[go: up one dir, main page]

JPH09325003A - Detection of position - Google Patents

Detection of position

Info

Publication number
JPH09325003A
JPH09325003A JP8141952A JP14195296A JPH09325003A JP H09325003 A JPH09325003 A JP H09325003A JP 8141952 A JP8141952 A JP 8141952A JP 14195296 A JP14195296 A JP 14195296A JP H09325003 A JPH09325003 A JP H09325003A
Authority
JP
Japan
Prior art keywords
coils
signal
receiving
magnetic field
measurement signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8141952A
Other languages
Japanese (ja)
Inventor
Yasushi Miki
裕史 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8141952A priority Critical patent/JPH09325003A/en
Publication of JPH09325003A publication Critical patent/JPH09325003A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve noise-proofing property so as to detect the direction of an object to be measured according to desired observation point by obtaining the arrangement direction of receiving coil so that the phases of individual measurement signals measured by a plurality of receiving coils may match with each other. SOLUTION: First and second receiving coils 16 and 17 measure the magnetic field intensities of first and second transmitting coils 6 and 7, and send the measurement signals to first and second signal measuring devices 20 and 21. Both measurement signals and reference signal with the same frequency as that of carrier of a signal supply device 10 are detected through synchronization, and relative position between transmitting coils 6 and 7 and receiving coils 16 and 17 and the magnetic field intensity corresponding to the phase of signal wave are outputted to a signal indicator 24. Next, a displacement bar 14 is turned or shifted parallely so that the phases of signals that the coils 16 and 17 are detected through synchronization may match with each other, and the relative positional relation between the coils 16 and 17 and the coils 6 and 7 is obtained as a phase difference. Thus, the arrangement direction of the coils 16 and 17 shows the position of an underground embedded tube 1, so that the direction where the tube 1 is located can be detected according to observation point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁界強度を計測し
て2点間の位置を検出する位置検出方法に関し、特に、
上下水道管、ガス管、電力ケーブル、電話ケーブルなど
の地中に埋設された地下埋設配管の位置を検出する位置
検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting method for measuring a magnetic field strength to detect a position between two points, and in particular,
The present invention relates to a position detection method for detecting the position of underground pipes buried underground such as water and sewer pipes, gas pipes, power cables, and telephone cables.

【0002】[0002]

【従来の技術】従来、この種の位置検出方法としては、
観測地点に送信器と受信器とを一体に構成した検知器を
設置し、地中の埋設管に送信器で発生させた送信磁界で
誘導電流を流し、この誘導電流により発生する磁界を受
信器で検出し、受信器の出力信号を発振器からの参照信
号とで同期検波し、受信器の出力変化を測定することに
より、埋設管の位置を検出するものが、たとえば特開平
4−198889号公報に開示されている。
2. Description of the Related Art Conventionally, as this kind of position detecting method,
A detector with an integrated transmitter and receiver is installed at the observation point, and an induced current is caused to flow in the underground buried pipe by the transmitted magnetic field generated by the transmitter, and the magnetic field generated by this induced current is received by the receiver. In Japanese Patent Laid-Open No. 4-198889, the position of the buried pipe is detected by synchronously detecting the output signal of the receiver with the reference signal from the oscillator and measuring the output change of the receiver. Is disclosed in.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記提案の
如き位置検出方法では、観測地点に発振器からの発信周
波数と同様の信号を使用する機器があったり、ケーブル
間の信号の飛びつきなどによって、参照信号や受信器の
出力信号と同相の外来ノイズが存在する場合、参照信号
および出力信号に外来ノイズが干渉し測定誤差が生じた
り、参照信号と出力信号との同期が乱れ測定ができなく
なるという問題点があった。
By the way, in the position detecting method as proposed above, there is a device at the observation point which uses a signal similar to the oscillation frequency from the oscillator, or when the signal jumps between the cables, the reference is made. When external noise that is in phase with the signal or the output signal of the receiver exists, external noise interferes with the reference signal and output signal, causing measurement errors, or the synchronization between the reference signal and output signal is disturbed, making measurement impossible. There was a point.

【0004】本発明は、前記のような問題点に鑑みてな
されたものであって、その目的とするところは、耐ノイ
ズ性を向上し、任意の観測地点より被測定物の位置する
方向を精度よく検出することができる位置検出方法を提
供することにある。本発明の前記ならびにその他の目的
と新規な特徴は、本明細書の記述および添付図面から明
らかになるであろう。
The present invention has been made in view of the above problems, and an object of the present invention is to improve noise resistance and to change the direction in which an object to be measured is located from an arbitrary observation point. An object of the present invention is to provide a position detecting method capable of detecting with high accuracy. The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】前記目的を達成すべく、
本発明に係る位置検出方法は、観測地点に同一直線上に
磁気検出面の中心を有する複数の受信コイルが配列さ
れ、被測定物内に同一中心点を有し直交した第1送信コ
イルおよび第2送信コイルが挿入され、搬送波をスペク
トル拡散変調した後、AM変調し、第1および第2送信
コイルに与え、第1および第2送信コイルに磁界を発生
させ、第1および第2送信コイルの磁界強度を複数の受
信コイルにより計測し、複数の受信コイルが計測した個
々の計測信号をスペクトル拡散変調された第1および第
2送信コイルへの搬送波とで同期検波し、複数の受信コ
イルが計測した個々の計測信号の位相を比較し、位相が
一致するような複数の受信コイルの配列方向を求めるこ
とにより、被測定物の位置を検出することを特徴として
いる。
[Means for Solving the Problems] To achieve the above object,
A position detecting method according to the present invention includes a plurality of receiving coils having a center of a magnetic detection surface arranged on the same straight line at an observation point, a first transmitting coil having the same central point in an object to be measured, and a first transmitting coil and a first transmitting coil. Two transmission coils are inserted, the carrier wave is spread-spectrum-modulated, then AM-modulated and given to the first and second transmission coils to generate a magnetic field in the first and second transmission coils. The magnetic field strength is measured by a plurality of receiving coils, and the individual measurement signals measured by the plurality of receiving coils are synchronously detected by the carrier waves to the first and second transmitting coils that are spread spectrum modulated, and the plurality of receiving coils measure the magnetic field strength. The position of the object to be measured is detected by comparing the phases of the individual measured signals and determining the arrangement direction of the plurality of receiving coils such that the phases match.

【0006】従って、本発明では、搬送波はスペクトル
拡散変調されAM変調された後、第1および第2送信コ
イルに送信され、第1および第2送信コイルは磁界を発
生する。次いで、複数の受信コイルは第1および第2送
信コイルの磁界強度を計測し、第1および第2送信コイ
ルの磁界強度の計測信号とスペクトル拡散変調された搬
送波とが同期検波される。そして、複数の受信コイルが
計測した個々の計測信号の位相が一致するような受信コ
イルの配列方向が求められ、被測定物の位置が検出され
る。
Therefore, in the present invention, the carrier wave is spread-spectrum-modulated and AM-modulated and then transmitted to the first and second transmission coils, and the first and second transmission coils generate a magnetic field. Next, the plurality of receiving coils measure the magnetic field strengths of the first and second transmitting coils, and the measurement signals of the magnetic field strengths of the first and second transmitting coils and the spread spectrum modulated carrier wave are synchronously detected. Then, the array direction of the receiving coils in which the phases of the individual measurement signals measured by the plurality of receiving coils match is obtained, and the position of the measured object is detected.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて詳細に説明する。実施の形態を説明するに
当たって、同一機能を奏するものは同じ符号を付して説
明する。図1は、本発明の一実施の形態の位置検出方法
を実施する際に使用する位置検出システムの概略構成
図、図2は、本発明の一実施の形態の位置検出方法を説
明する信号処理系のブロック図、図3は、本発明の一実
施の形態の位置検出方法に係る送信コイルに供給される
信号波形図、図4は、本発明の一実施の形態の位置検出
方法に係る送受信コイルの相対位置とそのときの観測信
号の波形図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below in detail with reference to the drawings. In describing the embodiments, those having the same functions will be denoted by the same reference numerals. FIG. 1 is a schematic configuration diagram of a position detection system used when implementing a position detection method according to an embodiment of the present invention, and FIG. 2 is a signal processing for explaining the position detection method according to an embodiment of the present invention. FIG. 3 is a block diagram of a system, FIG. 3 is a signal waveform diagram supplied to a transmission coil according to the position detecting method of one embodiment of the present invention, and FIG. 4 is transmission / reception according to the position detecting method of one embodiment of the present invention. It is a waveform diagram of the relative position of a coil and the observation signal at that time.

【0008】図1に示す位置検出システムは、被測定物
である地下埋設配管1内に、その長手方向へ移動可能な
移動台車2が導入され、移動台車2の車輪3にはロータ
リーエンコーダーなどの車輪回転量センサー(図示略
す)が装着されると共に、この車輪回転量センサーが出
力する信号により移動台車2の走行距離を測定する制御
装置4が信号線5を介して接続されている。
In the position detecting system shown in FIG. 1, a movable carriage 2 which is movable in the longitudinal direction is introduced into an underground buried pipe 1 which is an object to be measured, and wheels 3 of the movable carriage 2 are provided with rotary encoders or the like. A wheel rotation amount sensor (not shown) is attached, and a control device 4 for measuring the traveling distance of the moving carriage 2 by a signal output from the wheel rotation amount sensor is connected via a signal line 5.

【0009】移動台車2上には、磁気発生手段として、
第1送信コイル6および第2送信コイル7が、地下埋設
配管1の中心軸線Xと同一軸線上の、同一点を中心とし
て直交するように搭載されている。第1送信コイル6
は、信号線8を介して地下埋設配管1の外部に配設され
た発振器などの交流電流を供給する信号供給装置10に
接続されている。第2送信コイル7は、信号線9を介し
て信号供給装置10に接続されている。
On the movable carriage 2, as magnetic generation means,
The first transmission coil 6 and the second transmission coil 7 are mounted so as to be orthogonal to each other with the same point on the same axis as the central axis X of the underground buried pipe 1 as the center. First transmission coil 6
Is connected via a signal line 8 to a signal supply device 10 that supplies an alternating current, such as an oscillator, arranged outside the underground buried pipe 1. The second transmission coil 7 is connected to the signal supply device 10 via a signal line 9.

【0010】地上の観測地点には、磁気検出装置11が
移動可能に配置されている。磁気検出装置11は、基台
12上に1対の支持板13,13が対峙して立設され、
これら1対の支持板13,13間には、変位棒14が移
動手段15によって、地下埋設配管1の中心軸線Xと平
行な軸線周りに回転し、かつ変位棒14の周面に対して
直角方向に平行移動するように支持されている。
A magnetic detection device 11 is movably arranged at an observation point on the ground. In the magnetic detection device 11, a pair of support plates 13 and 13 are installed upright on a base 12,
Between the pair of support plates 13, 13, the displacement rod 14 is rotated by the moving means 15 about an axis parallel to the central axis X of the underground buried pipe 1 and is perpendicular to the peripheral surface of the displacement rod 14. It is supported so as to move parallel to the direction.

【0011】変位棒14の両端部には、磁気検出コイル
として、第1受信コイル16および第2受信コイル17
がそれぞれ巻回され、第1受信コイル16および第2受
信コイル17は、第1受信コイル16の磁気検出面16
aと第2受信コイル17の磁気検出面17aとが平行に
かつその中心位置が同一直線上にあるように整列配置さ
れている。
At both ends of the displacement bar 14, a first receiving coil 16 and a second receiving coil 17 are provided as magnetic detection coils.
Are wound around the magnetic detection surface 16 of the first receiving coil 16 and the second receiving coil 17, respectively.
a and the magnetic detection surface 17a of the second receiving coil 17 are arranged in parallel so that their center positions are on the same straight line.

【0012】第1および第2受信コイル16,17に
は、信号線18,19を介して第1および第2信号測定
器20,21が接続され、第1および第2信号測定器2
0,21には、信号線22,23を介して信号波を表示
するオシロスコープなどの表示画面24aを有する信号
表示器24が接続されている。さらに、第1および第2
信号測定器20,21と信号供給装置10とは信号線2
5により接続されている。
First and second signal measuring devices 20 and 21 are connected to the first and second receiving coils 16 and 17 through signal lines 18 and 19, respectively, and the first and second signal measuring device 2 are connected.
A signal display 24 having a display screen 24a such as an oscilloscope for displaying a signal wave is connected to 0 and 21 via signal lines 22 and 23. In addition, the first and second
The signal measuring device 20, 21 and the signal supply device 10 are connected to the signal line 2
Connected by 5.

【0013】信号供給装置10は、正弦波信号を発生す
る信号発生器10aと、所定の符号系列の信号を発生す
る拡散符号発生器10bと、正弦波信号を符号系列の信
号で変調して、広帯域に拡散するスペクトル拡散変調器
10cと、スペクトル拡散変調器10cから出力される
信号をAM変調するAM変調器10dとを有している。
なお、表示画面24a上では、縦軸に受信レベル(磁界
強度)、横軸に時間(t)がとられている(図2参
照)。
The signal supply device 10 includes a signal generator 10a for generating a sine wave signal, a spread code generator 10b for generating a signal of a predetermined code sequence, and a sine wave signal modulated with a signal of the code sequence. It has a spread spectrum modulator 10c that spreads in a wide band and an AM modulator 10d that AM-modulates the signal output from the spread spectrum modulator 10c.
On the display screen 24a, the vertical axis represents the reception level (magnetic field strength) and the horizontal axis represents time (t) (see FIG. 2).

【0014】位置検出システムは、以上の如く構成され
ているので、位置検出システムによる位置検出方法は、
まず、移動台車2を第1および第2送信コイル6,7の
中心が地下埋設配管1の中心軸線Xと第1および第2受
信コイル16,17の磁気検出面16a,17aの中心
を含む平面との交点に位置するように移動させる。次い
で、信号供給装置10より、第1送信コイル6にCOS
変調された交流電流を与えると共に、第2送信コイル7
にはSIN変調された交流電流を与え、第2送信コイル
7は何れの位相においても中心磁力線Mcが地下埋設配
管1の中心軸線Xと直交する方向に磁界を発生する。
Since the position detecting system is constructed as described above, the position detecting method using the position detecting system is as follows.
First, the moving carriage 2 is a plane in which the centers of the first and second transmitting coils 6 and 7 include the central axis X of the underground buried pipe 1 and the centers of the magnetic detecting surfaces 16a and 17a of the first and second receiving coils 16 and 17, respectively. Move it so that it is located at the intersection with. Then, from the signal supply device 10, the COS is applied to the first transmission coil 6.
The second transmission coil 7 is provided while applying the modulated alternating current.
Is supplied with a SIN-modulated AC current, and the second transmission coil 7 generates a magnetic field in a direction in which the central magnetic field line Mc is orthogonal to the central axis X of the underground buried pipe 1 in any phase.

【0015】このとき、搬送波は、数K〜数百KHz、
たとえば200KHzを使用し、変調波は、数百Hz、
たとえば400Hzを使用する。これにより、第1およ
び第2送信コイル6,7から、1つのコイルが回転して
いるときと同じ回転磁界となるように、COS変調波お
よびSIN変調波が送信される。この場合、スペクトル
拡散変調器10cにより、信号発生器10aからの正弦
波信号A(図3(a)参照)は、拡散符号発生器10b
からの符号系列の信号B(図3(b)参照)でスペクト
ル拡散変調される。そして、スペクトル拡散変調された
信号C(図3(c)参照)は、AM変調器10dでSI
N変調信号D(図3(d)参照)およびCOS変調信号
E(図3(e)参照)となり、SIN変調信号Dは、第
2送信コイル7に送信され、COS変調信号Eは、第1
送信コイル6に送信される。また、スペクトル拡散変調
された信号Cは、基準信号として第1および第2信号測
定器20,21にも送信される。
At this time, the carrier wave is several K to several hundred KHz,
For example, using 200 KHz, the modulating wave is several hundred Hz,
For example, 400 Hz is used. As a result, the COS modulated wave and the SIN modulated wave are transmitted from the first and second transmitting coils 6 and 7 so that the rotating magnetic field is the same as when one coil is rotating. In this case, the spread spectrum modulator 10c converts the sine wave signal A (see FIG. 3A) from the signal generator 10a into the spread code generator 10b.
3 is spread-spectrum-modulated with the signal B of the code sequence from (see FIG. 3B). Then, the spread spectrum modulated signal C (see FIG. 3 (c)) is SI-converted by the AM modulator 10d.
The N modulation signal D (see FIG. 3D) and the COS modulation signal E (see FIG. 3E) become the SIN modulation signal D, which is transmitted to the second transmission coil 7, and the COS modulation signal E is the first.
It is transmitted to the transmission coil 6. The spread spectrum modulated signal C is also transmitted to the first and second signal measuring instruments 20 and 21 as a reference signal.

【0016】第1受信コイル16および第2受信コイル
17は、第1および第2送信コイル6,7の磁界強度を
計測し、その計測信号を第1および第2信号測定器2
0,21に伝送する。第1および第2信号測定器20,
21は、第1および第2受信コイル16,17からの計
測信号と、信号供給装置10から得られる搬送波と同一
の周波数である基準信号とを、200KHzで、同期検
波し(スペクトル拡散変調された信号Cを符号系列の信
号Bで復調する。)、第1および第2送信コイル6,7
と、第1および第2受信コイル16,17との相対位置
および信号波の位相に応じた受信レベル(磁界強度)を
信号表示器24に出力する。
The first receiving coil 16 and the second receiving coil 17 measure the magnetic field strengths of the first and second transmitting coils 6 and 7, and the measured signals are measured by the first and second signal measuring devices 2.
It is transmitted to 0 and 21. First and second signal measuring device 20,
Reference numeral 21 synchronously detects the measurement signals from the first and second receiving coils 16 and 17 and a reference signal having the same frequency as the carrier wave obtained from the signal supply device 10 at 200 KHz (spread spectrum modulation). The signal C is demodulated by the code sequence signal B.), the first and second transmission coils 6 and 7.
Then, the reception level (magnetic field strength) corresponding to the relative positions of the first and second reception coils 16 and 17 and the phase of the signal wave is output to the signal display 24.

【0017】これにより、信号表示器24の表示画面2
4aには、第1および第2受信コイル16,17の計測
信号16b,17bが400Hzの正弦波として得られ
る。次に、複数の第1および第2受信コイル16,17
より検出される同期検波後の信号の位相が一致するよう
に、変位棒14を回転または平行移動する。このとき、
第1受信コイル16および第2受信コイル17より得ら
れる計測信号16b,17bは、第1および第2受信コ
イル16,17と第1および第2送信コイル6,7との
相対位置関係を位相差として表し、両者が一致した場合
に、第1受信コイル16および第2受信コイル17の整
列直線の方向が第1および第2送信コイル6,7の中心
を示すことになる(図4(a)参照)。また、両者が一
致していない場合には、その位相のずれ方向から、第1
受信コイル16および第2受信コイル17の姿勢制御方
向が決定される。
As a result, the display screen 2 of the signal display 24 is displayed.
At 4a, the measurement signals 16b and 17b of the first and second receiving coils 16 and 17 are obtained as a sine wave of 400 Hz. Next, a plurality of first and second receiving coils 16 and 17
The displacement rod 14 is rotated or moved in parallel so that the phase of the signal after the synchronous detection, which is detected more, matches. At this time,
The measurement signals 16b and 17b obtained from the first receiving coil 16 and the second receiving coil 17 are phase difference in the relative positional relationship between the first and second receiving coils 16 and 17 and the first and second transmitting coils 6 and 7. When the two match, the direction of the alignment straight line of the first receiving coil 16 and the second receiving coil 17 indicates the center of the first and second transmitting coils 6 and 7 (FIG. 4A). reference). If they do not match, the first
The attitude control directions of the receiving coil 16 and the second receiving coil 17 are determined.

【0018】たとえば、第1受信コイル16の位相が進
んでいる場合には、第1受信コイル16を上側に移動す
るか、第2受信コイル17を下側に移動することによ
り、補正する(図4(b)参照)。第1受信コイル16
の位相が遅れている場合には、第2受信コイル17を上
側に移動するか、第1受信コイル16を下側に移動する
ことにより、補正する(図4(c)参照)。
For example, when the phase of the first receiving coil 16 is advanced, it is corrected by moving the first receiving coil 16 upward or the second receiving coil 17 downward (FIG. 4 (b)). First receiving coil 16
If the phase is delayed, the second receiving coil 17 is moved upward or the first receiving coil 16 is moved downward (see FIG. 4C).

【0019】なお、第1および第2送信コイル6,7な
らびに第1および第2受信コイル16,17の位相の方
向は、その巻き方向などによって決定される。こうし
て、第1受信コイル16および第2受信コイル17の配
列方向が、地下埋設配管1の位置を示すことになり、観
測地点より地下埋設配管1の位置する方向が検出され
る。
The phase directions of the first and second transmitting coils 6 and 7 and the first and second receiving coils 16 and 17 are determined by the winding direction and the like. In this way, the arrangement direction of the first receiving coil 16 and the second receiving coil 17 indicates the position of the underground buried pipe 1, and the direction in which the underground buried pipe 1 is located is detected from the observation point.

【0020】このように、本実施の形態の位置検出方法
によれば、第1および第2受信コイル16,17の計測
信号16b,17bの位相が一致する第1および第2受
信コイル16,17の配列の向きが第1および第2送信
コイル6,7の中心位置を示す。この場合、第1および
第2受信コイル16,17と第1および第2送信コイル
6,7との間の通信がスペクトル拡散変調された搬送波
により行なわれるので、耐ノイズ性が向上し、測定誤差
が低減する。
As described above, according to the position detecting method of the present embodiment, the first and second receiving coils 16 and 17 in which the phases of the measurement signals 16b and 17b of the first and second receiving coils 16 and 17 coincide with each other. The orientation of the array of indicates the center position of the first and second transmission coils 6 and 7. In this case, since the communication between the first and second receiving coils 16 and 17 and the first and second transmitting coils 6 and 7 is performed by the spread spectrum modulated carrier wave, the noise resistance is improved and the measurement error is improved. Is reduced.

【0021】以上、本発明の実施の形態の位置検出方法
について詳述したが、本発明は、前記実施の形態の位置
検出方法に限定されるものではなく、本発明の特許請求
の範囲に記載されている発明の精神を逸脱しない範囲
で、設計において種々の変更ができるものである。たと
えば、正弦波のスペクトル拡散変調を、直接拡散(D
D)方式、周波数ホッピング(FH)方式、時間ホッピ
ング(TH)方式、ハイブリッド方式などを用いて行な
ってもよい。
Although the position detecting method according to the embodiment of the present invention has been described above in detail, the present invention is not limited to the position detecting method according to the above embodiment, and is described in the claims of the present invention. Various modifications can be made in the design without departing from the spirit of the invention. For example, a spread spectrum modulation of a sine wave can be converted into a direct spread (D
D) method, frequency hopping (FH) method, time hopping (TH) method, hybrid method or the like may be used.

【0022】[0022]

【発明の効果】以上の説明から理解されるように、本発
明の位置検出方法では、送信コイルと受信コイルとの間
で搬送波のスペクトル拡散通信が行なわれるので、耐ノ
イズ性が向上し、測定誤差が低減する。これにより、任
意の観測地点より被測定物の位置する方向を高精度に検
出することができる。
As can be understood from the above description, in the position detecting method of the present invention, the spread spectrum communication of the carrier wave is performed between the transmitting coil and the receiving coil, so that the noise resistance is improved and the measurement is performed. The error is reduced. As a result, the direction in which the measured object is located can be detected with high accuracy from an arbitrary observation point.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の位置検出方法を実施す
る際に使用する位置検出システムの概略構成図。
FIG. 1 is a schematic configuration diagram of a position detection system used when implementing a position detection method according to an embodiment of the present invention.

【図2】本発明の一実施の形態の位置検出方法を説明す
る信号処理系のブロック図。
FIG. 2 is a block diagram of a signal processing system for explaining a position detecting method according to an embodiment of the present invention.

【図3】(a)〜(e)は本発明の一実施の形態の位置
検出方法に係る送信コイルに供給される信号波形図。
3 (a) to 3 (e) are signal waveform diagrams supplied to the transmission coil according to the position detecting method of the embodiment of the present invention.

【図4】(a)〜(c)は本発明の一実施の形態の位置
検出方法に係る送受信コイルの相対位置とそのときの観
測信号の波形図。
4A to 4C are waveform diagrams of relative positions of transmitting and receiving coils according to the position detecting method of one embodiment of the present invention and observed signals at that time.

【符号の説明】[Explanation of symbols]

1 地下埋設配管 2 移動台車 3 車輪 4 制御装置 5,18,19,22,23,25 信号線 6 第1送信コイル 7 第2送信コイル 8,9 電力線 10 信号供給装置 10a 信号発生器 10b 拡散符号発生器 10c スペクトル拡散変調器 10d AM変調器 11 磁気検出装置 12 基台 13 支持板 14 変位棒 15 移動手段 16 第1受信コイル 17 第2受信コイル 20 第1信号測定器 21 第2信号測定器 24 信号表示器 24a 表示画面 DESCRIPTION OF SYMBOLS 1 Underground piping 2 Mobile truck 3 Wheels 4 Control device 5,18,19,22,23,25 Signal line 6 1st transmission coil 7 2nd transmission coil 8 and 9 Power line 10 Signal supply device 10a Signal generator 10b Spreading code Generator 10c Spread spectrum modulator 10d AM modulator 11 Magnetic detection device 12 Base 13 Support plate 14 Displacement rod 15 Moving means 16 First receiving coil 17 Second receiving coil 20 First signal measuring instrument 21 Second signal measuring instrument 24 Signal display 24a display screen

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01V 3/10 G01V 3/10 B F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G01V 3/10 G01V 3/10 BF

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 観測地点に同一直線上に磁気検出面の中
心を有する複数の受信コイルが配列され、被測定物内に
同一中心点を有し直交した第1送信コイルおよび第2送
信コイルが挿入され、搬送波をスペクトル拡散変調した
後、AM変調し、前記第1および第2送信コイルに与
え、前記第1および第2送信コイルに磁界を発生させ、
前記第1および第2送信コイルの磁界強度を前記複数の
受信コイルにより計測し、前記複数の受信コイルが計測
した個々の計測信号をスペクトル拡散変調された前記第
1および第2送信コイルへの搬送波とで同期検波し、前
記複数の受信コイルが計測した個々の計測信号の位相を
比較し、前記位相が一致するような前記複数の受信コイ
ルの配列方向を求めることにより、前記被測定物の位置
を検出することを特徴とする位置検出方法。
1. A plurality of receiving coils having a center of a magnetic detection surface arranged on the same straight line at an observation point, and a first transmitting coil and a second transmitting coil having the same central point and orthogonal to each other in an object to be measured. After being inserted, the carrier wave is spread-spectrum-modulated, then AM-modulated and given to the first and second transmission coils to generate a magnetic field in the first and second transmission coils,
The magnetic field strengths of the first and second transmitting coils are measured by the plurality of receiving coils, and individual measurement signals measured by the plurality of receiving coils are spread-spectrum-modulated to the first and second transmitting coils. By synchronously detecting with, the phases of the individual measurement signals measured by the plurality of receiving coils are compared, and the arrangement direction of the plurality of receiving coils such that the phases match each other is obtained. A position detecting method characterized by detecting the position.
JP8141952A 1996-06-04 1996-06-04 Detection of position Pending JPH09325003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8141952A JPH09325003A (en) 1996-06-04 1996-06-04 Detection of position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8141952A JPH09325003A (en) 1996-06-04 1996-06-04 Detection of position

Publications (1)

Publication Number Publication Date
JPH09325003A true JPH09325003A (en) 1997-12-16

Family

ID=15303952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8141952A Pending JPH09325003A (en) 1996-06-04 1996-06-04 Detection of position

Country Status (1)

Country Link
JP (1) JPH09325003A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116790A (en) * 1998-10-15 2000-04-25 Biosense Inc Detection of metallic interference
JP2007139706A (en) * 2005-11-22 2007-06-07 Univ Nihon Position detection system
WO2008096856A1 (en) * 2007-02-09 2008-08-14 Asahi Kasei Emd Corporation Spatial information detecting system, its detecting method, and spatial information detecting device
JP2008275395A (en) * 2007-04-26 2008-11-13 Asahi Kasei Electronics Co Ltd Position attitude detection system, its detection method, and position attitude detection device
JP2013134219A (en) * 2011-12-27 2013-07-08 Ntt Infranet Co Ltd Data processing device, position detection system, data processing method, and program
WO2016170676A1 (en) * 2015-04-24 2016-10-27 独立行政法人石油天然ガス・金属鉱物資源機構 Survey method, seismic vibrator, and survey system
DE102019200192A1 (en) 2018-01-19 2019-07-25 Advantest Corporation Measuring device, method and program
WO2020087798A1 (en) * 2018-10-31 2020-05-07 北京讯腾智慧科技股份有限公司 Safety monitoring method and system for monitoring deformation of buried pipeline through beidou combined with cathode protection pile

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116790A (en) * 1998-10-15 2000-04-25 Biosense Inc Detection of metallic interference
JP2007139706A (en) * 2005-11-22 2007-06-07 Univ Nihon Position detection system
JP4713312B2 (en) * 2005-11-22 2011-06-29 学校法人日本大学 Position detection system
WO2008096856A1 (en) * 2007-02-09 2008-08-14 Asahi Kasei Emd Corporation Spatial information detecting system, its detecting method, and spatial information detecting device
JP4875110B2 (en) * 2007-02-09 2012-02-15 旭化成エレクトロニクス株式会社 Spatial information detection system, detection method thereof, and spatial information detection apparatus
JP2008275395A (en) * 2007-04-26 2008-11-13 Asahi Kasei Electronics Co Ltd Position attitude detection system, its detection method, and position attitude detection device
JP2013134219A (en) * 2011-12-27 2013-07-08 Ntt Infranet Co Ltd Data processing device, position detection system, data processing method, and program
WO2016170676A1 (en) * 2015-04-24 2016-10-27 独立行政法人石油天然ガス・金属鉱物資源機構 Survey method, seismic vibrator, and survey system
JPWO2016170676A1 (en) * 2015-04-24 2018-02-22 独立行政法人石油天然ガス・金属鉱物資源機構 Survey method, generator and survey system
US10775523B2 (en) 2015-04-24 2020-09-15 Japan Oil, Gas And Metals National Corporation Survey method, seismic vibrator, and survey system
DE102019200192A1 (en) 2018-01-19 2019-07-25 Advantest Corporation Measuring device, method and program
US10914794B2 (en) 2018-01-19 2021-02-09 Advantest Corporation Measuring apparatus, method, and storage medium
WO2020087798A1 (en) * 2018-10-31 2020-05-07 北京讯腾智慧科技股份有限公司 Safety monitoring method and system for monitoring deformation of buried pipeline through beidou combined with cathode protection pile

Similar Documents

Publication Publication Date Title
CA2205544C (en) Method and apparatus for detecting underground utility conveyances
JP2018531568A6 (en) System, method and apparatus for induction and alignment in a wireless electromagnetic induction charging system of an electric vehicle
JP2018531568A (en) System, method and apparatus for induction and alignment in a wireless electromagnetic induction charging system of an electric vehicle
US5260659A (en) Method and apparatus for tracing conductors using an alternating signal having two components related in frequency and phase
US6549011B2 (en) Conductor tracing system
GB2220070A (en) Method and apparatus for the location of underground pipes
WO1997012262A9 (en) Method and apparatus for detecting underground utility conveyances
JPH09325003A (en) Detection of position
JP2007010639A (en) Active tag apparatus
JP3352550B2 (en) Position detection method
JP2001116850A (en) Method and device for detecting underground pipe
JPH0921637A (en) Position detection method
JPH0914958A (en) Method for detecting position
JP3352549B2 (en) Position detection method
JPH0914959A (en) Method for detecting position
CN102788934A (en) Method and device for finding line ground fault point
JP2002048875A (en) Embedded position detection system and receiving device therefor
JPS5950374A (en) Moving body position confirming device
EP1217391A2 (en) Conductor tracing system
JP2913604B2 (en) Object position detection device installed in a concealed place
JPH033011A (en) Guide apparatus for car in lane non-section driveway
JP2006145302A (en) Underground position measurement method and system
US6859162B2 (en) Underground object locating system without direction ambiguity
JP3041415B2 (en) Electromagnetic method for measuring ellipsoid parameters
JPS5858488A (en) Detector for object buried in ground