[go: up one dir, main page]

JPH0942290A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0942290A
JPH0942290A JP7187084A JP18708495A JPH0942290A JP H0942290 A JPH0942290 A JP H0942290A JP 7187084 A JP7187084 A JP 7187084A JP 18708495 A JP18708495 A JP 18708495A JP H0942290 A JPH0942290 A JP H0942290A
Authority
JP
Japan
Prior art keywords
magnetic bearing
control
bearing device
control constant
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7187084A
Other languages
Japanese (ja)
Other versions
JP3651703B2 (en
Inventor
Junichiro Ozaki
純一郎 小崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP18708495A priority Critical patent/JP3651703B2/en
Publication of JPH0942290A publication Critical patent/JPH0942290A/en
Application granted granted Critical
Publication of JP3651703B2 publication Critical patent/JP3651703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2231/00Running-in; Initial operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform floating control responding to the arrangement direction of a device by providing a compensating circuit to control a magnetic bearing part so that a shaft is held in a given position based on a displacement fluctua tion amount of a rotary shaft and switching a control constant in the compensat ing circuit according to the arrangement direction of the rotary shaft. SOLUTION: In a control constant in a compensating circuit 3, a control constant A is selected and outputted by a change-over switch 31 when an angle θfrom an arrangement direction in which, for example, a magnetic bearing device is vertically arranged is 0 deg. <=θ(R)45 deg. and 135 deg.<=θ<=180 deg., and a control constant B is selected and outputted when the angle is 45 deg.<θ<135 deg.. In the control constant, an optimum floating control constant in an angle section is previously determined and set in the compensating circuit 3. The change-over switch 31 comprises, for example, a relay and is switched by means of a switch change-over signal from the outside. This constitution sets an optimum control constant according to the arrangement direction of the magnetic bearing device and performs floating control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気軸受装置に関
し、特に、真空ポンプ等の高速回転機器に用いる磁気軸
受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device, and more particularly to a magnetic bearing device used for high speed rotating equipment such as a vacuum pump.

【0002】[0002]

【従来の技術】ターボ分子ポンプをはじめとする真空ポ
ンプ等の高速回転機器においては、良好な真空を得るた
めにオイルフリーであることが要求される。そこで、従
来型の油潤滑を利用した軸受に代えて磁気軸受が開発さ
れている。この磁気軸受は、真空空間に完全に無接触で
浮上し回転するため、発生する振動が非常に小さいとい
う特徴がある。そのため、電子顕微鏡やX線描画装置の
ように極度に振動を嫌う装置に適している。
2. Description of the Related Art High-speed rotating equipment such as a vacuum pump such as a turbo molecular pump is required to be oil-free in order to obtain a good vacuum. Therefore, magnetic bearings have been developed in place of conventional bearings using oil lubrication. Since this magnetic bearing floats completely in the vacuum space without contact, and rotates, the generated vibration is very small. Therefore, it is suitable for an apparatus that is extremely reluctant to vibrate, such as an electron microscope or an X-ray drawing apparatus.

【0003】従来、この磁気軸受として、回転軸回りの
自由度を除く5自由度の運動(3自由度の重心の並進運
動,2自由度の重心回りの回転運動)を能動的に制御す
る5軸制御形磁気軸受が知られている。この5軸制御形
磁気軸受では、ラジアル磁気軸受として回転体の半径方
向に8個の電磁石を備え、アキシャル磁気軸受として軸
方向に2個の電磁石を備えている。そして、この電磁石
とほぼ同位置に回転体の状態を検出する変位センサを設
置してフィードバック制御系を構成し、各電磁石に流れ
る電流を調節して電磁石の吸引力を調節し、回転体を中
心位置に支持している。
Conventionally, as this magnetic bearing, a five-degree-of-freedom motion (translational motion of the center of gravity of three degrees of freedom, rotational motion around the center of gravity of two degrees of freedom) except for the degree of freedom around the rotation axis is actively controlled. A shaft control type magnetic bearing is known. In this five-axis control type magnetic bearing, eight electromagnets are provided in the radial direction of the rotating body as radial magnetic bearings, and two electromagnets are provided in the axial direction as axial magnetic bearings. A displacement sensor that detects the state of the rotating body is installed at approximately the same position as this electromagnet to form a feedback control system, and the current flowing through each electromagnet is adjusted to adjust the attraction force of the electromagnet, and the rotating body is centered. Supporting the position.

【0004】このフィードバック制御系として、例え
ば、1入力,1出力の古典的PID調節系、多入力、多
出力である最適レギュレータ系、あるいは拡大最適レギ
ュレータ系の3つの制御系が知られており、拡大最適レ
ギュレータ系は比例,微分,積分要素によるPID制御
を行うことによって、歳差運動の制御を可能とするとと
もに定常外乱に対する定常偏差を減衰させることができ
る。
As this feedback control system, for example, three control systems are known, which are a classic PID control system with one input and one output, an optimal regulator system with multiple inputs and multiple outputs, or an expanded optimal regulator system. By performing PID control by proportional, differential, and integral elements, the expanded optimum regulator system enables control of precession and damping of steady deviation with respect to steady disturbance.

【0005】図9は、従来の磁気軸受における拡大最適
レギュレータ系の制御系を説明するブロック図である。
図9の制御系は、回転軸の半径方向の変位を検出する4
つの変位センサSxf,Sxr,Syf,Syr、及び軸方向の
変位を検出する1つの変位センサSz から検出される変
位変動量をPID制御し、回転体の半径方向に設けた8
個の電磁石と軸方向に設けた2個の電磁石を駆動する制
御系である。図9中の一点鎖線で囲まれる部分はPID
制御による補償回路であり、あらかじめ定めた制御定数
(以下、制御定数Aという)によって制御を行ってい
る。
FIG. 9 is a block diagram for explaining a control system of an expanded optimum regulator system in a conventional magnetic bearing.
The control system of FIG. 9 detects the radial displacement of the rotary shaft 4
The displacement variation amount detected by one displacement sensor Sxf, Sxr, Syf, Syr, and one displacement sensor Sz for detecting the axial displacement is PID-controlled and provided in the radial direction of the rotating body.
This is a control system that drives one electromagnet and two electromagnets provided in the axial direction. The part surrounded by the alternate long and short dash line in FIG. 9 is the PID.
The compensation circuit is based on control, and is controlled by a predetermined control constant (hereinafter referred to as control constant A).

【0006】電磁石は、回転軸を挟んで対向して配置さ
れており、各電磁石に前記PID制御により定められる
励磁電流を励磁アンプを介して流すことによって、対向
する電磁石どうしで回転軸を吸引しあい、回転軸を適当
な位置に制御している。
The electromagnets are arranged so as to face each other with the rotating shaft interposed therebetween. By passing an exciting current determined by the PID control through each exciting magnet through the exciting amplifier, the opposing electromagnets attract the rotating shaft. , The rotation axis is controlled to an appropriate position.

【0007】[0007]

【発明が解決しようとする課題】磁気軸受装置の適用例
として、例えばターボ分子ポンプにおける回転軸の軸受
がある。このようなターボ分子ポンプを真空チャンバに
設置する場合、その取付け方向は真空チャンバの構造や
付属装置の設置位置等によって異なる。そのため、ター
ボ分子ポンプは真空チャンバに対して任意の方向に取付
け可能であることが求められている。図10は、磁気軸
受装置をターボ分子ポンプの真空チャンバに設置する設
置位置の例を示している。図10の設置位置例は、矢印
の方向を重力方向とすると、磁気軸受装置は真空チャン
バに対して、例えば垂直方向、垂直方向と180°逆方
向の倒立方向、垂直方向から90°傾いた水平方向、斜
め方向に取付ける場合を示している。
As an example of application of the magnetic bearing device, there is a bearing for a rotating shaft in a turbo molecular pump, for example. When such a turbo molecular pump is installed in a vacuum chamber, the mounting direction differs depending on the structure of the vacuum chamber, the installation position of an accessory device, and the like. Therefore, it is required that the turbo molecular pump can be attached to the vacuum chamber in any direction. FIG. 10 shows an example of the installation position where the magnetic bearing device is installed in the vacuum chamber of the turbo molecular pump. In the installation position example of FIG. 10, assuming that the direction of the arrow is the direction of gravity, the magnetic bearing device is, for example, in the vertical direction, the inverted direction 180 ° to the vertical direction, and the horizontal direction inclined 90 ° from the vertical direction. It shows the case of mounting in the diagonal direction.

【0008】したがって、磁気軸受装置の設置方向も、
ターボ分子ポンプの取付け方向に応じて種々の方向とな
る場合がある。磁気軸受装置の設置方向により、ロータ
の回転軸の軸受に対する方向成分が異なってくる。図1
1は、磁気軸受装置の設置方向によるスラスト軸受とラ
ジアル軸受の受ける力成分を説明する図である。図11
(a)は回転軸が垂直方向の場合を示しており、この場
合には回転軸の設置方向と重力方向が同方向であり、重
力分はスラスト軸受部に加わる。また、図11(c)は
回転軸が水平方向の場合を示しており、この場合には回
転軸の設置方向と重力方向が直交し、重力分はラジアル
軸受部に加わる。また、図11(b)は回転軸が斜め方
向の場合を示しており、この場合には重力分は回転軸の
傾斜方向に応じてスラスト軸受部とラジアル軸受部に分
配される。このように、磁気軸受装置の設置方向に応じ
て、各軸受部への重力分の分配は変化する。磁気軸受装
置は、このような異なる設置方向に対してロータを常に
安定して浮上制御することが求められている。
Therefore, the installation direction of the magnetic bearing device is also
There may be various directions depending on the mounting direction of the turbo molecular pump. Depending on the installation direction of the magnetic bearing device, the direction component of the rotor rotation shaft with respect to the bearing differs. FIG.
FIG. 1 is a diagram illustrating force components received by a thrust bearing and a radial bearing depending on the installation direction of a magnetic bearing device. FIG.
(A) shows the case where the rotating shaft is in the vertical direction. In this case, the installation direction of the rotating shaft and the gravity direction are the same direction, and the gravity component is added to the thrust bearing portion. Further, FIG. 11C shows the case where the rotary shaft is horizontal, and in this case, the installation direction of the rotary shaft and the gravity direction are orthogonal to each other, and the gravity component is added to the radial bearing portion. Further, FIG. 11B shows a case where the rotating shaft is in an oblique direction. In this case, the gravity component is distributed to the thrust bearing portion and the radial bearing portion according to the inclination direction of the rotating shaft. In this way, the distribution of the gravity component to each bearing changes depending on the installation direction of the magnetic bearing device. The magnetic bearing device is required to always stably control the levitation of the rotor in such different installation directions.

【0009】従来の磁気軸受装置では、磁気軸受装置を
重力方向に対して鉛直方向に設置した場合を基準位置と
して、ロータを浮上制御するフィードバック制御回路の
制御定数を求め、この垂直方向設置時における制御定数
を全方向に対する代表的な制御定数とし、磁気軸受装置
の設置方向によらず同一の制御定数を用いて制御を行っ
ている。そのため、磁気軸受装置の設置方向によって
は、最適な浮上制御を確保することが困難となり、突発
的な外部振動に対して応答が最適とならないという問題
点がある。
In the conventional magnetic bearing device, the control constant of the feedback control circuit for controlling the levitation of the rotor is obtained with the case where the magnetic bearing device is installed in the vertical direction with respect to the direction of gravity as a reference position, and when the magnetic bearing device is installed in the vertical direction. The control constant is a representative control constant for all directions, and control is performed using the same control constant regardless of the installation direction of the magnetic bearing device. Therefore, depending on the installation direction of the magnetic bearing device, it is difficult to ensure the optimum levitation control, and there is a problem that the response is not optimal with respect to sudden external vibration.

【0010】そこで、本発明は前記した従来の磁気軸受
装置の問題点を解決し、磁気軸受装置の設置方向に対応
した浮上制御を行うことができる磁気軸受装置を提供す
ることを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional magnetic bearing device and to provide a magnetic bearing device capable of performing levitation control corresponding to the installation direction of the magnetic bearing device.

【0011】[0011]

【課題を解決するための手段】本発明は、回転軸を支持
する磁気軸受部と回転軸を回転加減速する駆動部とを備
えた磁気軸受装置において、回転軸の変位変動量に基づ
いて回転軸を所定位置に保持するよう磁気軸受部を制御
する補償回路を備え、この補償回路は回転軸の設置方向
に応じて補償回路内の制御定数を切換えることによっ
て、前記目的を達成する。
SUMMARY OF THE INVENTION The present invention is a magnetic bearing device comprising a magnetic bearing portion for supporting a rotary shaft and a drive portion for rotationally accelerating and decelerating the rotary shaft. A compensation circuit is provided for controlling the magnetic bearing unit so as to hold the shaft at a predetermined position, and the compensation circuit achieves the above-mentioned object by switching the control constant in the compensation circuit according to the installation direction of the rotating shaft.

【0012】本発明の実施態様は、補償回路の制御定数
を切換えを、磁気軸受部の電磁石に印加する電流量に基
づいて行うものであり、これによって、磁気軸受装置の
設置方向に応じて自動的に制御定数を変更することがで
きる。本発明の他の実施態様は、補償回路の制御定数の
切換えの基となる磁気軸受部の電磁石への励磁電流を、
スラスト磁気軸受部の電磁石への励磁電流、あるいはラ
ジアル磁気軸受部の電磁石への励磁電流とするものであ
る。
According to the embodiment of the present invention, the control constant of the compensating circuit is switched based on the amount of current applied to the electromagnet of the magnetic bearing portion, whereby the automatic constant is adjusted according to the installation direction of the magnetic bearing device. The control constant can be changed. According to another embodiment of the present invention, the exciting current to the electromagnet of the magnetic bearing portion, which serves as a basis for switching the control constant of the compensation circuit,
The exciting current is used for the electromagnet of the thrust magnetic bearing portion or the electromagnet of the radial magnetic bearing portion.

【0013】本発明の磁気軸受装置において、設置方向
に応じた補償回路の制御定数を実験等によりあらかじめ
求めておき、磁気軸受装置を設置する場合に求めておい
た複数の制御定数の中から設置方向に応じた制御定数を
選択し、補償回路の制御定数をこの選択した制御定数に
切換える。これによって、補償回路中の制御定数は、磁
気軸受装置の設置方向に対応した制御定数とすることが
できる。
In the magnetic bearing device of the present invention, the control constant of the compensating circuit according to the installation direction is previously obtained by experiments, etc., and the control constant is set from among the plurality of control constants obtained when the magnetic bearing device is installed. A control constant according to the direction is selected, and the control constant of the compensation circuit is switched to this selected control constant. As a result, the control constant in the compensation circuit can be a control constant corresponding to the installation direction of the magnetic bearing device.

【0014】制御定数の切換えは、例えば、磁気軸受装
置の設置時に操作者等による補償回路に入力する切換え
信号や、磁気軸受部の電磁石に印加する電流量に基づい
て補償回路に入力する切換え信号を用いることができ
る。操作者の操作による場合には、磁気軸受装置の設置
時に補償回路に切換え信号を入力して、磁気軸受装置の
設置方向に対応する補償回路の制御定数を設定する。
The switching of the control constant is performed by, for example, a switching signal input to the compensation circuit by an operator when installing the magnetic bearing device, or a switching signal input to the compensation circuit based on the amount of current applied to the electromagnet of the magnetic bearing portion. Can be used. When operated by an operator, a switching signal is input to the compensation circuit when the magnetic bearing device is installed to set the control constant of the compensation circuit corresponding to the installation direction of the magnetic bearing device.

【0015】また、磁気軸受部の電磁石に印加する電流
量は、磁気軸受装置の設置方向に応じて変化する。そこ
で、この電流量に応じた制御定数をあらかじめ設定し、
電流量に応じて切換えることによって、設置方向に対応
する制御定数を自動的に設定することができる。
The amount of current applied to the electromagnet of the magnetic bearing portion changes depending on the installation direction of the magnetic bearing device. Therefore, set the control constant according to this current amount in advance,
By switching according to the amount of electric current, the control constant corresponding to the installation direction can be automatically set.

【0016】[0016]

【発明の実施の形態】図2は、5自由度制御形磁気軸受
の概略構造図である。図示する磁気軸受は、回転軸回り
の自由度を除く5自由度の運動を能動的に制御する5軸
制御形磁気軸受であり、回転軸Rの重心Gを原点とし、
Z軸を回転軸R上とするX,Y,Z座標を示している。
この5軸制御形磁気軸受は、重心の並進運動について3
つの自由度,重心回りの回転運動について2つの自由度
の合計5つの自由度を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a schematic structural diagram of a 5-DOF controlled magnetic bearing. The magnetic bearing shown is a five-axis control type magnetic bearing that actively controls movement in five degrees of freedom excluding the degree of freedom around the rotation axis, with the center of gravity G of the rotation axis R as the origin,
The X, Y, and Z coordinates with the Z axis on the rotation axis R are shown.
This 5-axis control type magnetic bearing has 3
It has five degrees of freedom, one degree of freedom and two degrees of freedom for the rotational movement around the center of gravity.

【0017】そして、この5軸制御形磁気軸受では、回
転軸の半径方向に8個の電磁石(Mxfp ,Mxfn ,Mxr
p ,Mxrn ,Myfp ,Myfn ,Myrp ,Myrn )を備え
ており、これらの電磁石によってラジアル磁気軸受を構
成している。なお、ここで、Mは電磁石を示し、添字x
はX座標軸方向を,添字yはY座標軸方向を,添字fは
重心Gに対して回転軸Rの一方の側を,添字rは重心G
に対して回転軸Rの他方の側を,添字pは座標軸の正方
向を,添字nは座標軸の負方向を示している。したがっ
て、重心Gに対して回転軸Rの一方の側において、電磁
石Mxfp と電磁石Mxfn は回転軸Rを挟んでX軸方向に
対向して配置され、また、電磁石Myfpと電磁石Myfn
は回転軸Rを挟んでY軸方向に対向して配置されてい
る。また、電磁石Mxrp ,Mxrn ,Myrp ,Myrn につ
いても、重心Gに対して回転軸Rの他方の側において同
様に配置されている。
In this 5-axis control type magnetic bearing, eight electromagnets (Mxfp, Mxfn, Mxr) are arranged in the radial direction of the rotating shaft.
p, Mxrn, Myfp, Myfn, Myrp, Myrn), and a radial magnetic bearing is constituted by these electromagnets. Here, M represents an electromagnet, and the subscript x
Indicates the X coordinate axis direction, the subscript y indicates the Y coordinate axis direction, the subscript f indicates one side of the rotation axis R with respect to the center of gravity G, and the subscript r indicates the center of gravity G.
On the other side of the rotation axis R, the subscript p indicates the positive direction of the coordinate axis, and the subscript n indicates the negative direction of the coordinate axis. Therefore, on one side of the rotation axis R with respect to the center of gravity G, the electromagnet Mxfp and the electromagnet Mxfn are arranged so as to face each other in the X axis direction with the rotation axis R interposed therebetween, and the electromagnet Myfp and the electromagnet Myfn are arranged.
Are arranged to face each other in the Y-axis direction with the rotation axis R interposed therebetween. Further, the electromagnets Mxrp, Mxrn, Myrp, Myrn are similarly arranged on the other side of the rotation axis R with respect to the center of gravity G.

【0018】さらに、この5軸制御形磁気軸受は、回転
軸Rの軸方向に2個の電磁石(Mzp,Mzn)を備えてお
り、これらの電磁石によってスラスト磁気軸受を構成し
ている。なお、添字zはZ座標軸方向を示している。ま
た、この5軸制御形磁気軸受は、これら電磁石とほぼ同
位置に回転軸Rの状態を検出する変位センサ(Sxf,S
yf,Sxr,Syr,Sz )を備えている。なお、変位セン
サSの添字は電磁石で用いた添字を同様である。例え
ば、変位センサSxfは、重心Gに対して回転軸Rの一
方の側におけるX軸方向についての回転軸Rの変位を検
出するセンサである。
Further, this 5-axis control type magnetic bearing is provided with two electromagnets (Mzp, Mzn) in the axial direction of the rotary shaft R, and these electromagnets constitute a thrust magnetic bearing. The suffix z indicates the direction of the Z coordinate axis. Further, this 5-axis control type magnetic bearing has a displacement sensor (Sxf, Sx) that detects the state of the rotary shaft R at substantially the same position as these electromagnets.
yf, Sxr, Syr, Sz). In addition, the subscript of the displacement sensor S is the same as the subscript used for the electromagnet. For example, the displacement sensor Sxf is a sensor that detects a displacement of the rotation axis R in the X-axis direction on one side of the rotation axis R with respect to the center of gravity G.

【0019】さらに、この電磁石Mと変位センサSはフ
ィードバック制御系を構成しており、変位センサSによ
って検出した変位変動量を用いて各電磁石に流れる電流
を調節することで電磁石の吸引力を調節し、これによっ
て回転軸が中心位置となるよう制御を行っている。そし
て、この回転軸Rは回転軸に取り付けられたモータmに
よって駆動される。
Further, the electromagnet M and the displacement sensor S form a feedback control system, and the attraction force of the electromagnet is adjusted by adjusting the current flowing through each electromagnet using the displacement variation amount detected by the displacement sensor S. Then, the control is performed so that the rotation axis is located at the center position. The rotary shaft R is driven by a motor m attached to the rotary shaft.

【0020】なお、図中において、電磁石Mと回転軸R
との変位変動量dは、変位の対象となっている電磁石M
の添字を付すことによって示している。例えば、電磁石
Mxfp と電磁石Mxfn については、電磁石Mxfp と回転
軸Rとの距離をdMxf で示している。また、変位センサ
Sと回転軸Rとの変位変動量dは、検出を行っている変
位センサSの添字を付すことによって示している。例え
ば、変位センサSxfについては、変位センサSxfと回転
軸Rとの距離をdSxf で示している。また、重心Gから
電磁石Mまでの軸方向の距離lはlMf,lMrによって示
し、重心Gから変位センサSまでの軸方向の距離lはl
Sf,lSrによって示している。さらに、モータmについ
ては、回転軸Rとの変位変動量をX軸方向ではdmx,Y
軸方向ではdmyで示し、重心Gからの軸方向距離をlm
によって示している。なお、前記の変位変動量,及び重
心Gは平衡位置を原点としている。
In the figure, the electromagnet M and the rotary shaft R are
The displacement fluctuation amount d between and is the electromagnet M that is the target of displacement.
It is indicated by the subscript. For example, regarding the electromagnet Mxfp and the electromagnet Mxfn, the distance between the electromagnet Mxfp and the rotation axis R is indicated by dMxf. Further, the displacement variation amount d between the displacement sensor S and the rotation axis R is indicated by adding the subscript of the displacement sensor S that is performing the detection. For example, regarding the displacement sensor Sxf, the distance between the displacement sensor Sxf and the rotation axis R is indicated by dSxf. The axial distance l from the center of gravity G to the electromagnet M is indicated by lMf and lMr, and the axial distance l from the center of gravity G to the displacement sensor S is l.
This is indicated by Sf and lSr. Further, regarding the motor m, the displacement variation amount with respect to the rotation axis R is dmx, Y
It is indicated by dmy in the axial direction, and the axial distance from the center of gravity G is lm.
Indicated by The displacement variation amount and the center of gravity G have the equilibrium position as the origin.

【0021】図2の磁気軸受構成において、センサ位置
における回転軸とセンサ間の浮上平衡位置からの変動量
をds とし、電磁石Mと変位センサSによってPIDフ
ィードバック制御系を構成すると、その運動方程式は例
えば以下の式で表される。 ds ’’’=Ts -1(Gy s -1−TM t MiD )ds ’’ +Ts -1{TM t MsM s -1−TM t MiP }ds ’ −Ts -1M t MiI s …(1) なお、「’」は微分を示し、Ts は重心とセンサ間の距
離に係わる行列であり、Nは回転軸の質量および半径方
向の慣性モーメントに係わる行列であり、Gy はロータ
のジャイロ効果に係わる行列であり、TM は重心と電磁
石間のZ軸方向距離に係わる行列であり、KMiは励磁電
流に関する電磁石係数であり、KMsはギャップ変動に関
する電磁石係数であり、KP は比例ゲイン(Pゲイ
ン),KD は微分ゲイン(Dゲイン),KI は積分ゲイ
ン(Iゲイン)である。
In the magnetic bearing structure of FIG. 2, when the fluctuation amount from the floating equilibrium position between the rotary shaft and the sensor at the sensor position is ds and the PID feedback control system is constituted by the electromagnet M and the displacement sensor S, the equation of motion is For example, it is represented by the following formula. d s''' = T s N -1 (G y T s -1 -TM t K Mi K D) d s''+ T s N -1 {T M t K Ms T M T s -1 -T M t K Mi K P } d s '-T s N -1 T M t K Mi K I d s (1) In addition, "'" represents a derivative and Ts is a matrix relating to the distance between the center of gravity and the sensor. Yes, N is a matrix relating to the mass of the rotating shaft and the moment of inertia in the radial direction, Gy is a matrix relating to the gyro effect of the rotor, TM is a matrix relating to the distance between the center of gravity and the electromagnet in the Z axis direction, and KMi Is an electromagnet coefficient relating to an exciting current, KMs is an electromagnet coefficient relating to gap variation, KP is a proportional gain (P gain), KD is a differential gain (D gain), and KI is an integral gain (I gain).

【0022】前記式(1)で表される磁気軸受装置のP
IDフィードバック制御系は、例えば図9に示す補償回
路を含めた構成により実現することができ、回転軸の半
径方向の変位を検出する4つの変位センサSxf,Sxr,
Syf,Syr、および軸方向の変位を検出する1つの変位
センサSz から検出される変位変動量をPID制御し、
回転体の半径方向に設けた8個の電磁石と軸方向に設け
た2個の電磁石を駆動する制御系である。この制御系に
おけるPIDの各係数の組を制御定数Aとして表すこと
にする。
P of the magnetic bearing device represented by the above formula (1)
The ID feedback control system can be realized, for example, by a configuration including a compensation circuit shown in FIG. 9, and four displacement sensors Sxf, Sxr, for detecting the radial displacement of the rotating shaft,
SID, Syr, and the displacement variation detected by one displacement sensor Sz that detects displacement in the axial direction are PID-controlled,
The control system drives eight electromagnets provided in the radial direction of the rotating body and two electromagnets provided in the axial direction. A set of PID coefficients in this control system will be represented as a control constant A.

【0023】図10,図11で示したように、磁気軸受
装置の設置方向が異なると、ロータ自身のロータ軸方向
成分と半径方向線分の大きさが変化し、例えば、ロータ
軸が重力と同方向の場合には重力をスラスト方向の磁気
軸受で支持し、また、ロータ軸が重力と直角方向の場合
には重力をラジアル方向の磁気軸受で支持する。重力を
スラスト方向の磁気軸受で支持する場合には、スラスト
方向の磁気軸受において重力と逆方向に設置された電磁
石に大きな励磁電流が流れ、また、重力をラジアル方向
の磁気軸受で支持する場合には、ラジアル方向の磁気軸
受において重力と逆方向に設置された電磁石に大きな励
磁電流が流れる。
As shown in FIGS. 10 and 11, when the installation direction of the magnetic bearing device is different, the component of the rotor itself in the axial direction and the size of the radial line segment change. In the case of the same direction, gravity is supported by the thrust direction magnetic bearing, and when the rotor shaft is in the direction perpendicular to the gravity, gravity is supported by the radial direction magnetic bearing. When the gravity is supported by the thrust magnetic bearing, a large exciting current flows in the electromagnet installed in the thrust magnetic bearing in the opposite direction to the gravity, and when the gravity is supported by the radial magnetic bearing. In the radial magnetic bearing, a large exciting current flows in the electromagnet installed in the direction opposite to gravity.

【0024】したがって、磁気軸受装置の設置方向(ロ
ータ磁気軸受の方向)に応じて浮上平衡状態での各電磁
石に流れる励磁電流が変化することになる。平衡状態に
おける励磁電流の大きさによって、磁気軸受装置のPI
Dフィードバック制御系のゲインは変化する。したがっ
て、磁気軸受装置の設置方向が変化する場合に安定した
平衡状態を維持するためには、磁気軸受装置内の補償回
路中の制御定数を設置方向に対応して変更する必要があ
る。
Therefore, the exciting current flowing through each electromagnet in the levitation equilibrium state changes according to the installation direction of the magnetic bearing device (direction of the rotor magnetic bearing). Depending on the magnitude of the exciting current in the equilibrium state, the PI of the magnetic bearing device is
The gain of the D feedback control system changes. Therefore, in order to maintain a stable equilibrium state when the installation direction of the magnetic bearing device changes, it is necessary to change the control constant in the compensation circuit in the magnetic bearing device in accordance with the installation direction.

【0025】本発明の実施の第1の形態では、図1のブ
ロック図に示すように、変位センサ2,補償回路3,反
転器4,加算器5,励磁アンプ6,電磁石7を含む制御
系1において、補償回路3内に磁気軸受装置の設置方向
に対応して複数の制御定数(図1では2つ制御定数A,
制御定数Bを設ける場合を示している)、この制御定数
A,Bを切換スイッチ31によって切換えて出力する。
なお、図示する制御系では、反転器4および加算器5の
構成によって、対向して配置される各軸の電磁石に対し
て同じ大きさの一定電流がバイアス分としてあらかじめ
設定し、このバイアス電流を同じ大きさの制御電流によ
り増減するよう構成している。
In the first embodiment of the present invention, as shown in the block diagram of FIG. 1, a control system including a displacement sensor 2, a compensation circuit 3, an inverter 4, an adder 5, an exciting amplifier 6 and an electromagnet 7. 1, a plurality of control constants (two control constants A, in FIG. 1) corresponding to the installation direction of the magnetic bearing device in the compensation circuit 3 are provided.
The case where the control constant B is provided is shown), and the control constants A and B are switched by the changeover switch 31 and output.
In the control system shown in the figure, a constant current of the same magnitude is preset as a bias component for the electromagnets of the respective axes arranged oppositely by the configuration of the inverter 4 and the adder 5, and this bias current is It is configured to increase or decrease by the control current of the same magnitude.

【0026】補償回路1中の制御定数は、例えば、図1
0に示すように、磁気軸受装置を垂直設置した設置方向
からの角度θが角度区間A1(0°≦θ≦45°)と角
度区間A2(135°≦θ≦180°)にある場合に
は、切換スイッチ31によって制御定数Aを選択して出
力し、角度θが角度区間B(45°<θ<135°)に
ある場合には、切換スイッチ31によって制御定数Bを
選択して出力する。この各角度区間における制御定数
は、該角度区間内において最適な浮上制御定数をあらか
じめ求め、補償回路内に設定しておくことができる。ま
た、この切換スイッチ31は、例えばリレー等により構
成することができ、外部からのスイッチ切換信号により
切換動作を行うことができ、このスイッチ切換信号は操
作者により入力することができる。これによって、磁気
軸受装置の設置方向に応じて、最適な制御定数を設定す
ることができる。
The control constant in the compensation circuit 1 is, for example, as shown in FIG.
As shown in 0, when the angle θ from the installation direction in which the magnetic bearing device is vertically installed is in the angle section A1 (0 ° ≦ θ ≦ 45 °) and the angle section A2 (135 ° ≦ θ ≦ 180 °). , The control constant A is selected and output by the changeover switch 31, and when the angle θ is in the angle section B (45 ° <θ <135 °), the control constant B is selected and output by the changeover switch 31. The control constant in each angle section can be set in the compensation circuit by previously obtaining the optimum flying control constant in the angle section. Further, the changeover switch 31 can be constituted by, for example, a relay or the like, and can perform a changeover operation by a switch changeover signal from the outside, and this switch changeover signal can be inputted by an operator. Thereby, the optimum control constant can be set according to the installation direction of the magnetic bearing device.

【0027】次に、本発明の実施の第2の形態について
説明する。図3は本発明の実施の第2の形態を説明する
ためのブロック図である。図3のブロック図において
も、図1と同様に、変位センサ2,補償回路3,反転器
4,加算器5,励磁アンプ6,電磁石7を含む制御系1
において、補償回路3内に磁気軸受装置の設置方向に対
応して複数の制御定数A,制御定数Bを設け(図3では
2つ制御定数の場合を示している)、この制御定数A,
Bを切換スイッチ31およびウインドコンパレータ32
によって切換えて出力する。磁気軸受装置の設置方向
と、浮上平衡状態における電磁石の励磁電流の間には例
えば図7,8に示すような関係がある。なお、図7,8
は励磁電流に相当する値で示している。
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram for explaining the second embodiment of the present invention. Also in the block diagram of FIG. 3, similarly to FIG. 1, a control system 1 including a displacement sensor 2, a compensation circuit 3, an inverter 4, an adder 5, an excitation amplifier 6, and an electromagnet 7.
In the compensating circuit 3, a plurality of control constants A and B are provided corresponding to the installation direction of the magnetic bearing device (FIG. 3 shows the case of two control constants).
B is a changeover switch 31 and a window comparator 32
To switch and output. For example, there is a relationship between the installation direction of the magnetic bearing device and the exciting current of the electromagnet in the levitation equilibrium state as shown in FIGS. 7 and 8
Indicates the value corresponding to the exciting current.

【0028】以下、この関係を式を用いて説明する。図
4は、回転軸Rと、この回転軸Rを挟んで対向して設置
される電磁石Mの関係を概略した図であり、両電磁石M
に励磁電流InおよびIpが流れて、回転軸Rと電磁石
Mとの間隔がそれぞれDnおよびDpである場合には、
それぞれ次式に示すfnおよびfpの力が作用する。
Hereinafter, this relationship will be described using equations. FIG. 4 is a diagram schematically showing the relationship between the rotary shaft R and the electromagnets M that are installed to face each other with the rotary shaft R interposed therebetween.
When the exciting currents In and Ip flow in and the distances between the rotating shaft R and the electromagnet M are Dn and Dp, respectively,
The forces of fn and fp shown in the following equations respectively act.

【0029】 fn=k(In/Dn)2 …(2) fp=k(Ip/Dp)2 …(3) なお、kは比例定数である。Fn = k (In / Dn) 2 (2) fp = k (Ip / Dp) 2 (3) where k is a proportional constant.

【0030】ここで、図5に示すように回転軸およびロ
ータが角度θだけ傾斜した場合において、スラスト方向
の電磁石に流れる励磁電流Ipとすると、以下の式が得
られる。 m・g・cosθ=fp−fn …(4) I(一定)=Ip+In …(5) D(一定)=Dp=Dn …(6) 前記式(1)〜(5)より、スラスト方向の電磁石に流
れる励磁電流Ipは以下の式で表される。 Ip=(D2 ・m・g・cosθ)/(2・k・I)+I/2 …(7) 図7は、式(7)で表される関係を用いて、前記した実
施の第1の形態と同様に、角度区間を角度区間A1(0
°≦θ≦45°),角度区間A2(135°≦θ≦18
0°)と、角度区間B(45°<θ<135°)に分
け、各角度区間で制御定数A,制御定数Bを切換えるも
のであり、実施の第2の形態ではこの切換えを励磁電流
の大きさに応じて行うものである。なお、図7の励磁電
流相当値は、例えば図3中の励磁アンプからの出力信号
とすることができる。
Here, when the rotating shaft and the rotor are tilted by an angle θ as shown in FIG. 5, and the exciting current Ip flowing through the electromagnet in the thrust direction is given, the following equation is obtained. m · g · cos θ = fp−fn (4) I (constant) = Ip + In (5) D (constant) = Dp = Dn (6) From the formulas (1) to (5), the electromagnet in the thrust direction is obtained. The exciting current Ip flowing through is expressed by the following equation. Ip = (D 2 · m · g · cos θ) / (2 · k · I) + I / 2 (7) FIG. 7 shows the first embodiment of the above-mentioned implementation using the relation expressed by the equation (7). In the same manner as in the above form, the angle section is changed to the angle section A1 (0
° ≦ θ ≦ 45 °, angle section A2 (135 ° ≦ θ ≦ 18
0 °) and the angle section B (45 ° <θ <135 °), and the control constant A and the control constant B are switched in each angle section. In the second embodiment, this switching is performed by changing the excitation current. It is done according to the size. The excitation current equivalent value in FIG. 7 can be an output signal from the excitation amplifier in FIG. 3, for example.

【0031】図7において、角度区間A1(0°≦θ≦
45°)は励磁電流相当値がI2以上の場合に相当し、
角度区間A2(135°≦θ≦180°)は励磁電流相
当値がI1以下の場合に相当し、また、角度区間B(4
5°<θ<135°)は励磁電流相当値がI1とI2の
間にある場合に相当している。なお、角度区間(−45
°≦θ≦0°)は角度区間A1と、角度区間(−180
°≦θ≦−135°)は角度区間A2と、また、角度区
間(−135°<θ<−45°)は角度区間Bと対応し
ている。
In FIG. 7, the angle section A1 (0 ° ≦ θ ≦
45 °) corresponds to the case where the excitation current equivalent value is I2 or more,
The angle section A2 (135 ° ≦ θ ≦ 180 °) corresponds to the case where the exciting current equivalent value is I1 or less, and the angle section B (4
5 ° <θ <135 °) corresponds to the case where the exciting current equivalent value is between I1 and I2. The angle section (-45
For angle ≤ θ ≤ 0 °, the angle section A1 and the angle section (-180
(° ≦ θ ≦ −135 °) corresponds to the angle section A2, and the angle section (−135 ° <θ <−45 °) corresponds to the angle section B.

【0032】そこで、図3に示す実施の第2の形態で
は、励磁アンプからの出力信号を励磁電流相当値とし
て、図7中のI1およびI2に対応する値をしきい値す
るウインドコンパレータ32に入力し、これによって磁
気軸受装置の設置方向を判定してスイッチ切換信号を補
償回路3内の切換スイッチ31に出力する。切換スイッ
チ31は、このスイッチ切換信号に基づいて制御定数A
あるいは制御定数Bを選択して制御定数の切換えを行
う。
Therefore, in the second embodiment shown in FIG. 3, the output signal from the exciting amplifier is used as the exciting current equivalent value and input to the window comparator 32 for thresholding the values corresponding to I1 and I2 in FIG. Then, the installation direction of the magnetic bearing device is determined by this, and a switch changeover signal is output to the changeover switch 31 in the compensation circuit 3. The changeover switch 31 determines the control constant A based on this switch changeover signal.
Alternatively, the control constant B is selected to switch the control constant.

【0033】ウインドコンパレータ32のしきい値は、
ロータが浮上し無回転状態においてあらかじめ求めてお
いて励磁電流相当値によって定めることができ、また、
補償回路1中の制御定数は、実施の第1の形態と同様に
設定することができる。これによって、実施の第2の形
態では、スラスト軸受における電磁石に供給される励磁
電流を用いて、磁気軸受装置の設置方向に応じた制御定
数の設定を自動的に行うことができる。
The threshold value of the window comparator 32 is
It can be determined in advance when the rotor is floating and in a non-rotating state, and can be determined by the exciting current equivalent value.
The control constant in the compensation circuit 1 can be set similarly to the first embodiment. As a result, in the second embodiment, the excitation constant supplied to the electromagnet in the thrust bearing can be used to automatically set the control constant according to the installation direction of the magnetic bearing device.

【0034】なお、実施の第2の形態による制御定数の
自動設定は、通常、ポンプ用の制御電源を立ち上げる毎
や、磁気軸受装置の設置変更時等に行い、磁気軸受装置
の駆動中には行わない。これによって、振動等の外乱に
よる制御定数の切換を防止することができる。
The automatic setting of the control constant according to the second embodiment is usually performed every time the control power supply for the pump is started up, when the installation of the magnetic bearing device is changed, and the like. Does not. As a result, switching of the control constant due to disturbance such as vibration can be prevented.

【0035】次に、本発明の実施の第3の形態について
説明する。実施の第2の形態は、スラスト方向の電磁石
に流れる励磁電流Ipを用いることにより、磁気軸受装
置の設置方向を判定し、これによって、制御定数の切換
を行うのに対して、実施の第3の形態は、ラジアル方向
の電磁石に流れる励磁電流Ipを用いることにより、磁
気軸受装置の設置方向を判定し、これによって、制御定
数の切換を行うものである。
Next, a third embodiment of the present invention will be described. In the second embodiment, the installation direction of the magnetic bearing device is determined by using the exciting current Ip flowing through the electromagnet in the thrust direction, and the control constant is switched accordingly, whereas the third embodiment is executed. In the above form, the installation direction of the magnetic bearing device is determined by using the exciting current Ip flowing through the electromagnet in the radial direction, and the control constant is switched accordingly.

【0036】図6は、回転軸を対向配置したラジアル方
向の電磁石に対して、45°の方向に傾けた場合を示し
ており、この場合について前記式(2)〜(6)と同様
の関係式を求めて、f側のラジアル方向の電磁石に流れ
る励磁電流Ipを求めると以下の式で表すことができ
る。 Ip=(lMr・D2 ・m・g・sinθ) /{2・√2・k・I・(lMf+lMr)}+I/2 …(8) 式(8)は、f側のラジアル方向の電磁石に流れる励磁
電流Ipが磁気軸受装置の設置方向θに応じて変化する
ことを示しており、前記式(7)と同様に、この励磁電
流の大きさに応じて制御定数の切換えを行うことができ
ることを示している。したがって、本発明の実施の第3
の形態では、図3において、ウインドコンパレータ32
に入力する信号として、電磁石Mに代えてf側あるいは
r側の電磁石Mxあるいは電磁石Myを用て第2の形態
と同様にして制御定数の切換えを行うよう構成すること
ができる。なお、回転軸の傾斜方向が45°以外の場合
には、式(8)中の√2の値が変化する。
FIG. 6 shows a case in which the rotary shafts are tilted in the direction of 45 ° with respect to the radial electromagnets arranged opposite to each other, and in this case, the same relations as in the equations (2) to (6) are given. When the equation is obtained and the exciting current Ip flowing through the electromagnet in the radial direction on the f side is obtained, it can be expressed by the following equation. Ip = (l Mr · D 2 · m · g · sin θ) / {2 · √2 · k · I · (l Mf + l Mr )} + I / 2 (8) Formula (8) is a radial on the f side. It is shown that the exciting current Ip flowing through the electromagnet in the direction changes depending on the installation direction θ of the magnetic bearing device, and the control constant is switched according to the magnitude of the exciting current, as in the above equation (7). Shows what can be done. Therefore, the third embodiment of the present invention
In the form of FIG.
As a signal to be input to the control unit, it is possible to use the f-side or r-side electromagnet Mx or the electromagnet My instead of the electromagnet M to switch the control constant in the same manner as in the second embodiment. When the tilt direction of the rotation axis is other than 45 °, the value of √2 in the equation (8) changes.

【0037】次に、本発明の実施の第4の形態について
説明する。実施の第1〜3の形態では、制御定数の個数
が2つの場合について示しているが、制御定数の個数は
2以上の複数とすることができ、例えば図8に示すよう
に、角度区間を36°毎に区分して制御定数A〜制御定
数Cの3つの制御定数を設定することができる。さら
に、角度区間を細かく区分してより多くの制御定数を設
定することも可能である。
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, the number of control constants is two, but the number of control constants may be two or more. For example, as shown in FIG. It is possible to set three control constants of control constant A to control constant C by dividing every 36 °. Furthermore, it is also possible to divide the angle section into smaller pieces and set more control constants.

【0038】また、本発明の実施の第5の形態として、
補償回路中の制御定数および切換スイッチをソフトウェ
アにより構成することも可能であり、例えば制御定数を
メモリ内に格納しておき、スイッチ切換信号に基づいて
対応する制御定数を読み出し出力する構成とすることも
できる。
As a fifth embodiment of the present invention,
It is also possible to configure the control constants and changeover switches in the compensation circuit by software. For example, the control constants may be stored in a memory and the corresponding control constants may be read out and output based on the switch changeover signal. You can also

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
磁気軸受装置の設置方向に対応した浮上制御を行うこと
ができる磁気軸受装置を提供することができる。また、
この磁気軸受装置をポンプ等に用いることよって最適な
浮上制御を確保することができ、突発的な外部振動に対
しても安定性を向上させることができ、信頼性の高い運
転が可能となる。また、浮上平衡状態における励磁電流
によって、ポンプの設置補償回路を自動的に判定して切
換動作を行うため、ポンプの設置方向を頻繁に変更する
場合には、制御定数の変更の煩わしさを減少させること
ができる。
As described above, according to the present invention,
It is possible to provide a magnetic bearing device capable of performing levitation control corresponding to the installation direction of the magnetic bearing device. Also,
By using this magnetic bearing device for a pump or the like, optimum levitation control can be ensured, stability can be improved even against sudden external vibration, and highly reliable operation becomes possible. In addition, the excitation compensation current in the levitation equilibrium state automatically determines the pump installation compensation circuit to perform the switching operation, reducing the hassle of changing control constants when the pump installation direction is changed frequently. Can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1の形態を説明するための制
御系のブロック図である。
FIG. 1 is a block diagram of a control system for explaining a first embodiment of the present invention.

【図2】5自由度制御形磁気軸受の概略構造図である。FIG. 2 is a schematic structural diagram of a 5-DOF control type magnetic bearing.

【図3】本発明の実施の第2の形態を説明するための制
御系のブロック図である。
FIG. 3 is a block diagram of a control system for explaining a second embodiment of the present invention.

【図4】回転軸と電磁石の関係を説明するための概略図
である。
FIG. 4 is a schematic diagram for explaining a relationship between a rotating shaft and an electromagnet.

【図5】スラスト方向の電磁石に流れる励磁電流を説明
するための図である。
FIG. 5 is a diagram for explaining an exciting current flowing through an electromagnet in a thrust direction.

【図6】ラジアル方向の電磁石に流れる励磁電流を説明
するための図である。
FIG. 6 is a diagram for explaining an exciting current flowing in a radial electromagnet.

【図7】磁気軸受装置の設置方向と励磁電流相当値との
関係を説明する図である。
FIG. 7 is a diagram illustrating a relationship between an installation direction of a magnetic bearing device and an exciting current equivalent value.

【図8】磁気軸受装置の設置方向と励磁電流相当値との
関係を説明する図である。
FIG. 8 is a diagram illustrating a relationship between an installation direction of a magnetic bearing device and an exciting current equivalent value.

【図9】従来の磁気軸受における拡大最適レギュレータ
系の制御系を説明するブロック図である。
FIG. 9 is a block diagram illustrating a control system of an enlarged optimum regulator system in a conventional magnetic bearing.

【図10】磁気軸受装置をターボ分子ポンプの真空チャ
ンバに設置する設置位置の例を示す図である。
FIG. 10 is a diagram showing an example of installation positions where a magnetic bearing device is installed in a vacuum chamber of a turbo molecular pump.

【図11】磁気軸受装置の設置方向によるスラスト軸受
とラジアル軸受の受ける力成分を説明する図である。
FIG. 11 is a diagram illustrating force components received by the thrust bearing and the radial bearing depending on the installation direction of the magnetic bearing device.

【符号の説明】[Explanation of symbols]

1…制御系、2,S…変位センサ、3…補償回路、4…
反転器、5…加算器、6…励磁アンプ、7…電磁石、3
1…切換スイッチ、32…ウインドコンパレータ、R…
回転軸、M…電磁石、m…モータ、PID…PID制御
部。
1 ... Control system, 2, S ... Displacement sensor, 3 ... Compensation circuit, 4 ...
Inverter, 5 ... Adder, 6 ... Excitation amplifier, 7 ... Electromagnet, 3
1 ... Changeover switch, 32 ... Window comparator, R ...
Rotating shaft, M ... Electromagnet, m ... Motor, PID ... PID control unit.

【手続補正書】[Procedure amendment]

【提出日】平成7年8月21日[Submission date] August 21, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】なお、実施の第2の形態による制御定数の
自動設定は、通常、ポンプ用の制御電源を立ち上げる毎
や、磁気軸受装置の設置変更時等に行い、ロータの回転
駆動中には行わない。これによって、振動等の外乱によ
る制御定数の切換を防止することができる。
The automatic setting of the control constant according to the second embodiment is usually performed every time the control power supply for the pump is started up, or when the installation of the magnetic bearing device is changed, and the rotation of the rotor is performed. Do not do it while driving. As a result, switching of the control constant due to disturbance such as vibration can be prevented.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転軸を支持する磁気軸受部と回転軸を
回転加減速する駆動部とを備えた磁気軸受装置におい
て、前記回転軸の変位変動量に基づいて回転軸を所定位
置に保持するよう磁気軸受部を制御する補償回路を備
え、該補償回路は回転軸の設置方向に応じて補償回路内
の制御定数を切換えることを特徴とする磁気軸受装置。
1. A magnetic bearing device comprising a magnetic bearing portion for supporting a rotary shaft and a drive portion for rotationally accelerating and decelerating the rotary shaft, wherein the rotary shaft is held at a predetermined position based on a displacement variation amount of the rotary shaft. The magnetic bearing device is characterized in that the compensating circuit for controlling the magnetic bearing portion is provided, and the compensating circuit switches the control constant in the compensating circuit according to the installation direction of the rotating shaft.
JP18708495A 1995-07-24 1995-07-24 Magnetic bearing device Expired - Fee Related JP3651703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18708495A JP3651703B2 (en) 1995-07-24 1995-07-24 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18708495A JP3651703B2 (en) 1995-07-24 1995-07-24 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH0942290A true JPH0942290A (en) 1997-02-10
JP3651703B2 JP3651703B2 (en) 2005-05-25

Family

ID=16199848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18708495A Expired - Fee Related JP3651703B2 (en) 1995-07-24 1995-07-24 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP3651703B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106561A (en) * 2000-09-28 2002-04-10 Seiko Instruments Inc Controller for magnetic levitation body
US7737590B2 (en) 2006-08-30 2010-06-15 Ebara Corporation Magnetic bearing device, rotating mechanism, and model identification method of rotating machinery main unit
JP2012503134A (en) * 2008-09-22 2012-02-02 ソシエテ・ドゥ・メカニーク・マグネティーク Turbomolecular pump with flexible mounting
GB2507501A (en) * 2012-10-30 2014-05-07 Edwards Ltd Turbomolecular pump with orientation sensor
WO2015079802A1 (en) 2013-11-29 2015-06-04 エドワーズ株式会社 Magnetic bearing device and vacuum pump
US9822788B2 (en) 2012-10-30 2017-11-21 Edwards Limited Vacuum pump with back-up bearing contact sensor
CN111927797A (en) * 2020-09-27 2020-11-13 天津飞旋科技有限公司 Automatic adjustment method, device and system for magnetic suspension composite molecular pump

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106561A (en) * 2000-09-28 2002-04-10 Seiko Instruments Inc Controller for magnetic levitation body
US7737590B2 (en) 2006-08-30 2010-06-15 Ebara Corporation Magnetic bearing device, rotating mechanism, and model identification method of rotating machinery main unit
JP2012503134A (en) * 2008-09-22 2012-02-02 ソシエテ・ドゥ・メカニーク・マグネティーク Turbomolecular pump with flexible mounting
GB2507501A (en) * 2012-10-30 2014-05-07 Edwards Ltd Turbomolecular pump with orientation sensor
GB2507501B (en) * 2012-10-30 2015-07-15 Edwards Ltd Vacuum pump
US9822788B2 (en) 2012-10-30 2017-11-21 Edwards Limited Vacuum pump with back-up bearing contact sensor
US10024328B2 (en) 2012-10-30 2018-07-17 Edwards Limited Vacuum pump
WO2015079802A1 (en) 2013-11-29 2015-06-04 エドワーズ株式会社 Magnetic bearing device and vacuum pump
JP2015105680A (en) * 2013-11-29 2015-06-08 エドワーズ株式会社 Magnetic bearing device and vacuum pump
KR20160092995A (en) 2013-11-29 2016-08-05 에드워즈 가부시키가이샤 Magnetic bearing device and vacuum pump
US10359046B2 (en) 2013-11-29 2019-07-23 Edwards Japan Limited Magnetic bearing device and vacuum pump
CN111927797A (en) * 2020-09-27 2020-11-13 天津飞旋科技有限公司 Automatic adjustment method, device and system for magnetic suspension composite molecular pump

Also Published As

Publication number Publication date
JP3651703B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JPH0510326A (en) Control device for magnetic bearing
JPH0371568B2 (en)
EP0281632B1 (en) Electromagnetic bearing controller
JPS645161B2 (en)
JPH0942290A (en) Magnetic bearing device
US6789437B2 (en) Apparatus for precision slewing of flatform-mounted devices
EP1166041B1 (en) Reactionless rotary drive mechanism
JPH05149339A (en) Magnetic bearing device
JPH1037958A (en) Magnetic bearing device
JP3735736B2 (en) Magnetic bearing control device
JP2004003572A (en) Magnetic bearing and bearing device provided with it
Xin et al. Analysis, modeling and compensation of dynamic imbalance error for a magnetically suspended sensitive gyroscope
JP2001352114A (en) Magnetic bearing device for excimer laser device
JPH05141423A (en) Magnetic bearing device attached to movable object
JP2001027238A (en) Magnetic bearing device
JP2021134886A (en) Magnetic bearing device and vacuum pump
JPH09166138A (en) Magnetic bearing device
JPH1019042A (en) Magnetic bearing device
JPH08320020A (en) Magnetic bearing device
JPS61147218A (en) Optical deflector using hydrostatic air bearing
JP2001263352A (en) Magnetic bearing device
JPH10103288A (en) Turbo-molecular pump
JP2009063005A (en) Magnetic bearing device
Maruyama et al. Proposal of a new configuration for magnetically suspended gyro
JPH03255240A (en) Active bearing rotor support control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees