JPH093591A - Extra-thick high-tensile steel plate and method for manufacturing the same - Google Patents
Extra-thick high-tensile steel plate and method for manufacturing the sameInfo
- Publication number
- JPH093591A JPH093591A JP15567795A JP15567795A JPH093591A JP H093591 A JPH093591 A JP H093591A JP 15567795 A JP15567795 A JP 15567795A JP 15567795 A JP15567795 A JP 15567795A JP H093591 A JPH093591 A JP H093591A
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- toughness
- extra
- bainite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】 (修正有)
【目的】大型鋼構造物に使用されるTS590MPa級
極厚高張力鋼板であって、母材および溶接熱影響部の靱
性が高く、溶接施工において予熱条件の緩和が可能な鋼
材とその製造方法の提供。
【構成】C、Si、Mn、Ni、Cr、Mo、Nb、
B、Ti、sol AL、N、CuおよびVが特定され
た鋼であって、ベイナイトの平均ラス長さが15μm以
下、かつ、フェライト体積率が30%未満である極厚高
張力鋼板。(2)1000〜1250℃の温度に加熱し
た後、再結晶オ−ステナイト域で30%以上および未再
結晶オ−ステナイト域で50%以上の累積圧下率の圧延
をおこない、再結晶オ−ステナイトの体積率5%未満の
状態から、580℃以下の温度まで加速冷却する(1)
の極厚高張力鋼板の製造方法。(57) [Summary] (Modified) [Purpose] A TS590MPa grade extra-thick high-strength steel sheet used for large steel structures, in which the toughness of the base metal and weld heat affected zone is high Providing steel materials that can be relaxed and methods for manufacturing the steel materials. [Structure] C, Si, Mn, Ni, Cr, Mo, Nb,
B, Ti, sol AL, N, Cu and V are specified steels, which are extra-thick high-strength steel sheets having an average lath length of bainite of 15 μm or less and a ferrite volume ratio of less than 30%. (2) After heating to a temperature of 1000 to 1250 ° C., rolling is performed at a cumulative rolling reduction of 30% or more in the recrystallized austenite region and 50% or more in the unrecrystallized austenite region to obtain a recrystallized austenite. From the state of less than 5% in volume ratio of accelerating to 580 ° C or less (1)
For manufacturing extra-thick high-strength steel sheet.
Description
【0001】[0001]
【産業上の利用分野】本発明は、海洋構造物、ペンスト
ック、または橋梁など、安全性への要求がきわめて厳格
な大型鋼構造物に使用される極厚高張力鋼板に関する。
本発明鋼板は溶接の施工能率を高めるのに好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extra-thick high-strength steel plate used for large steel structures such as offshore structures, penstocks, bridges, etc., which have extremely strict safety requirements.
The steel sheet of the present invention is suitable for increasing the welding work efficiency.
【0002】[0002]
【従来の技術】大型鋼構造物に使用される極厚高張力鋼
板は、中心部まで強度を確保するために、高濃度の合金
元素を含有するのが普通である。鋼は合金含有量が多く
なると、溶接割れ感受性が高くなり、溶接時に低温割れ
が生じやすくなる。溶接割れを防止するための予熱は能
率および作業性の低下をもたらし、極厚高張力鋼板の施
工コスト低減の障害となっていた。2. Description of the Related Art Ultra-thick high-strength steel sheets used for large steel structures usually contain a high concentration of alloying elements in order to secure strength up to the center. When steel has a high alloy content, the susceptibility to welding cracks increases, and cold cracking tends to occur during welding. Preheating to prevent weld cracking has reduced efficiency and workability, and has been an obstacle to reducing the construction cost of extra-thick high-strength steel sheets.
【0003】一方、溶接割れ防止のために合金濃度を低
くした極厚高張力鋼は、焼入れ処理によっても完全な焼
入れ組織が得られず、十分な母材性能(強度・靱性バラ
ンス)が得られない。On the other hand, the extra-thick high-strength steel having a low alloy concentration for preventing weld cracking does not have a completely hardened structure even by the quenching treatment, and has a sufficient base metal performance (strength / toughness balance). Absent.
【0004】この問題を解決すべく、溶接性と母材性能
を両立させた590MPa級高張力鋼の加工熱処理方法
が、特開平2−205627号公報、特開平1−963
29号公報および特開平1−149923号公報に開示
された。In order to solve this problem, a method for thermomechanical treatment of high-strength steel of 590 MPa class having both weldability and base material performance is disclosed in JP-A-2-205627 and JP-A-1-963.
No. 29 and Japanese Patent Laid-Open No. 1-149923.
【0005】特開平2−205627号公報に示された
方法は、強度確保をボロン(B)の焼入れ性向上効果に
依存する。一般に、強加工するとBの粒界への偏析濃度
が低下し、Bの焼入れ性向上効果が低下する。したがっ
て、本方法により焼入れ性を確保するには圧下率30%
以下の圧延にとどめる必要がある。このような圧延で
は、組織微細化による靱性の向上は期待できない。The method disclosed in Japanese Patent Application Laid-Open No. 2-205627 relies on the effect of improving the hardenability of boron (B) to secure the strength. In general, when strong working is performed, the segregation concentration of B at the grain boundaries decreases, and the effect of improving the hardenability of B decreases. Therefore, in order to secure hardenability by this method, the rolling reduction is 30%.
It is necessary to limit the rolling to the following. Such rolling cannot be expected to improve the toughness due to the refinement of the structure.
【0006】特開平1−96329号公報に示された方
法は、微細な再結晶オ−ステナイトから微細なベイナイ
トを得ることを骨子とする。したがって、この方法では
格子欠陥密度の小さな再結晶オ−ステナイトからの変態
に限られる。その結果、オ−ステナイト粒内での核生成
がないので、靱性向上に必要な微細化に限界がある。[0006] The method disclosed in Japanese Patent Laid-Open No. 1-96329 is based on obtaining fine bainite from fine recrystallized austenite. Therefore, this method is limited to the transformation from recrystallized austenite having a small lattice defect density. As a result, since there is no nucleation in the austenite grains, there is a limit to the refinement necessary for improving the toughness.
【0007】特開平1−149923号公報の方法は、
圧延加工された未再結晶状態のオ−ステナイトから変態
させ、微細な組織を得る。しかし、極厚高張力鋼板の
中心部まで均一で微細な組織とすることおよび中心部
の強度を、靱性を劣化させずに確保する組成上の方策
の2点において十分でない。このため、極厚高張力鋼板
の中心部で、きわめて高い靱性を確保するには不十分で
ある。特開平1−149923号公報の実施例によれ
ば、実際に圧延実験された板厚は15mmと薄く、冷却
速度のみを極厚高張力鋼板に合わせて冷却している。こ
の結果を実際の極厚高張力鋼板にそのまま適用すると、
圧延加工の効果が過大評価されることになる。実際の極
厚高張力鋼板で高靱性を得るには、圧延の効果は活用し
なければならないが、それと併用して組成上の改善手段
が必須である。The method disclosed in JP-A-1-149923 is
The unrecrystallized austenite that has been rolled is transformed to obtain a fine structure. However, a compositional measure to ensure a uniform and fine structure up to the center of the extra-thick high-strength steel sheet and to secure the strength of the center without degrading toughness.
2 points are not enough. Therefore, it is insufficient to secure extremely high toughness at the central portion of the extra-thick high-strength steel sheet. According to the example of Japanese Patent Application Laid-Open No. 1-149923, the sheet thickness actually subjected to the rolling experiment is as thin as 15 mm, and only the cooling rate is cooled according to the extra-thick high-strength steel sheet. Applying this result to the actual ultra-thick high-strength steel sheet as it is,
The effect of rolling will be overestimated. In order to obtain high toughness with an actual ultra-thick high-strength steel sheet, the effect of rolling must be utilized, but in combination with it, means for improving the composition are essential.
【0008】以上に挙げた従来技術はいずれも溶接性と
母材性能を両立させるために、加工熱処理を用いる点で
共通するが、極厚高張力鋼板の中心まで良好な性能を得
ようとするとき、いずれも不十分である。極厚高張力鋼
板の靱性は板厚中心部の靱性によって支配されるので、
中心部の靱性を高くすることは極厚高張力鋼板をより低
温まであるいはより厳しい負荷条件まで使用可能にする
ことを意味する。All of the above-mentioned prior arts are common in that they use thermo-mechanical treatment in order to achieve both weldability and base metal performance, but try to obtain good performance up to the center of extra-thick high-strength steel sheet. At times, both are insufficient. Since the toughness of extra-thick high-strength steel plate is governed by the toughness of the central part of the plate thickness,
Increasing the toughness of the central portion means that the ultra-thick high-strength steel sheet can be used at lower temperatures or under more severe load conditions.
【0009】[0009]
【発明が解決しようとする課題】本発明は、現有の設備
を用い、かつ高価な合金を使用することなく、溶接割れ
感受性の低い板厚50mm以上の高靱性極厚高張力鋼板
およびその製造方法を提供することを課題としてなされ
たものである。本発明の具体的な目的は従来の技術では
困難であった下記〜の特性を兼備する極厚高張力鋼
板およびその製造方法を提供することにある。DISCLOSURE OF THE INVENTION The present invention is directed to a high-toughness ultra-thickness high-strength steel sheet having a plate thickness of 50 mm or more, which has low weld cracking susceptibility, using existing equipment and without using an expensive alloy, and a method for producing the same. It was made as an issue to provide. A specific object of the present invention is to provide an extra-thick high-strength steel sheet having the following characteristics (1), which have been difficult to achieve by conventional techniques, and a method for producing the same.
【0010】590MPa以上の引張り強度、極厚
鋼板のすべての板厚位置において高靱性、例えば−80
℃でのVノッチシャルピ−吸収エネルギ−50J以上、
溶接部での高靱性確保。例えば溶接再現熱サイクル法
(入熱35kJ/cm相当)における−40℃シャルピ
−吸収エネルギ−50J以上、および溶接割れ感受性
の低減、例えば同じ引張り強さ(TS)を確保する場
合、予熱温度25℃以上(従来鋼比)の低下。Tensile strength of 590 MPa or more, high toughness at all plate thickness positions of the extremely thick steel plate, for example, -80
V notch Charpy absorbed energy at ℃ -50 J or more,
Ensuring high toughness at the weld. For example, in the case of the weld reproduction heat cycle method (equivalent to heat input 35 kJ / cm), -40 ° C Charpy absorbed energy -50 J or more and reduction of weld cracking susceptibility, for example, when securing the same tensile strength (TS), preheating temperature 25 ° C. Above (compared to conventional steel) decreased.
【0011】[0011]
【課題を解決するための手段】本発明者らは、溶接性お
よび強度・靱性バランスを兼ね備えた板厚50mm以上
のTS590MPa級極厚高張力鋼について鋭意研究を
重ねた結果、以下の知見を得た。[Means for Solving the Problems] As a result of intensive studies conducted by the present inventors on TS590 MPa class extra-thick high-strength steel having a plate thickness of 50 mm or more, which has both weldability and balance of strength and toughness, the following findings were obtained. It was
【0012】従来、ベイナイトとフェライトとの混合組
織などにおいて、ベイナイトラス長さが微細になること
はあっても、ベイナイト主体の組織の場合には、ベイナ
イトのラス長さを微細にすることは困難であった。とく
に極厚高張力鋼では、圧延の効果が板厚中心部まで及び
にくいために、ベイナイトを微細にすることは難しかっ
た。本発明者らは、極厚で、かつベイナイトを主体とす
る組織においても、NbおよびTiを同時に添加して
圧延加工を活用すればベイナイトのラス長さを微細にで
きること、および析出硬化をもたらすCuまたはVの
少なくとも一種または両方をC量に応じて含有させれ
ば、靱性を劣化させずに中心部の強度を確保できるとい
うことを知った。Conventionally, in a mixed structure of bainite and ferrite, the bainite lath length may become fine, but in the case of a bainite-based structure, it is difficult to make the bainite lath length fine. Met. Particularly in the case of extra-thick high-strength steel, it is difficult to make bainite fine because the effect of rolling does not easily reach the central portion of the plate thickness. The present inventors have found that even in an extremely thick structure mainly composed of bainite, the lath length of bainite can be made fine by using Nb and Ti at the same time and utilizing the rolling process, and Cu which causes precipitation hardening can be obtained. It was also found that if at least one or both of V and V are contained according to the amount of C, the strength of the central portion can be secured without degrading the toughness.
【0013】これらおよびを組み合わせて初めて、
先に述べた溶接性と強度・靱性バランスの高度な要求を
満足できる。Only by combining these and
It can satisfy the high requirements for weldability and balance of strength and toughness mentioned above.
【0014】ここに本発明の要旨は以下に示す極厚高張
力鋼板およびその製造方法にある。Here, the gist of the present invention resides in the following ultra-thick high-strength steel sheet and a method for producing the same.
【0015】(1)重量比にて、C:0.02〜0.1
5%、Si:0.30%以下、Mn:0.6〜2.0
%、Ni:1.50%以下、Cr:1.0%以下、M
o:1.0%以下、Nb:0.01〜0.07%、B:
0.002%以下、Ti:0.005〜0.030%、
sol Al:0.08%以下、N:0.006%以下、C
uおよびVがC(%)×(Cu(%)+5V(%))と
して0.02〜0.20を満たす範囲にあり、残部がF
eおよび不可避不純物からなる組成の鋼であって、その
組織中のベイナイトの平均ラス長さが15μm以下、か
つ、フェライト体積率が30%未満であることを特徴と
する極厚高張力鋼板。(1) By weight ratio, C: 0.02 to 0.1
5%, Si: 0.30% or less, Mn: 0.6 to 2.0
%, Ni: 1.50% or less, Cr: 1.0% or less, M
o: 1.0% or less, Nb: 0.01 to 0.07%, B:
0.002% or less, Ti: 0.005 to 0.030%,
sol Al: 0.08% or less, N: 0.006% or less, C
u and V are in the range of 0.02 to 0.20 as C (%) × (Cu (%) + 5V (%)), and the balance is F.
An extremely thick high-strength steel sheet having a composition of e and unavoidable impurities, wherein the average lath length of bainite in the structure is 15 μm or less and the volume fraction of ferrite is less than 30%.
【0016】(2)請求項1に記載の組成を有する鋼片
を、1000〜1250℃の温度に加熱した後、再結晶
オ−ステナイト域で30%以上および未再結晶オ−ステ
ナイト域で50%以上の累積圧下率の圧延をおこない、
再結晶オ−ステナイトの体積率5%未満の状態から、5
80℃以下の温度まで加速冷却し変態させることによ
り、その組織中のベイナイトの平均ラス長さを15μm
以下、かつフェライト体積率を30%未満とすることを
特徴とする極厚高張力鋼板の製造方法。(2) A steel slab having the composition according to claim 1 is heated to a temperature of 1000 to 1250 ° C., and then 30% or more in the recrystallized austenite region and 50 in the unrecrystallized austenite region. Rolling with a cumulative reduction of at least%,
From the state where the volume ratio of recrystallized austenite is less than 5%, 5
The average lath length of bainite in the structure was 15 μm by accelerated cooling to a temperature of 80 ° C. or lower and transformation.
The method for producing an ultra-thick high-strength steel sheet, characterized in that the volume ratio of ferrite is less than 30%.
【0017】[0017]
【作用】まず、鋼の組成の限定理由を説明する。First, the reasons for limiting the composition of steel will be described.
【0018】C濃度は0.02%以上0.15%以下と
する。Cは強度上昇に有効な元素であり、そのためには
0.02%以上が必要である。しかし、靱性の確保およ
び溶接割れ防止の観点から上限を0.15%としなけれ
ばならない。The C concentration is 0.02% or more and 0.15% or less. C is an element effective for increasing the strength, and for that purpose 0.02% or more is necessary. However, the upper limit must be 0.15% from the viewpoint of ensuring toughness and preventing weld cracking.
【0019】Si濃度は0.30%以下に制限する。S
iは脱酸に有効な元素であるが、その含有量が0.30
%を超えると溶接熱影響部の低温靱性を低下させるので
上限を0.30%とする必要がある。Siの含有量は実
質的に0でもよいが、Siを0にするには脱酸時にAl
の損失が大きくなるので、通常は脱酸を行って残存する
程度の微量のSi量、例えば0.01%程度が下限とし
て好ましい。The Si concentration is limited to 0.30% or less. S
i is an element effective for deoxidation, but its content is 0.30
%, The low temperature toughness of the heat-affected zone of the weld is deteriorated, so the upper limit must be 0.30%. The Si content may be substantially 0, but in order to reduce Si to 0
Therefore, a small amount of Si that remains after deoxidation, for example, about 0.01% is preferable as the lower limit.
【0020】Mn濃度は0.6%以上2.0%以下でな
ければならない。Mnは強度上昇に有効な元素であり、
そのためには、0.6%以上必要である。しかし、その
含有量が2.0%を超えると、靱性が劣化するため、上
限を2.0%とする必要がある。The Mn concentration must be 0.6% or more and 2.0% or less. Mn is an element effective for increasing strength,
For that purpose, 0.6% or more is required. However, if the content exceeds 2.0%, the toughness deteriorates, so it is necessary to set the upper limit to 2.0%.
【0021】Niは意図的に含有させなくてもよい。し
かし、きわめて板厚の厚い場合には入れることが望まし
い。入れる場合、その含有量は0.25〜1.50%と
するのがよい。Niは靱性を改善する効果があるが、
0.25%以上含有しないと効果があらわれないし、
1.50%を超えるとコストアップに見合うだけの強度
上昇と靱性改善が得られないからである。Ni may not be intentionally contained. However, it is desirable to insert it when the plate thickness is extremely thick. When added, the content is preferably 0.25 to 1.50%. Ni has the effect of improving toughness, but
If it does not contain 0.25% or more, the effect will not appear,
This is because if it exceeds 1.50%, the increase in strength and the improvement in toughness commensurate with the cost increase cannot be obtained.
【0022】Crは無添加でもよい。高強度化する場合
に入れなければならないときは、その含有量を0.25
〜1.0%とするのがよい。下限を0.25%とするの
が望ましいのは、それ以上含有しないと強度上昇に効か
ないからであり、1.0%以下とするのは溶接性を劣化
させないためである。No Cr may be added. When it is necessary to add it for strengthening, its content should be 0.25.
It is good to be set to 1.0%. The lower limit is preferably 0.25% because if it is not contained any more, it does not work for increasing the strength, and if it is 1.0% or less, the weldability is not deteriorated.
【0023】Moは板厚が50mm程度までであれば含
有しなくてもよい。しかし、板厚が50mmを超えて厚
くなると、強度確保のために0.08〜1.0%を含有
させるのがよい。しかし、過度に含有させると靱性低下
を招き、かつ溶接性を低下させるため、上限を1.0%
とする必要がある。入れる場合、その含有量を0.08
%以上とするのが望ましいのはこれ以上でないと効果が
顕著にあらわれないからである。Mo does not have to be contained as long as the plate thickness is up to about 50 mm. However, when the plate thickness exceeds 50 mm and becomes thick, it is preferable to contain 0.08 to 1.0% in order to secure the strength. However, if contained too much, the toughness is lowered and the weldability is lowered, so the upper limit is 1.0%.
It is necessary to When adding, the content is 0.08
The reason why it is preferable to set the ratio to be not less than% is that the effect is not remarkable unless it is more than this.
【0024】Nb濃度は0.01%以上0.07%以下
の範囲とする。Nbは固溶状態において鋼の焼入れ性を
上げ強度を高めるとともに、圧延加工の効果によって組
織の微細化をはかるために必須の元素であり、そのため
には、0.01%以上が必要である。しかし、0.07
%を超えると連続鋳造スラブにヒビワレが頻発するの
で、上限を0.07%とする必要がある。The Nb concentration is in the range of 0.01% to 0.07%. Nb is an essential element for increasing the hardenability and strength of steel in a solid solution state and for refining the structure by the effect of rolling, and for that purpose, 0.01% or more is necessary. But 0.07
If it exceeds 0.1%, cracks frequently occur in the continuously cast slab, so it is necessary to set the upper limit to 0.07%.
【0025】Ti濃度は0.005%以上0.03%以
下の範囲に調整する。Tiは固溶状態および析出によっ
て鋼の強度を上昇させるのみならず、スラブ加熱時点の
オ−ステナイト粒成長を抑制する。圧延加工のみによっ
て結晶粒の微細化を行うことが出来ない極厚高張力鋼の
場合、ベイナイトのラス長さを微細化するのに有効な元
素である。そのためには、0.005%以上が必要であ
る。また、溶接熱影響部の結晶粒粗大化防止を通じて硬
さを低下するので、溶接熱影響部の靱性向上および予熱
温度の低下に有効である。Nb含有鋼では、Nbによっ
て助長される連続鋳造スラブ表面のヒビワレを抑制する
のに微量Tiは効果的である。0.005%以上でこれ
らの効果を発揮する。しかし、Tiの含有量が0.03
%を超えると、靱性が劣化するため、上限を0.03%
とする必要がある。The Ti concentration is adjusted within the range of 0.005% to 0.03%. Ti not only increases the strength of the steel by the solid solution state and precipitation, but also suppresses the austenite grain growth at the time of heating the slab. In the case of ultra-thick high-strength steel in which crystal grains cannot be refined only by rolling, it is an effective element for refining the lath length of bainite. For that purpose, 0.005% or more is required. Further, since the hardness is lowered by preventing the crystal grain coarsening of the weld heat affected zone, it is effective for improving the toughness of the weld heat affected zone and lowering the preheating temperature. In Nb-containing steel, a small amount of Ti is effective in suppressing cracking of the surface of the continuously cast slab promoted by Nb. These effects are exhibited at 0.005% or more. However, the Ti content is 0.03
%, The toughness deteriorates, so the upper limit is 0.03%.
It is necessary to
【0026】sol Al濃度は0.08%以下とする。A
lは脱酸材として有効な元素であるが、過度のAl添加
は、表面キズの原因となるので、sol Alとしての含有
量の上限を0.08%とする必要がある。凝固後にピン
ホ−ルの発生を防止するために0.001%以上である
ことが望ましい。The sol Al concentration is 0.08% or less. A
Although l is an element effective as a deoxidizing agent, excessive addition of Al causes surface scratches, so the upper limit of the content as sol Al must be 0.08%. It is preferably 0.001% or more in order to prevent the generation of pinholes after solidification.
【0027】Bは無添加でもよい。しかし、Bは焼入れ
性の向上とそれに付随する強度上昇をもたらす元素であ
るので板厚の厚い場合、0.0003〜0.0020%
含有させるのが望ましい。Bの効果を十分に発揮させる
には最低量0.0003%は必要だからである。しか
し、0.0020%を超えると靱性が劣化するので、上
限を0.0020%とする必要がある。B may not be added. However, since B is an element that improves the hardenability and the accompanying increase in strength, when the plate thickness is large, 0.0003 to 0.0020%
It is desirable to include it. This is because the minimum amount of 0.0003% is necessary to fully exert the effect of B. However, if it exceeds 0.0020%, the toughness deteriorates, so it is necessary to set the upper limit to 0.0020%.
【0028】N濃度は0.006%以下に制限する。N
はAlと結合して窒化物を生成し、結晶粒の微細化に有
効であるが、過量のNは、溶接部の靱性を損なうので、
上限を0.006%とする必要がある。結晶粒の微細化
を期待する場合は、0.0015%以上を含有させる。The N concentration is limited to 0.006% or less. N
Is effective in refining the crystal grains by combining with Al to form a nitride, but an excessive amount of N impairs the toughness of the welded portion.
The upper limit needs to be 0.006%. When it is expected that the crystal grains become finer, 0.0015% or more is contained.
【0029】CuおよびV濃度はC(%)×(Cu
(%)+5V(%))として0.02以上、かつ0.2
以下の範囲に調整する。このときCuもしくはVのどち
らか一種または両方同時の含有のどちらでもよい。Cu
およびVは本発明が対象とする板厚50mm以上の極厚
高張力鋼板の中心部の強度上昇に有効な元素である。C
濃度に対応して、適当量を入れれば靱性の劣化も小さ
い。C(%)×(Cu(%)+5V(%))として0.
02以上は必要である。しかし0.2を超える含有量
は、靱性劣化が著しいので避けなければならない。この
場合、CuとVについて上記の式の範囲内という制限に
加えて、CuおよびVのそれぞれを以下の範囲とするこ
とが好ましい。Cuは添加しない場合もあるが、添加す
る場合は0.20〜2.0%の含有量とするのが望まし
い。0.25%以上含有させないとCuの顕著な析出硬
化が得られず、2.0%を超えると表面キズが多発する
場合があるからである。Vも添加しなくてもよい。しか
し添加する場合はその含有量を0.01〜0.4%とす
ることが望ましい。0.01%以上としないと大きな強
度上昇の効果が得られず、0.4%を超えると靱性の劣
化が著しい場合があるからである。The Cu and V concentrations are C (%) × (Cu
(%) + 5V (%)) 0.02 or more, and 0.2
Adjust within the following range. At this time, either one of Cu and V or the simultaneous inclusion of both may be used. Cu
And V are elements effective for increasing the strength of the central portion of the ultra-thick high-tensile steel plate having a plate thickness of 50 mm or more, which is the object of the present invention. C
If the appropriate amount is added according to the concentration, the deterioration of toughness is small. C (%) × (Cu (%) + 5V (%)) as 0.
02 or more is required. However, a content exceeding 0.2 must be avoided because the deterioration of toughness is remarkable. In this case, in addition to the restriction that Cu and V are within the range of the above formula, it is preferable to set each of Cu and V within the following ranges. Cu may not be added in some cases, but when it is added, the content is preferably 0.20 to 2.0%. This is because if it is not contained in an amount of 0.25% or more, remarkable precipitation hardening of Cu cannot be obtained, and if it exceeds 2.0%, surface scratches often occur. V may not be added. However, when it is added, its content is preferably 0.01 to 0.4%. This is because if it is not more than 0.01%, a large effect of increasing the strength cannot be obtained, and if it exceeds 0.4%, the toughness may be significantly deteriorated.
【0030】つぎに、組織を限定した理由は以下のとお
りである。Next, the reason for limiting the organization is as follows.
【0031】前記の組成を有する板厚50mm以上の鋼
を加速冷却すると、圧延条件による変動はあるが、ベイ
ナイトを主体とした組織が得られる。そのベイナイトの
平均ラス長さを15μm以下とするのは、母材靱性に対
するベイナイトの悪影響を抑制するのに、15μm以下
とすることが必要だからである。さらに良好な靱性を得
るにはベイナイトの平均ラス長さを10μm以下にする
ことが望ましい。ここで、ベイナイトの平均ラス長さと
は、鋼の任意の断面を顕微鏡等で観察したときに現れる
ベイナイト組織の個々のラスの長手方向の長さの平均で
ある。ベイナイトの平均ラス長さに制限を設けることに
より、強度向上作用の強いベイナイトの効果を受けなが
ら、靱性への悪影響を軽減できることになる。When steel having a plate thickness of 50 mm or more and having the above-mentioned composition is accelerated and cooled, a structure mainly composed of bainite can be obtained although there is a change depending on rolling conditions. The average lath length of the bainite is set to 15 μm or less because it is necessary to set the average lath length to 15 μm or less in order to suppress the adverse effect of bainite on the toughness of the base material. In order to obtain even better toughness, it is desirable that the average lath length of bainite be 10 μm or less. Here, the average lath length of bainite is the average of the longitudinal lengths of the individual laths of the bainite structure that appear when an arbitrary cross section of steel is observed with a microscope or the like. By limiting the average lath length of bainite, the adverse effect on toughness can be reduced while receiving the effect of bainite, which has a strong strength improving effect.
【0032】また、フェライト体積率を30%未満とす
るのは、これ以上のフェライト体積率とすると、目標と
する強度を確保することが困難となるからである。高強
度化の場合にはフェライト体積率ゼロの場合もあるが、
靱性を得ながら強度を上昇させる場合は10%程度のフ
ェライトを含むことが望ましい。The reason why the ferrite volume ratio is less than 30% is that if the ferrite volume ratio is higher than this, it is difficult to secure the target strength. In the case of high strength, the ferrite volume ratio may be zero,
When increasing strength while obtaining toughness, it is desirable to contain about 10% of ferrite.
【0033】このような組織とすることにより、合金濃
度を低くしたまま、すなわち溶接低温割れ感受性を低く
したまま590MPa以上の引張り強度および靱性を兼
備した極厚高張力鋼板が得られる。With such a structure, it is possible to obtain an extra-thick high-strength steel sheet having both tensile strength and toughness of 590 MPa or more while keeping the alloy concentration low, that is, the welding cold cracking susceptibility low.
【0034】なお、上に述べたベイナイト等の組織は、
焼戻しを受けたベイナイト等であってもよく、また焼戻
しを受けないベイナイト等の組織であってもよい。The structure of bainite and the like described above is
It may be tempered bainite or the like, or may be structure such as bainite not tempered.
【0035】以下に、製造方法の各条件を限定した理由
を説明する。The reason why each condition of the manufacturing method is limited will be described below.
【0036】鋼片加熱温度は、オーステナイト結晶粒の
粗大化を防止するために、上限を1250℃とし、圧延
中の結晶粒の微細化および析出強化に有効なNbを固溶
させるために下限を1000℃とする。The billet heating temperature has an upper limit of 1250 ° C. in order to prevent coarsening of austenite crystal grains, and a lower limit in order to form a solid solution of Nb which is effective in refining crystal grains during rolling and precipitation strengthening. The temperature is 1000 ° C.
【0037】オ−ステナイト再結晶温度域で累積圧下率
30%以上の圧延を行うことにより、Tiの効果とあわ
せて、微細な再結晶オ−ステナイト粒を得なければなら
ない。これより小さい圧下率では最終的に微細なベイナ
イトを得ることができない。Fine recrystallized austenite grains must be obtained together with the effect of Ti by rolling at a cumulative rolling reduction of 30% or more in the austenite recrystallization temperature range. If the rolling reduction is smaller than this, fine bainite cannot be finally obtained.
【0038】ここで累積圧下率の累積とは、再結晶温度
域または後述する未再結晶温度域のそれぞれについて独
立に累積することをいう。未再結晶温度域でも累積圧下
率50%以上の圧延をおこない、かつ再結晶オ−ステナ
イトが5%未満の状態から加速冷却するのは、以下の理
由による。Here, the accumulation of the cumulative rolling reduction means that the recrystallization temperature region or the unrecrystallized temperature region described later is independently accumulated. The reason why rolling with a cumulative reduction of 50% or more is performed even in the non-recrystallization temperature range and accelerated cooling is performed from the state where recrystallized austenite is less than 5% is as follows.
【0039】圧延により導入された格子欠陥によって、
(a)ベイナイト変態が粒内からも多く発生し、さらに
(b)格子欠陥の一部によってその成長が抑制される、
の2つの理由によりベイナイトが微細となる。未再結晶
温度域での累積圧下率50%以上および再結晶オ−ステ
ナイトが5%未満、のどちらの条件が欠けても、微細な
ベイナイトが得られない。先に述べたNbはオ−ステナ
イトの未再結晶温度域を高温まで拡大して、未再結晶温
度域の圧延加工を容易にし、ベイナイトの微細化を促進
する。本発明の組成の鋼で、再結晶オ−ステナイトを5
%未満の状態から冷却するには、圧延後冷却までの時間
を100秒以内とする必要がある。Due to the lattice defects introduced by rolling,
(A) Bainite transformation often occurs also in the grains, and (b) growth thereof is suppressed by some of the lattice defects.
Bainite becomes fine for two reasons. Fine bainite cannot be obtained under any of the conditions that the cumulative rolling reduction in the unrecrystallized temperature range is 50% or more and the recrystallized austenite is less than 5%. Nb described above expands the unrecrystallized temperature range of austenite to a high temperature, facilitates rolling in the unrecrystallized temperature range, and promotes miniaturization of bainite. In the steel of the composition of the present invention, recrystallized austenite is added to 5
In order to cool from a state of less than%, the time until cooling after rolling needs to be 100 seconds or less.
【0040】ここで再結晶とは、圧延加工によって変形
を受けたオ−ステナイト粒界または変形の際導入された
変形帯に、新たに転位密度の小さいオ−ステナイト粒が
発生することをいう。高温ほど再結晶しやすい。未再結
晶温度域とは圧延加工後、再結晶が生じない温度域をい
う。圧延直後は未再結晶状態でも時間の経過につれ再結
晶が進行し、かつ累積圧下歪の増大につれ再結晶が生じ
る。本発明では圧延後、約15sec 以内(つぎの圧延ま
でのおよその時間)に再結晶しなければ、その圧延温度
域を未再結晶温度域という。Here, recrystallization means that new austenite grains having a low dislocation density are newly generated in the austenite grain boundaries which have been deformed by rolling or in the deformation zone introduced during the deformation. The higher the temperature, the easier it will recrystallize. The non-recrystallization temperature range refers to a temperature range in which recrystallization does not occur after rolling. Immediately after rolling, recrystallization progresses with time even in an unrecrystallized state, and recrystallization occurs as the cumulative rolling strain increases. In the present invention, the rolling temperature range is referred to as a non-recrystallization temperature range unless it is recrystallized within about 15 seconds (approximately the time until the next rolling) after rolling.
【0041】圧延後に加速冷却を行うことは、極厚高張
力鋼板の中心まで強度を確保するために必要である。冷
却速度としては、10℃/s以上が好ましい。580℃
以下まで冷却するのは、それより高い温度で冷却を停止
すると、復熱によりフェライト体積率が増え、必要な強
度が得られないからである。580℃以下になったら以
後はそのまま、室温まで冷却してもさしつかえないが、
望ましくは、350℃以上の温度で冷却を停止して、後
は放冷する。鋼中に含まれる水素濃度が高い場合は、介
在物等に水素が集積して水素性欠陥を発生するので、放
冷中に水素の放出を促進するためである。Accelerated cooling after rolling is necessary to secure strength up to the center of the extra-thick high-strength steel sheet. The cooling rate is preferably 10 ° C./s or more. 580 ° C
The reason for cooling to below is that if the cooling is stopped at a temperature higher than that, the volume ratio of ferrite increases due to recuperation and the required strength cannot be obtained. After the temperature becomes 580 ° C or lower, it can be cooled to room temperature as it is, but
Desirably, the cooling is stopped at a temperature of 350 [deg.] C. or higher, and then the cooling is performed. This is because when the concentration of hydrogen contained in steel is high, hydrogen accumulates on inclusions and the like to generate hydrogen defects, so that the release of hydrogen is promoted during cooling.
【0042】本発明鋼は焼戻しなしでも、十分な強度お
よび靱性を得ることができるが、より高い耐力および靱
性を得ようとする場合は、Ac1 以下で焼き戻しを加え
る。The steel of the present invention can obtain sufficient strength and toughness without tempering. However, in order to obtain higher yield strength and toughness, tempering is performed with Ac 1 or less.
【0043】焼戻しによって、CuまたはV等の強度確
保に有効な析出硬化元素を析出させ、また変態歪を除去
して靱性をさらに向上させることができる。By tempering, precipitation hardening elements such as Cu or V which are effective for securing the strength can be precipitated, and transformation strain can be removed to further improve the toughness.
【0044】[0044]
【実施例】表1は、本発明の範囲内の組成を有する鋼お
よび比較のためのその範囲外の組成の鋼をあらわす一覧
表である。これらの鋼を溶製し鋳造して得られた鋼片に
加工熱処理を施したものを供試鋼板とした。表2はその
加工熱処理条件、板厚およびそれによって得られた金属
組織をあらわす一覧表である。板厚は50および70m
mの2種類である。EXAMPLES Table 1 is a listing of steels having compositions within the scope of the present invention and steels having compositions outside the ranges for comparison. Steel pieces obtained by melting and casting these steels and subjected to thermomechanical treatment were used as test steel sheets. Table 2 is a list showing the heat treatment conditions, the plate thickness and the metal structure obtained thereby. Board thickness is 50 and 70 m
There are two types, m.
【0045】[0045]
【表1】 [Table 1]
【0046】[0046]
【表2】 [Table 2]
【0047】これら鋼板の板厚1/4t部および1/2
t部より試験片を採取し、引張り試験および2mmVノ
ッチシャルピ−衝撃試験を行った。溶接性を評価するた
めに、入熱35kJ/cm相当の溶接熱サイクル(最高
加熱温度1350℃)を付与してシャルピ−試験に供し
た。また溶接割れ停止予熱温度はy形溶接割れ試験(J
IS Z 3158)により評価した。表3はそれらの
試験によって得られた性能をあらわす一覧表である。本
発明鋼の母材性能は、板厚位置1/2t部のTSは59
0MPa以上、また−80℃でのシャルピ−衝撃試験に
おける吸収エネルギ−は215J以上と、板厚50mm
以上の極厚高張力鋼としてきわめて優れた強度および靱
性を兼備する。図1は、本発明鋼と比較鋼の1/2t部
でのTSとvE-80 の関係をあらわす図面である。図中
の各プロットに付された番号は表3の試験Noを表す。
本発明鋼が比較鋼に較べて優れていることは明かであ
る。The plate thickness of these steel plates is 1/4 t and 1/2
A test piece was sampled from the t portion and subjected to a tensile test and a 2 mmV notch Charpy impact test. In order to evaluate the weldability, a welding heat cycle (maximum heating temperature 1350 ° C.) corresponding to a heat input of 35 kJ / cm was applied to the Charpy test. The preheating temperature for stopping weld cracking is the y-type weld cracking test (J
It was evaluated according to IS Z 3158). Table 3 is a list showing the performances obtained by those tests. The base metal performance of the steel of the present invention is 59 at TS at the plate thickness position 1 / 2t.
Absorbed energy in Charpy impact test at 0 MPa or more and -80 ° C is 215 J or more, and plate thickness is 50 mm.
It has extremely excellent strength and toughness as the above ultra-thick high-strength steel. FIG. 1 is a drawing showing the relationship between TS and vE- 80 at 1/2 t part of the present invention steel and comparative steel. The number attached to each plot in the figure represents the test No. in Table 3.
It is clear that the steel of the present invention is superior to the comparative steel.
【0048】表3に示すように、本発明鋼の溶接熱サイ
クル再現部は−40℃でのシャルピ−衝撃試験において
200J以上の吸収エネルギーを示し、比較鋼より優れ
た靱性である。図2は、y形溶接割れ試験における割れ
停止予熱温度と1/2t部TSとの関係をあらわす図面
である。同図において、同一TSで比較するとき本発明
鋼の予熱温度が低いことは明確である。図中の各プロッ
トに付された番号は表3中の試験Noである。比較例の
性能が本発明例に比較して劣るのは、比較例では本発明
の範囲内の組成および組織もしくは組成および製造法の
いずれかの条件が欠けているからである。As shown in Table 3, the weld thermal cycle reproduction part of the steel of the present invention shows absorbed energy of 200 J or more in the Charpy impact test at -40 ° C, which is toughness superior to that of the comparative steel. FIG. 2 is a drawing showing the relationship between the crack stop preheating temperature and the 1 / 2t part TS in the y-type weld cracking test. In the figure, it is clear that the preheating temperature of the steel of the present invention is low when comparing the same TS. The number given to each plot in the figure is the test number in Table 3. The performance of the comparative example is inferior to that of the example of the present invention because the comparative example lacks any condition of the composition and structure or the composition and the manufacturing method within the scope of the present invention.
【0049】[0049]
【表3】 [Table 3]
【0050】[0050]
【発明の効果】本発明鋼板は前述の組成および組織をも
つことにより、引張り強さ590MPa以上、板厚50
mm以上で板厚中心まで靱性に優れ、かつ溶接割れ感受
性も低い。本発明鋼を使用することにより、溶接にあた
り予熱を軽減できるので、施工コストを低減することが
できる。本発明鋼は、前述の方法によって比較的容易
に、かつ安価に製造することができる。EFFECTS OF THE INVENTION The steel sheet of the present invention has a tensile strength of 590 MPa or more and a sheet thickness of 50 by having the above-mentioned composition and structure.
Excellent in toughness up to the center of the plate thickness at mm or more, and low susceptibility to weld cracking. By using the steel of the present invention, preheating upon welding can be reduced, so that construction cost can be reduced. The steel of the present invention can be manufactured relatively easily and inexpensively by the above-mentioned method.
【図1】図1は本発明鋼および比較鋼の板厚50mmの
1/2t部におけるTSとvE-80 の関係をあらわす図
面である。FIG. 1 is a drawing showing a relationship between TS and vE-80 in a 1 / 2t portion of a steel sheet of the present invention and a comparative steel sheet having a plate thickness of 50 mm.
【図2】図2は本発明鋼および比較鋼の板厚50mmの
TS(1/2t部)と溶接割れ停止予熱温度の関係をあ
らわす図面である。FIG. 2 is a drawing showing a relationship between a TS (1 / 2t part) having a plate thickness of 50 mm and a weld crack stop preheating temperature of the steels of the present invention and comparative steels.
Claims (2)
Si:0.30%以下、Mn:0.6〜2.0%、N
i:1.50%以下、Cr:1.0%以下、Mo:1.
0%以下、Nb:0.01〜0.07%、B:0.00
2%以下、Ti:0.005〜0.030%、sol A
l:0.08%以下、N:0.006%以下、Cuおよ
びVがC(%)×(Cu(%)+5V(%))として
0.02〜0.20を満たす範囲にあり、残部がFeお
よび不可避不純物からなる組成の鋼であって、その組織
中のベイナイトの平均ラス長さが15μm以下、かつ、
フェライト体積率が30%未満であることを特徴とする
極厚高張力鋼板。1. A weight ratio of C: 0.02 to 0.15%,
Si: 0.30% or less, Mn: 0.6 to 2.0%, N
i: 1.50% or less, Cr: 1.0% or less, Mo: 1.
0% or less, Nb: 0.01 to 0.07%, B: 0.00
2% or less, Ti: 0.005 to 0.030%, sol A
1: 0.08% or less, N: 0.006% or less, Cu and V are in the range of 0.02 to 0.20 as C (%) × (Cu (%) + 5V (%)), and the balance Is a steel composed of Fe and unavoidable impurities, the average lath length of bainite in the structure is 15 μm or less, and
A very high-strength steel sheet having a ferrite volume ratio of less than 30%.
000〜1250℃の温度に加熱した後、再結晶オ−ス
テナイト域で30%以上および未再結晶オ−ステナイト
域で50%以上の累積圧下率の圧延をおこない、再結晶
オ−ステナイトの体積率5%未満の状態から、580℃
以下の温度まで加速冷却し変態させることにより、その
組織中のベイナイトの平均ラス長さを15μm以下、か
つフェライト体積率を30%未満とすることを特徴とす
る極厚高張力鋼板の製造方法。2. A steel slab having the composition according to claim 1
After heating to a temperature of 000 to 1250 ° C., rolling at a cumulative rolling reduction of 30% or more in the recrystallized austenite region and 50% or more in the unrecrystallized austenite region is performed to obtain a volume ratio of the recrystallized austenite. From less than 5% to 580 ° C
A method for producing an extremely thick high-strength steel sheet, characterized in that the average lath length of bainite in the structure is 15 μm or less and the volume fraction of ferrite is less than 30% by accelerated cooling to the following temperature and transformation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15567795A JPH093591A (en) | 1995-06-22 | 1995-06-22 | Extra-thick high-tensile steel plate and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15567795A JPH093591A (en) | 1995-06-22 | 1995-06-22 | Extra-thick high-tensile steel plate and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH093591A true JPH093591A (en) | 1997-01-07 |
Family
ID=15611169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15567795A Pending JPH093591A (en) | 1995-06-22 | 1995-06-22 | Extra-thick high-tensile steel plate and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH093591A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1354973A1 (en) * | 2002-04-09 | 2003-10-22 | Nippon Steel Corporation | High-strength steel sheet and high-strength pipe excellent in deformability and method for producing the same |
KR100431851B1 (en) * | 1999-12-28 | 2004-05-20 | 주식회사 포스코 | structural steel having High strength and method for menufactreing it |
KR100482188B1 (en) * | 2000-11-28 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling |
KR100568360B1 (en) * | 2001-12-24 | 2006-04-05 | 주식회사 포스코 | High strength welded structural steel with excellent toughness in welding heat affected zone and manufacturing method |
KR101149108B1 (en) * | 2009-07-24 | 2012-05-25 | 현대제철 주식회사 | Method for producing of steel having high strength |
CN103320692A (en) * | 2013-06-19 | 2013-09-25 | 宝山钢铁股份有限公司 | HT550 steel plate with ultrahigh toughness and excellent weldability and manufacture method thereof |
CN115181911A (en) * | 2022-08-04 | 2022-10-14 | 江苏省沙钢钢铁研究院有限公司 | Extra-thick Q500qE bridge steel plate and its production method |
-
1995
- 1995-06-22 JP JP15567795A patent/JPH093591A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100431851B1 (en) * | 1999-12-28 | 2004-05-20 | 주식회사 포스코 | structural steel having High strength and method for menufactreing it |
KR100482188B1 (en) * | 2000-11-28 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling |
KR100568360B1 (en) * | 2001-12-24 | 2006-04-05 | 주식회사 포스코 | High strength welded structural steel with excellent toughness in welding heat affected zone and manufacturing method |
EP1354973A1 (en) * | 2002-04-09 | 2003-10-22 | Nippon Steel Corporation | High-strength steel sheet and high-strength pipe excellent in deformability and method for producing the same |
US8070887B2 (en) | 2002-04-09 | 2011-12-06 | Nippon Steel Corporation | High-strength steel sheet and high-strength steel pipe excellent in deformability and method for producing the same |
KR101149108B1 (en) * | 2009-07-24 | 2012-05-25 | 현대제철 주식회사 | Method for producing of steel having high strength |
CN103320692A (en) * | 2013-06-19 | 2013-09-25 | 宝山钢铁股份有限公司 | HT550 steel plate with ultrahigh toughness and excellent weldability and manufacture method thereof |
CN103320692B (en) * | 2013-06-19 | 2016-07-06 | 宝山钢铁股份有限公司 | Superhigh tenacity, superior weldability HT550 steel plate and manufacture method thereof |
CN115181911A (en) * | 2022-08-04 | 2022-10-14 | 江苏省沙钢钢铁研究院有限公司 | Extra-thick Q500qE bridge steel plate and its production method |
WO2024027526A1 (en) * | 2022-08-04 | 2024-02-08 | 江苏省沙钢钢铁研究院有限公司 | Extra-thick q500qe bridge steel plate and production method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6198937B2 (en) | HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
CN101652495A (en) | Steel material excellent in high-temperature characteristics and toughness, and manufacturing method thereof | |
EP1533392A1 (en) | Steel product for high heat input welding and method for production thereof | |
JP4207334B2 (en) | High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same | |
JP4310591B2 (en) | Method for producing high-strength steel sheet with excellent weldability | |
JPH093591A (en) | Extra-thick high-tensile steel plate and method for manufacturing the same | |
JP5515954B2 (en) | Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness | |
JP2776174B2 (en) | Manufacturing method of high tensile strength and high toughness fine bainite steel | |
JP4959402B2 (en) | High strength welded structural steel with excellent surface cracking resistance and its manufacturing method | |
JPH09256037A (en) | Method for manufacturing thick high-strength steel sheet for stress relief annealing | |
JPH09194990A (en) | High-strength steel with excellent toughness | |
JP3264956B2 (en) | Accelerated cooling type manufacturing method for thick steel plate | |
JP3202310B2 (en) | High heat input welding | |
JP3212344B2 (en) | Manufacturing method of structural steel plate for welding with excellent toughness at low temperature | |
JPH10158778A (en) | High strength steel sheet excellent in toughness and weldability and method for producing the same | |
JP2671732B2 (en) | Manufacturing method of high strength steel with excellent weldability | |
JP2005272854A (en) | Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part | |
JP3885691B2 (en) | Manufacturing method of non-tempered thick steel plate exceeding 980 MPa | |
JP2005029841A (en) | High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same | |
JP3502809B2 (en) | Method of manufacturing steel with excellent toughness | |
JP4959401B2 (en) | High strength welded structural steel with excellent surface cracking resistance and its manufacturing method | |
JP3569499B2 (en) | High strength steel excellent in weldability and method for producing the same | |
JP2834500B2 (en) | Manufacturing method of high-strength steel sheet with excellent thermal toughness | |
JP2004035946A (en) | Method for producing high-tension steel having excellent weldability |