御できて装置を小型化でき、波長制御の長期信頼性
に優れるレーザ光の波長制御方法を得ることを課題とす
る。
SUMMARY OF THE INVENTION According to the present invention, each optical element can be arranged in a stationary system, the need for rotating means, etc. can be avoided, wavelength tunability can be controlled at high speed, the device can be downsized, and the long-term reliability of wavelength control can be improved. An object is to obtain an excellent method for controlling the wavelength of laser light.

【0004】[0004]

【課題の解決手段】本発明は、レーザ発振器より発振さ
せたレーザ光を光透過型の偏向器を介しその進行方向を
制御して、入射角により戻り光の波長が変化する波長選
択素子に入射させ、その波長選択素子からの戻り光をレ
ーザ発振器に帰還させてレーザ光の発振波長を制御する
ことを特徴とするレーザ光の波長制御方法を提供するも
のである。
According to the present invention, a laser beam oscillated by a laser oscillator is incident on a wavelength selection element in which the wavelength of return light changes depending on the incident angle by controlling the traveling direction of the laser beam through a light transmission type deflector. A wavelength control method for laser light is provided, in which the return light from the wavelength selection element is fed back to the laser oscillator to control the oscillation wavelength of the laser light.

【0005】[0005]

【発明の効果】上記の構成により、光透過型の偏向器を
介し波長選択素子に入射するレーザ光の入射角を制御で
き、それにより各光学素子を静止系に配置できて回転手
段等の必要を回避でき、波長可変を高速に制御できて装
置を小型化でき、光学素子の可動制御の不要化で長期信
頼性に優れるレーザ光の波長制御方法を得ることができ
る。
With the above structure, the incident angle of the laser beam incident on the wavelength selection element via the light transmission type deflector can be controlled, whereby each optical element can be arranged in the stationary system and the rotation means or the like is required. It is possible to obtain the wavelength control method of the laser light which can avoid the above, can control the wavelength variability at high speed, downsize the device, and eliminate the need to control the movement of the optical element and have excellent long-term reliability.

【0006】[0006]

【発明の実施形態】本発明の方法は、レーザ発振器より
発振させたレーザ光を光透過型の偏向器を介しその進行
方向を制御して、入射角により戻り光の波長が変化する
波長選択素子に入射させ、その波長選択素子からの戻り
光をレーザ発振器に帰還させてレーザ光の発振波長を制
御するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is a wavelength selection element in which the direction of travel of laser light oscillated by a laser oscillator is controlled through a light transmission type deflector to change the wavelength of return light depending on the incident angle. To the laser oscillator to control the oscillation wavelength of the laser light.

【0007】図1に前記の方法を実施するためのレーザ
を例示した。この装置は、レーザ発振器1と、それより
発振させたレーザ光の光路に、光透過型の偏向器2を介
して、入射角により戻り光の波長が変化する波長選択素
子3を配置したものからなる。図例では、レーザ発振器
として半導体レーザを、偏向器として強誘電体結晶から
なるプリズムを、波長選択素子として回折格子を用いて
いる。
FIG. 1 illustrates a laser for carrying out the above method. This device has a laser oscillator 1 and a wavelength selection element 3 in which the wavelength of the return light changes depending on the incident angle, which is arranged in the optical path of the laser light oscillated from the laser oscillator 1 via a light transmission type deflector 2. Become. In the illustrated example, a semiconductor laser is used as a laser oscillator, a prism made of a ferroelectric crystal is used as a deflector, and a diffraction grating is used as a wavelength selection element.

【0008】また図1において、4,5はレンズであ
り、レーザ発振器1と偏向器2の間に配置したレンズ4
は、レーザ発振器より発振したレーザ光を平行光に変換
して偏向器2に入射させる素子として機能する。一方、
レーザ発振器1の他方側に配置したレンズ5は、装置の
外部に発振させるレーザ光を平行光に変換するためのも
のである。なお偏向器2における符号の21は、偏向器
の形態を整えるために接着した部分であり、光学的には
レーザ光の単なる透過部として機能する。
Further, in FIG. 1, reference numerals 4 and 5 are lenses, and a lens 4 arranged between the laser oscillator 1 and the deflector 2.
Serves as an element that converts laser light oscillated by a laser oscillator into parallel light and makes it enter the deflector 2. on the other hand,
The lens 5 arranged on the other side of the laser oscillator 1 is for converting laser light oscillated outside the device into parallel light. The reference numeral 21 in the deflector 2 is a portion bonded to adjust the form of the deflector, and optically functions as a simple transmitting portion for laser light.

【0009】図1に例示のレーザでは、半導体レーザ1
より発振させたレーザ光がレンズ4を介し平行光に変換
されてプリズム2に入射し、進行方向が変えられてプリ
ズムを透過する。ついでその透過光は、所定の角度
(θ)で静止配置された回折格子に入射し、その回折格
子を介し反射した戻り光が逆経路にて再びプリズム2、
レンズ4に入射して半導体レーザ1に帰還し、太矢印の
如く半導体レーザの反対側より当該帰還光の波長を有す
る目的のレーザ光が発振される。
In the laser illustrated in FIG. 1, a semiconductor laser 1
The further oscillated laser light is converted into parallel light through the lens 4 and is incident on the prism 2, and the traveling direction is changed and transmitted through the prism. Then, the transmitted light is incident on the diffraction grating that is stationary at a predetermined angle (θ), and the return light reflected through the diffraction grating is again reflected by the prism 2 in the reverse path.
The light enters the lens 4 and returns to the semiconductor laser 1, and the target laser light having the wavelength of the feedback light is oscillated from the opposite side of the semiconductor laser as indicated by the thick arrow.

【0010】前記において、プリズムは強誘電体結晶で
形成されていることより電圧の印加にて電気光学効果に
より屈折率が変化し、従って印加電圧に応じ種々の屈折
率状態を示して、プリズムに対し同じ角度で入射した光
でも透過角の異なる種々の進行方向をもたせうる偏向器
として機能し、そのため静止状態に配置した回折格子に
対してレーザ光を異なる角度で入射させることができ、
その入射角を高速に制御することができる。
In the above description, since the prism is formed of a ferroelectric crystal, the refractive index changes due to the electro-optical effect when a voltage is applied. Therefore, the prism shows various refractive index states according to the applied voltage, On the other hand, it functions as a deflector that can have various traveling directions with different transmission angles even for light incident at the same angle, so that laser light can be incident at different angles to a diffraction grating arranged in a stationary state,
The incident angle can be controlled at high speed.

【0011】一方、前記の回折格子に入射したレーザ光
は、その回折格子を介しそれが定める方向に反射させら
れ、その反射光の一部が戻り光として偏向器に入射し、
半導体レーザに帰還する。その場合、戻り光の波長はレ
ーザ光の回折格子に対する入射角に応じて変化し、その
結果、戻り光として半導体レーザに帰還するレーザ光の
波長を前記の偏向器を介して変化させることができ、そ
の変化に基づいて半導体レーザより発振させるレーザ光
の波長を帰還光の波長にロックでき、これによりレーザ
光の発振波長を制御することができる。
On the other hand, the laser light incident on the diffraction grating is reflected through the diffraction grating in the direction defined by the laser light, and a part of the reflected light enters the deflector as return light.
Return to the semiconductor laser. In that case, the wavelength of the return light changes depending on the incident angle of the laser light with respect to the diffraction grating, and as a result, the wavelength of the laser light returned to the semiconductor laser as the return light can be changed via the deflector. Based on the change, the wavelength of the laser light oscillated by the semiconductor laser can be locked to the wavelength of the feedback light, whereby the oscillation wavelength of the laser light can be controlled.

【0012】本発明においては、装置の小型化等を目的
に光透過型の偏向器と波長選択素子を一体化することも
できる。その例を図2(a),(b)、図3(a),
(b)に示した。図2に例示したものは、強誘電体結晶
をプリズム状に分極反転した素子2を内蔵した偏向器を
形成し、その単なる透過部22の後部の傾斜面に回折格
子3を形成したものである。
In the present invention, the light transmission type deflector and the wavelength selection element may be integrated for the purpose of downsizing the device. Examples thereof are shown in FIG. 2 (a), (b), FIG. 3 (a),
(B). In the example illustrated in FIG. 2, a deflector having a built-in element 2 in which a ferroelectric crystal is polarization-inverted into a prism shape is formed, and a diffraction grating 3 is formed on a sloping surface of the rear portion of the simple transmission part 22. .

【0013】一方、図3に例示したものは、前記に準じ
て偏向器2と波長選択素子3を一体化すると共に、透過
部23の前部を凸レンズ形態に成形して、レーザ発振器
1と偏向器2の間に平行光への変換を目的として配置す
るレンズを省略して、装置のより小型化を可能としたも
のである。
On the other hand, in the example illustrated in FIG. 3, the deflector 2 and the wavelength selection element 3 are integrated in accordance with the above, and the front part of the transmission part 23 is formed into a convex lens shape to deflect the laser oscillator 1 and the deflection part. By omitting the lens arranged between the containers 2 for the purpose of converting into parallel light, the device can be made more compact.

【0014】本発明において偏向器や波長選択素子は、
レーザ発振器より発振させたレーザ光の光路に配置され
ていればよい。従って本発明によるレーザは、従来に準
じて適宜な構造体として形成でき、光透過型の偏向器を
波長選択素子の直前に配置することにより本発明による
レーザとすることができる。従来構造に準じて形成した
本発明によるレーザの例を図4、図5に示した。
In the present invention, the deflector and the wavelength selecting element are
It may be arranged in the optical path of the laser light oscillated by the laser oscillator. Therefore, the laser according to the present invention can be formed as an appropriate structure according to the conventional method, and the laser according to the present invention can be obtained by disposing the light transmission type deflector immediately before the wavelength selection element. An example of the laser according to the present invention formed according to the conventional structure is shown in FIGS.

【0015】図4に例示したものでは、レーザ発振器1
より発振させたレーザ光の一部をハーフミラー6を介し
反射させて光透過型の偏向器2に入射させ、進行方向の
制御下にその透過光を波長選択素子3に入射させてその
戻り光を逆進させ、レーザ発振器に帰還させて目的波長
のレーザ光を太矢印の如くハーフミラーより出射させる
ようになっている。
In the example illustrated in FIG. 4, the laser oscillator 1
A part of the oscillated laser light is reflected through the half mirror 6 and is incident on the light transmission type deflector 2, and the transmitted light is incident on the wavelength selection element 3 under the control of the traveling direction, and the return light is returned. Is moved backward and is returned to the laser oscillator so that the laser light of the target wavelength is emitted from the half mirror as indicated by the thick arrow.

【0016】一方、図5に例示したものは、波長変換素
子7を用いて高調波を得るようにしたものである。すな
わち、レーザ発振器1より発振させたレーザ光をレンズ
4,5からなるコリメータを介して波長変換素子7に入
射させ、その変換光をレンズ4にて平行光としてハーフ
ミラー6を介し反射させて光透過型の偏向器2に入射さ
せ、進行方向の制御下にその透過光を波長選択素子3に
入射させて戻り光を逆進させ、レーザ発振器に帰還させ
た後その発振光を再び前記の波長変換素子を介して第二
高調波等とした目的波長のレーザ光を太矢印の如くハー
フミラーの反射光として得るものである。
On the other hand, the example illustrated in FIG. 5 is one in which harmonics are obtained by using the wavelength conversion element 7. That is, the laser light oscillated from the laser oscillator 1 is made incident on the wavelength conversion element 7 via the collimator composed of the lenses 4 and 5, and the converted light is reflected by the lens 4 as parallel light through the half mirror 6 to generate light. The transmitted light is made incident on the transmission type deflector 2, the transmitted light is made incident on the wavelength selection element 3 under the control of the traveling direction, the return light is made to travel backward, and the oscillation light is returned to the laser oscillator, and then the oscillation light is again made to have the above-mentioned wavelength. Laser light of a target wavelength such as the second harmonic is obtained through the conversion element as reflected light of the half mirror as indicated by the thick arrow.

【0017】本発明において用いるレーザ発振器につい
ては特に限定はなく、半導体レーザや固体レーザ、液体
レーザないし色素レーザや気体レーザのいずれも用いう
る。
The laser oscillator used in the present invention is not particularly limited, and any of a semiconductor laser, a solid-state laser, a liquid laser, a dye laser, and a gas laser can be used.

【0018】偏向器としては、静止系で透過光の進行方
向を種々に変えうるものが用いられ、導波路型やバルク
型などの適宜な形態を有するものであってよい。偏向器
の形成に好ましく用いうる材料は、構造の簡単化による
装置全体の小型化や制御の容易性などの点より、電気光
学効果や音響光学効果などとして電気信号により屈折率
等を変化させうるものである。
As the deflector, a deflector that can change the traveling direction of transmitted light in a stationary system is used, and may have an appropriate form such as a waveguide type or a bulk type. The material that can be preferably used for forming the deflector can change the refractive index or the like by an electric signal as an electro-optic effect or an acousto-optic effect in terms of downsizing of the entire device due to the simplification of the structure and ease of control. It is a thing.

【0019】ちなみに電気光学効果を示す材料として
は、圧電材料や電歪材料等として公知の強誘電体結晶な
どがあげられる。その具体例としては、LiTaO3
LiNbO3,CsD2AsO4,CuCl,(Sr,B
a)Nb26,La2Ti27,(Pb,La)(Z
r,Ti)03,(Pb,La)(Hf,Ti)03
(Pb,Sr,Ba)(Zr,Ti)03,KH2
4,NH42PO4,KD2PO4,ZnTe,K(T
a,Nb)03,Ba2NaNb515,Sr2KNb5
15,Ba2LiNb515,Ca2Nb27などがあげら
れる。
Incidentally, examples of the material exhibiting the electro-optical effect include ferroelectric crystals known as piezoelectric materials and electrostrictive materials. Specific examples thereof include LiTaO 3 ,
LiNbO 3 , CsD 2 AsO 4 , CuCl, (Sr, B
a) Nb 2 O 6 , La 2 Ti 2 O 7 , (Pb, La) (Z
r, Ti) 0 3 , (Pb, La) (Hf, Ti) 0 3 ,
(Pb, Sr, Ba) (Zr, Ti) 0 3 , KH 2 P
O 4 , NH 4 H 2 PO 4 , KD 2 PO 4 , ZnTe, K (T
a, Nb) 0 3 , Ba 2 NaNb 5 O 15 , Sr 2 KNb 5 O
15 , Ba 2 LiNb 5 O 15 , Ca 2 Nb 2 O 7 and the like can be mentioned.

【0020】また音響光学効果を示す材料としては、超
音波の付与等で屈折率等が変化する例えばPbMo
4,TeO2,Ge,Bi12GeO20,Pb2MoO5
Pb3(GeO4)(VO42,α−HIO3などがあげ
られる。また前記のLiNbO3,(Sr,Ba)Nb2
6なども音響光学効果を示す材料として用いうる。
As a material exhibiting an acousto-optic effect, for example, PbMo whose refractive index is changed by application of ultrasonic waves is used.
O 4 , TeO 2 , Ge, Bi 12 GeO 20 , Pb 2 MoO 5 ,
Pb 3 (GeO 4) (VO 4) 2, etc. alpha-HIO 3 and the like. In addition, the above LiNbO 3 , (Sr, Ba) Nb 2
O 6 and the like can also be used as the material exhibiting the acousto-optic effect.

【0021】波長選択素子としては、回折格子の如く入
射角の変化によりその反射による戻り光の波長が変化す
る適宜なものを用いることができ、特に限定はない。装
置の小型化等の点より好ましく用いうるものは、回折格
子の如く面的構造に基づいて波長選択素子としての機能
を示すものである。
As the wavelength selection element, an appropriate element such as a diffraction grating in which the wavelength of the return light due to the reflection changes depending on the change of the incident angle can be used, and there is no particular limitation. What can be preferably used from the viewpoint of downsizing of the device is that which exhibits a function as a wavelength selection element based on a planar structure such as a diffraction grating.

【0022】本発明の波長制御方法ないしそのレーザ
は、非線形光学効果を利用した波長変換素子の形成や、
波長多重光通信用の光源などとして好ましく用いうる。
すなわち前記の波長変換素子では、入射光の波長を変換
してその変換効率を最大などとする場合に利用できる。
後者の波長多重光通信用光源では、例えば波長間隔1nm
毎に100本の光源を形成するための手段などとして利
用することができる。
The wavelength control method and the laser thereof according to the present invention are used for forming a wavelength conversion element utilizing a non-linear optical effect,
It can be preferably used as a light source for wavelength division multiplexing optical communication.
That is, the wavelength conversion element can be used when the wavelength of incident light is converted to maximize its conversion efficiency.
In the latter light source for wavelength division multiplexing optical communication, for example, the wavelength interval is 1 nm.
It can be used as a means for forming 100 light sources for each.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の側面説明図FIG. 1 is an explanatory side view of an embodiment.

【図2】(a)他の実施例の側面説明図 (b)同平面説明図FIG. 2A is a side view of another embodiment, and FIG. 2B is a plan view of the same.

【図3】(a)さらに他の実施例の側面説明図 (b)同平面説明図FIG. 3A is a side explanatory view of still another embodiment, and FIG. 3B is a plan explanatory view of the same.

【図4】さらに他の実施例の側面説明図FIG. 4 is a side view for explaining still another embodiment.

【図5】さらに他の実施例の側面説明図FIG. 5 is a side view for explaining still another embodiment.

【符号の説明】 1:レーザ発振器 2:光透過型の偏向器 3:波長選択素子 4,5:レンズ 6:ハーフミラー 7:波長変換素子[Explanation of Codes] 1: Laser oscillator 2: Light-transmitting deflector 3: Wavelength selection element 4, 5: Lens 6: Half mirror 7: Wavelength conversion element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発振器より発振させたレーザ光を
光透過型の偏向器を介しその進行方向を制御して、入射
角により戻り光の波長が変化する波長選択素子に入射さ
せ、その波長選択素子からの戻り光をレーザ発振器に帰
還させてレーザ光の発振波長を制御することを特徴とす
るレーザ光の波長制御方法。
1. A laser beam oscillated by a laser oscillator is made to pass through a light-transmitting deflector to control its traveling direction to enter a wavelength selection element in which the wavelength of return light changes depending on the incident angle, and the wavelength is selected. A wavelength control method for laser light, characterized in that the oscillation wavelength of the laser light is controlled by returning the return light from the element to the laser oscillator.
【請求項2】 請求項1に記載の波長制御方法におい
て、レーザ光をレンズを介し平行光に変換して偏向器に
入射させる方式。
2. The wavelength control method according to claim 1, wherein the laser light is converted into parallel light through a lens and is made incident on a deflector.
【請求項3】 レーザ発振器と、それより発振させたレ
ーザ光の光路に、光透過型の偏向器を介して、入射角に
より戻り光の波長が変化する波長選択素子を配置してな
ることを特徴とするレーザ。
3. A laser oscillator and a wavelength selection element, in which the wavelength of the return light changes depending on the incident angle, are arranged in the optical path of the laser light oscillated from the laser oscillator via a light transmission type deflector. Characterized laser.
【請求項4】 請求項3に記載のレーザにおいて、レー
ザ発振器が半導体レーザからなり、偏向器が強誘電体結
晶で形成したプリズムからなり、波長選択素子が回折格
子からなるもの。
4. The laser according to claim 3, wherein the laser oscillator is a semiconductor laser, the deflector is a prism formed of a ferroelectric crystal, and the wavelength selection element is a diffraction grating.
【請求項5】 請求項3又は4に記載のレーザにおい
て、レーザ発振器と偏向器の間に、レーザ光を平行光に
変換する素子を有するもの。
5. The laser according to claim 3, further comprising an element for converting laser light into parallel light between a laser oscillator and a deflector.
JP7212413A 1995-07-28 1995-07-28 Laser beam wavelength control method and laser thereof Pending JPH0945981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7212413A JPH0945981A (en) 1995-07-28 1995-07-28 Laser beam wavelength control method and laser thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7212413A JPH0945981A (en) 1995-07-28 1995-07-28 Laser beam wavelength control method and laser thereof

Publications (1)

Publication Number Publication Date
JPH0945981A true JPH0945981A (en) 1997-02-14

Family

ID=16622182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7212413A Pending JPH0945981A (en) 1995-07-28 1995-07-28 Laser beam wavelength control method and laser thereof

Country Status (1)

Country Link
JP (1) JPH0945981A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521572A (en) * 2003-02-21 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Autostereoscopic display
JP2006339622A (en) * 2005-05-31 2006-12-14 Korea Electronics Telecommun Parabolic waveguide type parallel light lens and wavelength tunable external cavity laser diode including the same
JP2007234786A (en) * 2006-02-28 2007-09-13 Sun Tec Kk Wavelength variable laser light source
JP2008130805A (en) * 2006-11-21 2008-06-05 Yokogawa Electric Corp External resonator wavelength variable light source
JP2012150408A (en) * 2011-01-21 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable laser beam source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521572A (en) * 2003-02-21 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Autostereoscopic display
JP4705014B2 (en) * 2003-02-21 2011-06-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Autostereoscopic display
JP2006339622A (en) * 2005-05-31 2006-12-14 Korea Electronics Telecommun Parabolic waveguide type parallel light lens and wavelength tunable external cavity laser diode including the same
JP2007234786A (en) * 2006-02-28 2007-09-13 Sun Tec Kk Wavelength variable laser light source
JP2008130805A (en) * 2006-11-21 2008-06-05 Yokogawa Electric Corp External resonator wavelength variable light source
JP2012150408A (en) * 2011-01-21 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable laser beam source

Similar Documents

Publication Publication Date Title
US4394060A (en) Light beam scanning system with saw transducer
US7894125B2 (en) Acousto-optic devices
US5576880A (en) Acousto-optic bragg cell
US4470661A (en) Beam deflecting device
US5471490A (en) Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device
US7039077B2 (en) Optical wavelength converting apparatus, and optical wavelength converting method
JPH0451006B2 (en)
US3959739A (en) Electro-optic tuning of organic dye laser
EP0376710B1 (en) A method of operating a light wavelength converter
JPH0945981A (en) Laser beam wavelength control method and laser thereof
US7298545B2 (en) High repetition rate visible optical parametric oscillator
EP0480562A2 (en) Semiconductor laser device
US5714240A (en) Integrated frequency conversion and scanner
JPH09246642A (en) Narrow spectrum line width laser beam source
US5375138A (en) Optical cavities for lasers
EP0491038A1 (en) Multichannel integrated optics modulator for laser printer.
JP2603086B2 (en) Optical waveguide device
JPH01107213A (en) Optical waveguide element
JPS58130327A (en) Two-dimensional optical deflector
JP3031740B2 (en) Harmonic generator
JPH0322071B2 (en)
JP2828514B2 (en) High-speed wavelength scanning device
JP2687127B2 (en) Optical parametric oscillator
JPH0234011B2 (en)
JPH0431805A (en) Method for inputting light to optical waveguide and method for outputting light therefrom