[go: up one dir, main page]

JPH0941102A - Sintered head alloy - Google Patents

Sintered head alloy

Info

Publication number
JPH0941102A
JPH0941102A JP19943895A JP19943895A JPH0941102A JP H0941102 A JPH0941102 A JP H0941102A JP 19943895 A JP19943895 A JP 19943895A JP 19943895 A JP19943895 A JP 19943895A JP H0941102 A JPH0941102 A JP H0941102A
Authority
JP
Japan
Prior art keywords
double
carbide
carbides
carbonitride
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP19943895A
Other languages
Japanese (ja)
Inventor
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19943895A priority Critical patent/JPH0941102A/en
Publication of JPH0941102A publication Critical patent/JPH0941102A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a sintered head alloy excellent in strength and toughness, used as material for jigs tools, such as cutting tool. SOLUTION: This sintered hard alloy is produced by mixing 1-10wt.%, based on the total weight, of the grains of one or >=2 kinds selected from carbides, nitrides, and carbonitrides with a matrix powder having a composition consisting of, by weight, 1.0-4.5% C, <=2.0% Si, <=2.0% Mn, 3-10% Cr, <=30% W and/or <=20% Mo in the range satisfying W+2Mo<=45%, 2-10% of V and/or Nb, <=20% Co, and the balance Fe with inevitable impurities and binding the resultant mixture by sintering. Further, in this sintered hard alloy, the carbides, carbides, nitrides, and carbonitrides are constituted from plural metallic elements among the group IVa, Va, and VIa elements and are preferably W-containing double carbides, double nitrides, and double carbonitrides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はドリル、エンドミ
ル、ドリルチップ、タップ等の切削工具用の素材、金属
塑性加工用の型、工具および治具、樹脂成形用の型や工
具、各種の刃物、および工業用の耐摩耗部品等として用
いられる焼結超硬質合金に関するものである。
TECHNICAL FIELD The present invention relates to a material for a cutting tool such as a drill, an end mill, a drill tip, and a tap, a mold for metal plastic working, a tool and a jig, a mold and a tool for resin molding, various blades, The present invention also relates to a sintered cemented carbide used as an industrial wear resistant part and the like.

【0002】[0002]

【従来の技術】高速度工具鋼の切削工具としての寿命向
上の方法として、まず第一に考えられるのが、硬さの向
上である。実際に特公昭55−6096号、特公昭57
−2142号、特開昭57−181367号、特開昭5
8−181848号などにはHRC71以上の硬さが得
られる高硬度焼結合金が開示されている。これらの合金
はM6C炭化物を形成するWやMoまたはMC炭化物を
形成するV等の合金元素を多量に含んでいるか、あるい
はさらにTiN等の硬質物質を多量に含有するものであ
り、実用に当たって高価格化、靭性の低下、被研削性の
低下などが大きな問題となる。そこで、これらの不具合
を解決するものとしては、特公平5−75821号、特
公平5−75822号が知られている。
2. Description of the Related Art As a method of improving the service life of a high speed tool steel as a cutting tool, the first consideration is to improve the hardness. Actually, Japanese Patent Publication Nos. 55-6096 and 57
-2142, JP-A-57-181367, JP-A-5-5
No. 8-181848 discloses a high-hardness sintered alloy capable of obtaining a hardness of HRC71 or higher. These alloys contain a large amount of alloying elements such as W and Mo that form M 6 C carbides, and V that form MC carbides, or further contain a large amount of hard substances such as TiN. Higher costs, lower toughness, and lower grindability are major problems. Therefore, Japanese Patent Publication No. 5-75821 and Japanese Patent Publication No. 5-75822 are known to solve these problems.

【0003】これらは、いずれもCeq=0.06Cr
+0.033W+0.063Mo+0.2Vとすると
き、0≦C−Ceq≦0.6とCeqに比べ、高炭素と
すること、および比較的に少量(2〜12%)の硬質粒子
を分散させることにより熱処理後の硬さをHRC72以
上と著しく高硬度としたものである。また本発明者らに
よる特開平2−125848号に開示された合金はTi
N粒子や炭化物の平均粒径が5μm以下であり、かつ平
均粒子間隙が5μm以下の微細組織を有する硬質合金で
あり、特に機械的特性、被研削性などに優れる合金であ
る。さらに特公平5−55587号公報には、10%超〜2
5%の分散相が、Ti,Zr,Hf,Ta,Nb,Vおよ
びWのうちの2種または3種以上の金属の複合金属炭窒
化物からなる分散強化型焼結合金製熱間加工工具部材が
開示されている。
These are all Ceq = 0.06Cr
When + 0.033W + 0.063Mo + 0.2V, by setting higher carbon than 0 ≦ C−Ceq ≦ 0.6 and Ceq, and by dispersing a relatively small amount (2 to 12%) of hard particles. The hardness after heat treatment is HRC 72 or more, which is extremely high hardness. The alloy disclosed in Japanese Patent Laid-Open No. 2-125848 by the present inventors is Ti
It is a hard alloy having a fine structure in which N particles and carbides have an average particle size of 5 μm or less and an average particle gap of 5 μm or less, and are particularly alloys excellent in mechanical properties and grindability. Furthermore, in Japanese Examined Patent Publication No. 5-55587, more than 10% to 2
Dispersion strengthened sintered alloy hot working tool with 5% dispersed phase consisting of composite metal carbonitride of two or more metals selected from Ti, Zr, Hf, Ta, Nb, V and W A member is disclosed.

【0004】[0004]

【発明が解決しようとする課題】上述したこれらの焼結
超硬質合金は高速度工具鋼と超硬合金の中間的な特性を
有し、高速度工具鋼に比べ耐摩耗性が優れ、超硬合金に
比べ高靭性であることを特徴とし、超硬合金では欠けの
発生のために使用できず、また高速度工具鋼では摩耗に
より短寿命となるような分野へ適用される。しかし、上
記の従来の焼結硬質合金においては、いずれも強度が十
分でなく、超硬合金と同様欠けにより寿命に至る場合が
あり、このためさらに強度や靭性を高めることができれ
ばその使用分野は大きく広がると言われているのが現状
である。さらに上述した特公平5−55587号に開示
された焼結合金は、分散相が多量に添加されており、焼
結性が低下するので、焼結温度を高くする(具体的には
1250℃以上とする)必要がある。したがってコスト
的に不利である。
These sintered cemented carbides described above have intermediate properties between high speed tool steels and cemented carbides, and are superior in wear resistance to high speed tool steels. It is characterized by higher toughness than alloys, and is applicable to fields where cemented carbide cannot be used due to chipping, and high-speed tool steels have a short life due to wear. However, in the above-mentioned conventional sintered hard alloy, the strength is not sufficient in some cases, and like the cemented carbide, it may reach the end of its life, so if the strength and toughness can be further increased, its field of use is It is said that it will spread greatly. Further, in the above-mentioned sintered alloy disclosed in Japanese Patent Publication No. 55857/1993, a large amount of dispersed phase is added and the sinterability is lowered, so the sintering temperature is raised (specifically 1250 ° C or higher). It is necessary. Therefore, there is a cost disadvantage.

【0005】本発明者は、従来の上記の欠点を解消し、
通常の焼結温度を適用して強度、靭性を大幅に高めるた
めの種々の検討を行った。そして、分散粒子としての硬
質物質である炭化物、窒化物、炭窒化物を従来のように
単独の金属元素から構成させるのではなく、複数の金属
元素により構成される複炭化物、複窒化物および複炭窒
化物とすることにより強度、靭性の特性が大幅に向上で
きることを見出し本発明に至ったものである。本発明の
目的は、強度、靭性を大幅に高めることにより、使用分
野も拡げ得る焼結超硬質合金を提供することである。
The present inventor has solved the above-mentioned conventional drawbacks,
Various examinations were carried out to increase the strength and toughness by applying ordinary sintering temperature. Then, as the hard particles as dispersed particles, carbides, nitrides, and carbonitrides are not composed of a single metal element as in the conventional case, but are composed of a plurality of metal elements such as a double carbide, a double nitride, and a double nitride. The inventors of the present invention have found that the properties of strength and toughness can be significantly improved by using carbonitrides, and have accomplished the present invention. An object of the present invention is to provide a sintered cemented carbide which can be used in a wide range of fields by significantly increasing strength and toughness.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は重量%
でC 1.0〜4.5%、Si 2.0%以下、Mn 2.0%以下、Cr3
〜10%、WとMoはW 30%以下、Mo 20%以下の1種また
は2種をW+2Moで45%以下、VとNbの1種または2種
を2〜10%、Co 20%以下を含み、残部Feおよび不可避的
不純物からなる組成を有する基地粉末に、全重量に対し
て1〜10%炭化物、窒化物および炭窒化物から選ばれる
1種または2種以上の粒子とを混合し焼結により結合し
た焼結超硬質合金において、炭化物、窒化物および炭窒
化物がIVa族、Va族、VIa族元素のうちの複数の金属
元素により構成される複炭化物、複窒化物および複炭窒
化物であることを特徴とする強度、靭性にすぐれた焼結
超硬質合金である。
[Means for Solving the Problems] That is,
C 1.0-4.5%, Si 2.0% or less, Mn 2.0% or less, Cr3
~ 10%, W and Mo are W30% or less, Mo 20% or less 1 or 2 types with W + 2Mo 45% or less, V and Nb 1 or 2 types 2-10%, Co 20% or less. Base powder having a composition containing the balance Fe and unavoidable impurities is mixed with 1 to 10% of the total weight of one or more particles selected from carbides, nitrides and carbonitrides, and baked. In a cemented sintered cemented carbide, a carbide, a nitride, and a carbonitride are a double carbide, a double nitride, and a double carbonitride in which a carbide, a nitride, and a carbonitride are composed of a plurality of metal elements of the IVa group, the Va group, and the VIa group. It is a sintered cemented carbide with excellent strength and toughness.

【0007】ここで本発明においては基地粉末に混合さ
れる炭化物、窒化物および炭窒化物を、従来のような単
独の金属元素と炭素や窒素との化合物から構成させるも
のではなく、複数の金属元素により構成される複炭化
物、複窒化物および複炭窒化物とすることを特徴とする
が、それによる利点は以下に説明するとおりである。 (1)それぞれの炭化物、窒化物、炭窒化物の特徴を生
かしながら、欠点を解消することが可能となる。例えば
Ti(C,N)というTiの炭窒化物にWを加え(T
i,W)(C,N)とすることにより、Wのもつ高靭性
という特徴が加味され、分散粒子として添加した硬質合
金の靭性と強度の向上をはかることが可能となる。
In the present invention, the carbides, nitrides and carbonitrides to be mixed with the matrix powder are not composed of a conventional compound of a single metal element and carbon or nitrogen, but a plurality of metals. It is characterized in that it is a double carbide, a double nitride, and a double carbonitride composed of elements, and the advantages thereof are as described below. (1) It is possible to eliminate the defects while making the best use of the characteristics of each carbide, nitride, and carbonitride. For example, W is added to Ti carbonitride called Ti (C, N) (T
i, W) (C, N) takes into account the high toughness characteristic of W, and it becomes possible to improve the toughness and strength of the hard alloy added as dispersed particles.

【0008】(2)単独では組織上の化合物として不安
定で適用できないものも、他の金属元素を複合化するこ
とにより安定になり適用可能となる。例えば、WN、M
oNなどの窒化物の場合、標準生成自由エネルギ−が正
であり、通常は安定に存在し得ないが、Ti、Taなど
と複合の固溶体を形成させることにより安定な化合物と
なり適用が可能となる。
(2) A compound which is unstable and cannot be applied by itself as a compound on the structure becomes stable and applicable by compounding with another metal element. For example, WN, M
In the case of a nitride such as oN, the standard free energy of formation is positive and normally cannot exist stably. However, it can be applied as a stable compound by forming a complex solid solution with Ti, Ta and the like. .

【0009】(3)単独では反応や固溶をしやすいので
分散粒子として合金中に残すことができないものも、固
溶体の複合炭化物等とすることにより反応や固溶を防止
でき、分散粒子として存在させることが可能になる。例
えば、WCを添加した場合にはマトリックスなどと反応
してWCがM6C型炭化物に変化してしまい、単独粒子
として残らないが、(W,Ti)Cとすることにより安
定化させて分散粒子とすることができる。
(3) Those which cannot be left in the alloy as dispersed particles because they are easy to react or form a solid solution by themselves and can be prevented from reacting or forming a solid solution by forming a composite carbide of a solid solution and exist as dispersed particles. It is possible to let For example, when WC is added, it reacts with a matrix or the like to change the WC into M 6 C type carbide and does not remain as a single particle, but it is stabilized and dispersed by using (W, Ti) C. It can be a particle.

【0010】(4)組織制御が可能となる。 金属元素の種類によりマトリックスとの反応性が異なる
ことを利用して、金属元素の種類、比率を変化させるこ
とにより、分散粒子の形状のコントロ−ルが可能とな
る。 (5)C、Nの量ともあわせ複合の金属の種類と割合
で、極めて多数の組み合せが可能となり、特性の組み合
せも大きく広がり、目的に応じて自由に特性を選択する
ことが可能となる。
(4) Organization control becomes possible. By utilizing the fact that the reactivity with the matrix differs depending on the type of metal element, the shape of dispersed particles can be controlled by changing the type and ratio of the metal element. (5) An extremely large number of combinations are possible depending on the types and proportions of the composite metal in combination with the amounts of C and N, and the combination of characteristics is greatly expanded, and the characteristics can be freely selected according to the purpose.

【0011】上述したように炭化物、窒化物および炭窒
化物を構成する金属が、従来のように単独の金属元素に
より構成されるものではなく、複数の金属元素により構
成される複炭化物、複窒化物および複炭窒化物とするこ
とにより、種々の特性を有する硬質合金を得ることがで
きるが、ここでとくに上述した硬質物質である分散粒子
がWを含むものである場合には、複炭化物(例えば(T
i,W)(CN))の一部を占めるWCのもつ高い靭性と
弾性率を生かすことが可能となり、特に優れた特性を有
する硬質合金とすることができる。なお、これらのほか
に従来から使用されている単一元素からなる炭化物、窒
化物および炭窒化物も併せて添加することは、何ら制約
されるべきものではない。これらの化合物も複化合物の
形成するポテンシャルを有するからである。炭窒化物、
窒化物、複窒化物、複炭窒化物の形成の仕方として、例
えば基地粉末のアトマイズ前に溶鋼に加圧窒素ガスを接
触させるなどの手段で、窒素の一部または全部を基地粉
末中に予め固溶させておき、焼結時に添加した炭化物や
炭窒化物あるいは複炭化物などと反応させて形成させる
手段も有効である。この場合は、基地粉末の化学組成は
前述の各元素の範囲に窒素(N)が重量%で0.02〜0.5%
程度含有しているものとなる。望ましい範囲としては0.
1〜0.25%である。
As described above, the metal forming the carbide, the nitride and the carbonitride is not composed of a single metal element as in the prior art, but a double carbide or a composite nitride composed of a plurality of metal elements. A hard alloy having various properties can be obtained by using the compound and the double carbonitride. However, in the case where the dispersed particles which are the above-mentioned hard substance include W, the double carbide (for example, (( T
The high toughness and elastic modulus of WC which occupies a part of (i, W) (CN)) can be utilized, and a hard alloy having particularly excellent properties can be obtained. In addition to these, addition of a conventionally used single element carbide, nitride, or carbonitride together should not be restricted. This is because these compounds also have the potential of forming a compound compound. Carbonitride,
As a method of forming a nitride, a double nitride, and a double carbonitride, for example, by contacting pressurized nitrogen gas with molten steel before atomizing the base powder, a part or all of nitrogen is preliminarily contained in the base powder. Means for forming a solid solution and reacting it with a carbide, a carbonitride, or a double carbide added during sintering is also effective. In this case, the chemical composition of the base powder is 0.02 to 0.5% by weight of nitrogen (N) within the range of each element described above.
It will be included to some extent. The preferred range is 0.
It is 1 to 0.25%.

【0012】[0012]

【発明の実施の形態】複炭化物、複窒化物、複炭窒化物
粒子の分散は本発明において、最も重要な構成要件のう
ちの一つである。本発明においては、これらを添加する
ことにより、HRC71以上の高い硬さが得られるとと
もに、高強度、高靭性を併せ持つ材料とすることができ
るからである。ここで、複炭化物、複窒化物および複炭
窒化物の添加量が1%未満ではこの効果が十分でなく、逆
に10%を越えると、焼結性が低下するので、これらを1
種または2種以上を合計で1〜10%とする必要がある。
先に述べた特公平5-55587号の焼結体では硬質粒子の添
加量を10%を越えて添加しているので焼結温度を1250〜1
280℃と高温にしないと焼結性が保証されない。また、
添加量が多いと強度が低下してくるので10%が限度であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Dispersion of double carbide, double nitride and double carbonitride particles is one of the most important constituent requirements in the present invention. This is because, in the present invention, by adding these, it is possible to obtain a material having a high hardness of HRC71 or higher and having both high strength and high toughness. Here, if the addition amount of the double carbide, the double nitride and the double carbonitride is less than 1%, this effect is not sufficient, and if it exceeds 10%, the sinterability is deteriorated.
It is necessary to make the total of 1 type or 2 or more types 1 to 10%.
In the above-mentioned sintered body of Japanese Patent Publication No. 5-55587, the addition amount of hard particles exceeds 10%, so the sintering temperature is 1250 to 1
Sinterability is not guaranteed unless the temperature is high at 280 ℃. Also,
If the added amount is large, the strength will decrease, so the limit is 10%.

【0013】以下に、先に述べたN以外の本発明におけ
る各元素の作用および数値の限定理由について述べる。
Cは同時に添加するW,Mo,Vなどと結合して硬い炭化
物を形成し、耐摩耗性を高める効果がある。また、一部
は基地に固溶して基地の硬さを高くし、耐摩耗性を向上
させる効果もある。したがって、W,Mo,Vなどの炭化
物形成元素の添加量との兼ね合いで最適のC含有量があ
る。本発明の成分範囲ではCが1.0%未満では基地の硬さ
が十分に得られず、形成される炭化物量も少ない。逆に
4.5%を越えると靭性が劣化するので、Cは1.0〜4.5%で
あることが必要である。
The action of each element in the present invention other than N described above and the reasons for limiting numerical values will be described below.
C combines with W, Mo, V, etc. added at the same time to form a hard carbide, and has the effect of enhancing wear resistance. In addition, some of them have a solid solution in the matrix to increase the hardness of the matrix and also have the effect of improving wear resistance. Therefore, there is an optimum C content in consideration of the addition amounts of carbide forming elements such as W, Mo, and V. In the composition range of the present invention, when C is less than 1.0%, the hardness of the matrix is not sufficiently obtained, and the amount of carbide formed is small. vice versa
If it exceeds 4.5%, the toughness deteriorates, so C must be 1.0 to 4.5%.

【0014】Siは脱酸元素として鋼質を改良する効果
がある。また、基地に固溶して基地の硬さを高める効果
もある。しかし、2.0%を越えると靭性が低下するのでS
iは2.0%以下であることが必要である。Mnも脱酸効果
があり、さらに焼入れ性を高める作用があるので、2.0%
以下含有させる。特に上記のSiの含有量が高い場合に
は、フェライトを安定し、A1変態点を上昇させるSi
の弊害をMnにより緩和できるのでMnを2.0%以下、望
ましい範囲では0.25〜2.0%含有させるとよい。
Si has the effect of improving the steel quality as a deoxidizing element. Further, there is also an effect of increasing the hardness of the base by forming a solid solution in the base. However, if it exceeds 2.0%, the toughness decreases, so S
i must be 2.0% or less. Mn also has a deoxidizing effect and further has an effect of enhancing hardenability, so 2.0%
It is contained below. Especially when the above Si content is high, Si that stabilizes ferrite and raises the A 1 transformation point
Since the adverse effect of Mn can be mitigated by Mn, it is preferable to contain Mn in an amount of 2.0% or less, preferably 0.25 to 2.0%.

【0015】Crは炭化物を形成して耐摩耗性を高める
効果があり、さらに基質に固溶して焼入れ性を付与し、
基地の耐食性も向上させる。Crが3%未満では、上記の
効果が少なく、逆に10%を越えると熱処理によって硬さ
が得られにくくなるなどの理由でCrは3〜10%であるこ
とが必要である。WおよびMoは、Cと結合して、M6
型の炭化物を形成し、耐摩耗性、耐焼付き性を高めるた
めに重要である。また、W、Moの一部は焼入れ時基地
に固溶した後、焼もどしにより析出硬化し、基地の硬さ
を高める効果もある。W 30%以下、Mo 20%以下の1種
または2種がW+2Mo量で、45%を越えると靭性が著し
く低下するため、W+2Mo量は45%以下である必要が有
る。好ましくはW+2Mo量で18〜40%、さらに好ましく
は25〜40%である。
Cr has the effect of forming carbides to enhance wear resistance, and further forms a solid solution with the substrate to impart hardenability,
It also improves the corrosion resistance of the base. If Cr is less than 3%, the above effect is small, and if it exceeds 10%, it is difficult to obtain hardness by heat treatment. Therefore, it is necessary that Cr is 3 to 10%. W and Mo are combined with C to form M 6 C
It is important for forming carbides in the mold and improving wear resistance and seizure resistance. Further, some of W and Mo are solid-solved in the matrix during quenching, and then are precipitation hardened by tempering, which also has the effect of increasing the hardness of the matrix. One or two of W 30% or less and Mo 20% or less has a W + 2Mo content, and if it exceeds 45%, the toughness is remarkably reduced, so the W + 2Mo content needs to be 45% or less. The amount of W + 2Mo is preferably 18 to 40%, more preferably 25 to 40%.

【0016】Coは基地に固溶して基地の硬さを高める
効果がある。しかし、Coが20%を越えると靭性が低下す
るのでCoは20%以下とした。VおよびNbは、Cと結合
してMC型の炭化物を形成する。この炭化物を微細かつ
均質に分散させると、耐摩耗性、耐焼付き性を大幅に向
上させることができる。VとNbの添加量について種々
検討の結果、これを2〜10%とし、さらに後述するように
分散粒子としての複炭化物、複窒化物、複炭窒化物の量
を1〜10%とした場合に良好な特性が得られることが判明
した。ここで基地中のV、Nbの含有量が2%未満ではそ
の効果が十分でなく、10%を超えると靭性が低下するた
め2〜10%とする必要がある。本発明においては、V、N
bの1種または2種を基地粉末中にあらかじめ含有させ
ておく方法の他に、VC、NbCなどの炭化物を、分散
粒子として炭化物、窒化物、炭窒化物の1種または2種
以上と同時に添加して、両者を合計して2〜10%となるよ
うな添加方法を採用することもできる。
Co has the effect of forming a solid solution in the matrix to increase the hardness of the matrix. However, if Co exceeds 20%, the toughness decreases, so Co was set to 20% or less. V and Nb combine with C to form MC type carbides. If this carbide is finely and uniformly dispersed, the wear resistance and seizure resistance can be greatly improved. As a result of various studies on the addition amounts of V and Nb, when the amount was set to 2 to 10%, and the amount of double carbide, double nitride and double carbonitride as dispersed particles was set to 1 to 10% as described later. It has been found that excellent characteristics can be obtained. If the content of V and Nb in the matrix is less than 2%, the effect is not sufficient, and if it exceeds 10%, the toughness decreases, so the content must be 2-10%. In the present invention, V, N
In addition to the method of preliminarily containing one or two kinds of b in the matrix powder, carbides such as VC and NbC may be used as dispersed particles at the same time as one or more kinds of carbides, nitrides and carbonitrides. It is also possible to adopt an addition method in which both are added and the total amount becomes 2 to 10%.

【0017】[0017]

【実施例】以下本発明を実施例を用いてさらに詳細に説
明する。 (実施例1)C 3.03%,Si 0.41%,Mn 0.29%,Cr
4.22%,W 10.18%,Mo 7.90%,V 8.53%,Co 7.79
%,残部Feの鋼組成からなる水アトマイズ粉末を作製
し、アトライタ−にて粉砕した。この基地粉末に対し、
表1に示す種々の複炭化物、複窒化物、複炭窒化物およ
び炭化物、窒化物、炭窒化物を添加し、混合、造粒の
後、2tf/mm2の圧力にてプレス成形し成形体を得た。こ
の成形体を脱脂した後、1200〜1250℃にて真空焼結を行
って焼結体を作製した。焼結体を焼なまし後、1240℃に
て焼入れし、560℃×1時間、3回焼戻しを行った。
そして、この後硬さ(HRC)と抗折力、吸収エネルギ
−を測定した。吸収エネルギ−は抗折力測定時に試験片
に付加されるエネルギ−であり、靭性を表す値である。
表1に測定結果を示す。
EXAMPLES The present invention will now be described in more detail with reference to examples. (Example 1) C 3.03%, Si 0.41%, Mn 0.29%, Cr
4.22%, W 10.18%, Mo 7.90%, V 8.53%, Co 7.79
A water atomized powder having a steel composition of%, balance Fe was prepared and pulverized with an attritor. For this base powder,
Various types of double carbides, double nitrides, double carbonitrides and carbides, nitrides, carbonitrides shown in Table 1 were added, mixed and granulated, and then press-molded at a pressure of 2 tf / mm2 to obtain a molded body. Obtained. After degreasing this molded body, vacuum sintering was performed at 1200 to 1250 ° C to produce a sintered body. After the sintered body was annealed, it was quenched at 1240 ° C. and tempered three times at 560 ° C. for 1 hour.
Then, after that, hardness (HRC), transverse rupture strength, and absorbed energy were measured. The absorbed energy is the energy added to the test piece at the time of measuring the transverse rupture strength, and is a value representing the toughness.
Table 1 shows the measurement results.

【0018】[0018]

【表1】 [Table 1]

【0019】ここで表中の金属元素の比率およびC,N
の比率は全て重量比である。表1より、炭化物等が無添
加(No.1)や過少添加の場合(No.10)には硬さHRC70が得
られず、また炭化物等が単独元素の場合(No.8,No.9,
No.19)や、複炭化物等の添加量が多過ぎる場合(No.1
5,No.16)には、抗折力や吸収エネルギーが著しく低
い。一方、本発明に該当する、複炭化物、複窒化物およ
び複炭窒化物の一種または二種以上の適当量を用いた場
合には、硬さHRC71以上、抗折力200kgf/mm2以上、吸収
エネルギー200kgfmm以上を有する優れた特性を持つ焼結
品を得ることができることがわかる。
Here, the ratios of metal elements and C, N in the table
All ratios are weight ratios. From Table 1, hardness HRC70 cannot be obtained without addition of carbides (No. 1) or with too little addition (No. 10), and when carbides are single elements (No. 8, No. 9). ,
No. 19) or when the addition amount of double carbide is too large (No. 1)
5, No. 16) has extremely low transverse rupture strength and absorbed energy. On the other hand, applicable to the present invention, when using an appropriate amount of one or two or more of double carbide, double nitride and double carbonitride, hardness HRC71 or more, transverse rupture strength 200 kgf / mm 2 or more, absorption It can be seen that it is possible to obtain a sintered product having excellent properties with an energy of 200 kgfmm or more.

【0020】(実施例2)表2に示す11種類の鋼組成
からなる水アトマイズ粉末A〜Iを準備し、表3に示す
平均粒径1〜3μmの複炭化物等を同表に示す割合で混
合し、乾燥した後、1.5tf/mm2の圧力にてプレス成形
し、脱脂した後、1200〜1250℃真空焼結を行って焼結体
を作製した。焼結体を焼なまし後、1240℃にて焼入れ、
560℃×1時間、3回焼戻しを行った。この焼結品につ
いて硬さ(HRC)と抗折力、吸収エネルギ−を測定し
て、結果を表3に示すが、表3には表2に示す水アトマ
イズ粉末のうち、A,A′,B,B′を代表して表示し
てある。
(Example 2) Water atomized powders A to I consisting of 11 kinds of steel compositions shown in Table 2 were prepared, and double carbides having an average particle diameter of 1 to 3 µm shown in Table 3 were prepared at the ratios shown in the same table. After mixing, drying, press molding under a pressure of 1.5 tf / mm 2 , degreasing, and vacuum sintering at 1200 to 1250 ° C. to produce a sintered body. After annealing the sintered body, quench at 1240 ℃,
It was tempered 3 times at 560 ° C for 1 hour. The hardness (HRC), transverse rupture strength, and absorbed energy of this sintered product were measured, and the results are shown in Table 3. Table 3 shows that among the water atomized powders shown in Table 2, A, A ′, B and B'are displayed as a representative.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】表3より複炭化物等が、添加されていない
No.1,No.10と添加量が少ないNo.13では、HRC70の硬
さが得られておらず、添加量が多すぎるNo.17では、抗
折力と吸収エネルギーが著しく低いのに対し、本発明に
該当する複炭窒化物を適当量用いた場合には、硬さHRC7
1以上、抗折力200kgf/mm2以上、吸収エネルギー200kgf
mm以上の優れた特性を持つ焼結品を得ることができるこ
とがわかる。
From Table 3, in No. 1 and No. 10 in which the double carbide is not added and No. 13 in which the addition amount is small, the hardness of HRC70 is not obtained, and the addition amount is too large. In No. 17, the transverse rupture strength and the absorbed energy are remarkably low, while the hardness HRC7 when the appropriate amount of the double carbonitride corresponding to the present invention is used.
1 or more, transverse strength 200 kgf / mm 2 or more, absorbed energy 200 kgf
It can be seen that it is possible to obtain a sintered product having excellent characteristics of mm or more.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
硬質粒子を含む焼結超硬質合金において、分散粒子とし
て添加する硬質粒子である炭化物、窒化物および炭窒化
物がIVa族、Va族、VIa族元素のうちの複数の金属元
素により構成される複炭化物、複窒化物および複炭窒化
物とすることにより従来の単独元素の炭化物、窒化物お
よび炭窒化物を用いた場合に比べ、強度、靭性を大幅に
向上することができる。これにより本発明の焼結超硬質
合金は切削工具等としての耐欠損性を大幅に向上するこ
とができるうえ、その他各種の金型や治工具としての焼
結超硬質合金の用途拡大に非常に有効である。
As described above, according to the present invention,
In a sintered cemented carbide containing hard particles, carbides, nitrides and carbonitrides that are hard particles added as dispersed particles are composed of a plurality of metal elements of IVa group, Va group and VIa group elements. By using a carbide, a double nitride, or a double carbonitride, strength and toughness can be significantly improved as compared with the case of using a conventional single element carbide, nitride or carbonitride. As a result, the sintered cemented carbide of the present invention can greatly improve the fracture resistance as a cutting tool, etc., and is extremely useful for expanding the applications of the sintered cemented carbide as various molds and jigs. It is valid.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC 1.0〜4.5%、Si 2.0%以下、
Mn 2.0%以下、Cr3〜10%、W 30%以下、Mo 20%以下
の1種または2種をW+2Moで45%以下、VとNbの1種
または2種を2〜10%、Co 20%以下を含み、残部Feおよ
び不可避的不純物からなる組成を有する基地粉末に、該
基地粉末の全重量に対して1〜10%の炭化物、窒化物およ
び炭窒化物から選ばれる1種または2種以上の粒子とを
混合し焼結により結合した焼結超硬質合金において、前
記炭化物、窒化物および炭窒化物がIVa族、Va族、VI
a族元素のうちの複数の金属元素により構成される複炭
化物、複窒化物および複炭窒化物であることを特徴とす
る焼結超硬質合金。
1. C 1.0-4.5% by weight%, Si 2.0% or less,
Mn 2.0% or less, Cr 3 to 10%, W 30% or less, Mo 20% or less 1 type or 2 types with W + 2Mo, 45% or less, 1 or 2 types of V and Nb 2 to 10%, Co 20% A base powder having a composition comprising the balance Fe and unavoidable impurities, including the following, and one or more kinds selected from 1 to 10% of carbide, nitride and carbonitride based on the total weight of the base powder. In the cemented carbide, which is obtained by mixing the above particles with each other and combining them by sintering, the carbide, nitride and carbonitride are IVa group, Va group, VI group.
A sintered cemented carbide, which is a double carbide, double nitride, or double carbonitride composed of a plurality of metal elements of the group a elements.
【請求項2】 複炭化物、複窒化物および複炭窒化物の
いずれかの化合物がWを含むものであることを特徴とす
る請求項1に記載の焼結超硬質合金。
2. The sintered cemented carbide according to claim 1, wherein the compound of any of double carbide, double nitride and double carbonitride contains W.
JP19943895A 1995-08-04 1995-08-04 Sintered head alloy Abandoned JPH0941102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19943895A JPH0941102A (en) 1995-08-04 1995-08-04 Sintered head alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19943895A JPH0941102A (en) 1995-08-04 1995-08-04 Sintered head alloy

Publications (1)

Publication Number Publication Date
JPH0941102A true JPH0941102A (en) 1997-02-10

Family

ID=16407826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19943895A Abandoned JPH0941102A (en) 1995-08-04 1995-08-04 Sintered head alloy

Country Status (1)

Country Link
JP (1) JPH0941102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044956A1 (en) * 1999-01-29 2000-08-03 Crs Holdings, Inc. High-hardness powder metallurgy tool steel and article made therefrom
JP2001049381A (en) * 1999-08-10 2001-02-20 Kurimoto Ltd Wear resistant alloy cast iron material
WO2007021243A1 (en) * 2005-08-18 2007-02-22 Erasteel Kloster Aktiebolag Powder metallurgically manufactured steel, a tool comprising the steel and a method for manufacturing the tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044956A1 (en) * 1999-01-29 2000-08-03 Crs Holdings, Inc. High-hardness powder metallurgy tool steel and article made therefrom
US6482354B1 (en) 1999-01-29 2002-11-19 Crs Holdings, Inc. High-hardness powder metallurgy tool steel and article made therefrom
JP2001049381A (en) * 1999-08-10 2001-02-20 Kurimoto Ltd Wear resistant alloy cast iron material
WO2007021243A1 (en) * 2005-08-18 2007-02-22 Erasteel Kloster Aktiebolag Powder metallurgically manufactured steel, a tool comprising the steel and a method for manufacturing the tool

Similar Documents

Publication Publication Date Title
EP0875588B1 (en) Wear resistant, powder metallurgy cold work tool steel articles having high impact toughness and a method for producing the same
EP1024917B1 (en) A steel and a heat treated tool thereof manufactured by an integrated powder metallurgical process and use of the steel for tools
JP5045972B2 (en) High speed steel manufactured by powder metallurgy
EP1151146B1 (en) High-hardness powder metallurgy tool steel and article made therefrom
EP0377307B1 (en) Powdered high speed tool steel
JP2684736B2 (en) Powder cold work tool steel
JP3343747B2 (en) Powdered high speed steel
JPH0941102A (en) Sintered head alloy
JPH02182867A (en) Powdered tool steel
US20060048603A1 (en) Composite metal product and method for the manufacturing of such a product
US5599377A (en) Mixed iron powder for powder metallurgy
JPH09111422A (en) Sintered superhard alloy
JPH05171373A (en) Powder high speed tool steel
CN114318131B (en) Wear-resistant alloy
JPH08134583A (en) Production of sintered hard alloy excellent in machinability
CN101517110B (en) Metallurgical powder composition and method of production
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance
JPH0499157A (en) Sintered alloy steel excellent in wear resistance and toughness
JPH11172364A (en) Production of sintered tool steel
JPS62124259A (en) Super head high-speed tool steel
JPH0711377A (en) Production of sintered tool steel
JPH0835044A (en) Sintered hard alloy excellent in machinability
JP2021176987A (en) Sintered alloy composed of precipitation-hardening stainless steel and carbide
JPH0390543A (en) Manufacture of sintered alloy steel and alloy steel powder
KR20010004102A (en) high speed steel produced by powder metallurgy

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040324

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060817

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20061011