[go: up one dir, main page]

JPH09321168A - Semiconductor package and semiconductor device - Google Patents

Semiconductor package and semiconductor device

Info

Publication number
JPH09321168A
JPH09321168A JP14142596A JP14142596A JPH09321168A JP H09321168 A JPH09321168 A JP H09321168A JP 14142596 A JP14142596 A JP 14142596A JP 14142596 A JP14142596 A JP 14142596A JP H09321168 A JPH09321168 A JP H09321168A
Authority
JP
Japan
Prior art keywords
circuit board
buffer layer
insulating buffer
semiconductor device
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14142596A
Other languages
Japanese (ja)
Inventor
Michio Horiuchi
道夫 堀内
Yukiharu Takeuchi
之治 竹内
Ryuichi Matsuki
隆一 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP14142596A priority Critical patent/JPH09321168A/en
Publication of JPH09321168A publication Critical patent/JPH09321168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable reliable mounting of a semiconductor device by relaxing a thermal stress acting on a junction part in mounting the semiconductor device, and realize a multi-pin structure by enabling an increase in size of the semiconductor device. SOLUTION: In this device, a semiconductor element 30 is mounted on an element mounting surface of a circuit board 10, and an external connection terminal 12, such as, a solder ball, is electrically connected to an electrode pad 14 formed on a mounting surface of the circuit board 10. In this case, an insulating buffer film layer 40 having a Young's modulus not greater than 1.0×10<4> kgf/mm<2> and a thickness not smaller than 0.05mm is applied onto the mounting surface of the circuit board 10. At a portion of the insulating buffer film layer 40 corresponding to the electrode pad 14, a through-hole 42 is provided in a penetrating manner. A continuity portion 44 made of a conductive material is formed in the through-hole 42, and the electrode pad 14 and the external connection terminal 12 are connected with each other by the continuity portion 44.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は実装時に半導体装置
と実装基板との接合部に作用する熱応力を好適に緩和で
きる半導体パッケージ及び半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor package and a semiconductor device capable of suitably relieving thermal stress acting on a joint between a semiconductor device and a mounting substrate during mounting.

【0002】[0002]

【従来の技術】セラミック基板あるいはプラスチック基
板(樹脂基板)を回路基板に使用したBGA型半導体装
置では、半導体装置と実装基板とを接続する外部接続端
子の端子数が増加する傾向にあり、これとともに半導体
素子を搭載する回路基板が大型化しつつある。しかし、
このように回路基板が大型になると、実装基板と回路基
板との熱膨張係数が相違することに起因して半導体装置
を実装した際に半導体装置と実装基板との接合部に作用
する熱応力が大きくなり、接合部が破損するといった問
題が生じる。
2. Description of the Related Art In a BGA type semiconductor device in which a ceramic substrate or a plastic substrate (resin substrate) is used as a circuit board, the number of external connection terminals for connecting the semiconductor device and a mounting board tends to increase. The circuit board on which the semiconductor element is mounted is becoming larger. But,
When the circuit board becomes large in this way, the thermal stress acting on the joint between the semiconductor device and the mounting board when the semiconductor device is mounted is caused by the difference in the thermal expansion coefficients of the mounting board and the circuit board. However, the size of the joint becomes large and the joint is damaged.

【0003】図9はセラミック回路基板10に外部接続
端子12としてはんだボールを接合した接合部の従来構
成を示す。14はセラミック回路基板10に従来より公
知のメタライズ法などにより形成した端子パッドで、外
部接続端子12のはんだボールが低融点はんだ16を介
して端子パッド14に接合されている。このような接合
方法では、セラミック回路基板10と実装基板との熱膨
張係数の差に起因する熱応力は主として低融点はんだ1
6のはんだ接合部に作用し、熱疲労によってはんだ接合
部が破損する。
FIG. 9 shows a conventional structure of a joint portion in which a solder ball is joined as an external connection terminal 12 to a ceramic circuit board 10. Reference numeral 14 is a terminal pad formed on the ceramic circuit board 10 by a conventionally known metallizing method or the like, and the solder balls of the external connection terminals 12 are bonded to the terminal pads 14 via the low melting point solder 16. In such a joining method, the thermal stress caused by the difference in thermal expansion coefficient between the ceramic circuit board 10 and the mounting board is mainly due to the low melting point solder 1
6 acts on the solder joint, and the solder joint is damaged by thermal fatigue.

【0004】上記のように熱応力によってはんだ接合部
が破損する問題を防止する方法として、図10に示すよ
うに、はんだ接合部18をセラミック回路基板10内に
埋設するように形成し、はんだ接合部18に外部接続端
子12を接合する構成としたものがある。はんだ接合部
18はセラミック回路基板10で端子パッド14を形成
した部位にはんだ充填用の孔20を設け、この孔20内
にはんだを充填して形成される。
As a method of preventing the problem that the solder joint portion is damaged by the thermal stress as described above, as shown in FIG. 10, the solder joint portion 18 is formed so as to be embedded in the ceramic circuit board 10, and the solder joint portion is formed. There is a configuration in which the external connection terminal 12 is joined to the portion 18. The solder joint portion 18 is formed by forming a solder filling hole 20 in a portion of the ceramic circuit board 10 where the terminal pad 14 is formed and filling the hole 20 with solder.

【0005】このようにセラミック回路基板10内には
んだ接合部18を設けて外部接続端子12を接合した構
成は、歪みに弱いはんだ接合部が高強度のセラミック回
路基板10によって補強されて保持されるから、接合部
全体としての強度を向上させることができ、これによっ
て熱疲労に対する耐久性の高い半導体装置として提供す
ることを可能にしている。
As described above, in the structure in which the solder joint portion 18 is provided in the ceramic circuit board 10 and the external connection terminals 12 are joined, the solder joint portion which is weak against distortion is reinforced and held by the high-strength ceramic circuit board 10. Therefore, the strength of the entire bonded portion can be improved, which makes it possible to provide a semiconductor device having high durability against thermal fatigue.

【0006】[0006]

【発明が解決しようとする課題】半導体装置を実装した
際に半導体装置と実装基板との熱膨張係数が相違するこ
とによって半導体装置と実装基板との接合部に生じる熱
応力を回避するには、とくに接合部を補強するといった
方法を採用しないとすると、半導体素子を搭載するパッ
ケージ(回路基板)の大きさを制限して過大な熱応力が
作用しないようにするという方策になる。しかしなが
ら、パッケージの大きさを制限すると多ピン化が困難に
なり、半導体装置としての用途が制限される。
In order to avoid the thermal stress generated at the joint between the semiconductor device and the mounting substrate due to the difference in the thermal expansion coefficient between the semiconductor device and the mounting substrate when the semiconductor device is mounted, Unless a method of reinforcing the joint is adopted, it is a measure to limit the size of the package (circuit board) on which the semiconductor element is mounted so that excessive thermal stress does not act. However, if the size of the package is limited, it becomes difficult to increase the number of pins, and the application as a semiconductor device is limited.

【0007】前述したセラミック回路基板10内にはん
だ接合部18を形成する方法は、強度が高く破損しにく
い部位で熱応力を受けることによって接合部に作用する
熱応力の問題を解消し、これによってパッケージの大型
化を図ることを可能にするものである。これに対し、本
発明は半導体装置と実装基板との接合部に作用する熱応
力を緩和し、これによって接合部に作用する熱応力の問
題を回避しようとする。なお、半導体装置を実装基板に
実装した際に接合部に作用する熱応力の問題は、上記の
ようなセラミック回路基板を用いた半導体装置に限ら
ず、プラスチック回路基板を用いた半導体装置等につい
ても同様に問題となっている。
The above-described method of forming the solder joint portion 18 in the ceramic circuit board 10 solves the problem of thermal stress acting on the joint portion by receiving thermal stress at a portion having high strength and less likely to be damaged. This makes it possible to increase the size of the package. On the other hand, the present invention seeks to mitigate the thermal stress acting on the joint between the semiconductor device and the mounting substrate, thereby avoiding the problem of thermal stress acting on the joint. The problem of thermal stress acting on the joint when the semiconductor device is mounted on the mounting board is not limited to the semiconductor device using the ceramic circuit board as described above, and is also applicable to the semiconductor device using the plastic circuit board and the like. It is also a problem.

【0008】本発明は、上記のように半導体装置を実装
基板に実装した際に半導体装置と実装基板との接合部に
作用する熱応力を緩和して、接合部の破損や剥離といっ
た問題を生じさせずに確実に接合部を保持することがで
き、これによって接続信頼性の高い製品として使用でき
る半導体パッケージ及び半導体装置を提供することを目
的としている。
The present invention alleviates the thermal stress acting on the joint between the semiconductor device and the mounting board when the semiconductor device is mounted on the mounting board as described above, and causes a problem such as damage or peeling of the joint. It is an object of the present invention to provide a semiconductor package and a semiconductor device that can reliably hold the bonded portion without causing the connection and that can be used as a product with high connection reliability.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するため次の構成を備える。すなわち、半導体パッケー
ジとして、半導体素子が搭載される回路基板に、はんだ
ボール等の外部接続端子が電気的に導通して取り付けら
れる端子パッドが設けられ、該端子パッドが設けられた
前記回路基板の外面に、ヤング率1.0×10 4 kgf/mm2
以下、厚さ0.05mm以上の電気的絶縁性を有する絶
縁緩衝層が被着形成され、該絶縁緩衝層の前記端子パッ
ドに対応する部位に貫通孔が透設されたことを特徴とす
る。また、前記貫通孔の内壁面に金属層を被着形成する
ことによっても、好適に接合部に作用する熱応力を緩和
することができる。また、前記絶縁緩衝層として、ガラ
ス繊維入りBT(ビスマレイミド トリアジン)レジン
が好適に用いられる。また、前記絶縁緩衝層が、異種材
料を用いて複数層に形成することも、熱応力を緩和する
上で好適である。また、絶縁緩衝層として、エポキシ樹
脂、BT樹脂、ポリイミド樹脂、ポリイミドシロキサン
樹脂、ポリエステル樹脂、シリコーン系ゴム、ポリウレ
タン樹脂から選択された有機材料を用いることができ
る。
The present invention achieves the above object.
In order to do so, the following configuration is provided. That is, the semiconductor package
Solder on the circuit board on which the semiconductor element is mounted.
If the external connection terminals such as balls are electrically connected,
The terminal pad provided is provided, and the terminal pad is provided
On the outer surface of the circuit board, Young's modulus 1.0 × 10 Fourkgf / mmTwo
Below, an insulating layer with a thickness of 0.05 mm or more
An edge buffer layer is deposited and the terminal pad of the insulating buffer layer is formed.
It is characterized in that a through-hole is transparently provided at a portion corresponding to
You. In addition, a metal layer is adhered to the inner wall surface of the through hole.
Also reduces the thermal stress that acts on the joint.
can do. Further, as the insulating buffer layer, glass is used.
Fiber-containing BT (Bismaleimide Triazine) Resin
Is preferably used. In addition, the insulating buffer layer is made of a different material.
It is also possible to form multiple layers by using materials to relieve thermal stress.
It is suitable above. Also, as an insulating buffer layer, epoxy resin
Oil, BT resin, polyimide resin, polyimide siloxane
Resin, polyester resin, silicone rubber, polyurethane
Organic materials selected from tongue resin can be used
You.

【0010】また、半導体装置として、前記半導体パッ
ケージの回路基板の素子搭載面に半導体素子が搭載さ
れ、前記貫通孔内に導電材料が充填されて成る導通部が
形成され、該導通部により前記端子パッドと外部接続端
子とが電気的に接続されたことを特徴とする。また、前
記半導体パッケージの回路基板の素子搭載面に半導体素
子が搭載され、前記貫通孔内に導電材料が充填されて成
る導通部が形成され、該導通部が前記端子パッドに接続
されるとともに、前記外部接続端子が前記導通部と一体
に前記絶縁緩衝層の表面から突出するバンプ状に形成さ
れたことを特徴とする。
Further, as a semiconductor device, a semiconductor element is mounted on an element mounting surface of a circuit board of the semiconductor package, and a conductive portion formed by filling a conductive material in the through hole is formed, and the terminal is formed by the conductive portion. The pad and the external connection terminal are electrically connected. Further, a semiconductor element is mounted on the element mounting surface of the circuit board of the semiconductor package, and a conducting portion formed by filling a conductive material in the through hole is formed, and the conducting portion is connected to the terminal pad, The external connection terminal is formed in a bump shape integrally with the conductive portion so as to project from the surface of the insulating buffer layer.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施形態に
つき添付図面に基づいて説明する。 (第1実施形態)図1は本発明に係る半導体装置の第1
の実施形態を示す断面図である。本実施形態の半導体装
置はアルミナあるいは窒化アルミニウム等のセラミック
グリーンシートを多層に積層して焼成してなる回路基板
10(半導体パッケージ)に半導体素子30を搭載し、
実装基板との接続面(実装面)に外部接続端子12とし
てのはんだボールを接合したものである。半導体素子3
0はキャビティ凹部32の底面にダイ付けされ、ワイヤ
ボンディング法により配線パターン34と電気的に接続
され、キャップ36によって封止されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. (First Embodiment) FIG. 1 shows a first semiconductor device according to the present invention.
It is sectional drawing which shows the embodiment. In the semiconductor device of this embodiment, a semiconductor element 30 is mounted on a circuit board 10 (semiconductor package) obtained by laminating ceramic green sheets such as alumina or aluminum nitride in multiple layers and firing them.
A solder ball as the external connection terminal 12 is joined to the connection surface (mounting surface) with the mounting substrate. Semiconductor element 3
0 is die-attached to the bottom surface of the cavity recess 32, is electrically connected to the wiring pattern 34 by the wire bonding method, and is sealed by the cap 36.

【0012】配線パターン34は回路基板10の内部に
従来より公知の方法で形成した内部配線パターン34
a、ビア34bを介して回路基板10の実装面に形成し
た端子パッド14と電気的に接続する。端子パッド14
は所定間隔でアレイ状に配置されている。
The wiring pattern 34 is formed inside the circuit board 10 by a conventionally known method.
It is electrically connected to the terminal pad 14 formed on the mounting surface of the circuit board 10 via a and the via 34b. Terminal pad 14
Are arranged in an array at predetermined intervals.

【0013】40は回路基板10の端子パッド14を形
成した面に被着形成した絶縁緩衝層である。本実施形態
の半導体装置は端子パッド14と外部接続端子12との
中間にこの絶縁緩衝層40を介在させて端子パッド14
と外部接続端子12とを電気的に接続したことを特徴と
する。絶縁緩衝層40は半導体装置をセラミックあるい
は樹脂基板などから成る実装基板に実装した際に、外部
接続端子12あるいは端子パッド14に作用する熱応力
を緩和する目的で設ける。このため、絶縁緩衝層40は
所定の柔軟性を有する材料を使用し、所定の厚さを確保
するようにする。
Reference numeral 40 denotes an insulating buffer layer which is adhered to the surface of the circuit board 10 on which the terminal pads 14 are formed. In the semiconductor device of this embodiment, the insulating buffer layer 40 is interposed between the terminal pad 14 and the external connection terminal 12, and the terminal pad 14 is provided.
And the external connection terminal 12 are electrically connected. The insulating buffer layer 40 is provided for the purpose of relieving thermal stress acting on the external connection terminals 12 or the terminal pads 14 when the semiconductor device is mounted on a mounting board made of a ceramic or resin substrate. Therefore, the insulating buffer layer 40 is made of a material having a predetermined flexibility to ensure a predetermined thickness.

【0014】前記端子パッド14と外部接続端子12と
の電気的接続は絶縁緩衝層40に設けた導通部44を介
してなされる。導通部44は各々の端子パッド14に対
応して絶縁緩衝層40に設けた貫通孔42内にはんだ等
の導電材料を充填して形成する。導通部44を形成する
のは、回路基板10に半導体素子30を搭載する際にダ
イ付け等で加熱するから、通常、半導体素子30をキャ
ップ封止等により封止した後である。なお、高融点はん
だ等を用いて半導体素子30を搭載する前にあらかじめ
導通部44を形成しておいてもよい。
The electrical connection between the terminal pad 14 and the external connection terminal 12 is made through the conducting portion 44 provided in the insulating buffer layer 40. The conductive portion 44 is formed by filling a through hole 42 provided in the insulating buffer layer 40 corresponding to each terminal pad 14 with a conductive material such as solder. The conductive portion 44 is formed after the semiconductor element 30 is mounted on the circuit board 10 because it is heated by die attachment when the semiconductor element 30 is mounted on the circuit board 10. The conductive portion 44 may be formed in advance before mounting the semiconductor element 30 using high melting point solder or the like.

【0015】端子パッド14は貫通孔42の内底面で導
通部44に接続し、導通部44の外面にはんだボール等
の外部接続端子12が接合される。こうして、端子パッ
ド14と外部接続端子12とが電気的に接続し、半導体
素子30と外部接続端子12とが電気的に接続された半
導体装置として得られる。
The terminal pad 14 is connected to the conductive portion 44 at the inner bottom surface of the through hole 42, and the external connection terminal 12 such as a solder ball is joined to the outer surface of the conductive portion 44. In this way, a semiconductor device in which the terminal pad 14 and the external connection terminal 12 are electrically connected and the semiconductor element 30 and the external connection terminal 12 are electrically connected is obtained.

【0016】本実施形態の半導体装置において特徴とす
る構成は、回路基板10の実装面に形成した端子パッド
14にじかにはんだボール等の外部接続端子12を接合
せず、導通部44を設けた絶縁緩衝層40を端子パッド
14と外部接続端子12との中間に配置し、導通部44
を介して端子パッド14と外部接続端子12とを接続し
たことにある。
The semiconductor device of this embodiment is characterized in that the terminal pad 14 formed on the mounting surface of the circuit board 10 is not directly joined to the external connection terminal 12 such as a solder ball, but is provided with a conductive portion 44. The buffer layer 40 is disposed between the terminal pad 14 and the external connection terminal 12, and the conductive portion 44 is provided.
The terminal pad 14 and the external connection terminal 12 are connected via the.

【0017】絶縁緩衝層40は半導体装置を実装基板に
実装して、接合部に熱応力等の外力が作用した場合に絶
縁緩衝層40が変形することで応力を緩和するように作
用する。すなわち、本実施形態の半導体装置では絶縁緩
衝層40によって接合部を保持すると同時に、接合部に
応力が作用した際に絶縁緩衝層40が変形することによ
って接合部を若干変位させ、これによって接合部に直接
的に応力が作用することを防止する。こうして、半導体
装置を実装した際に生じる熱応力等によって接合部が破
損したりすることを防止することができる。
The insulating buffer layer 40 functions to relax the stress by mounting the semiconductor device on a mounting substrate and deforming the insulating buffer layer 40 when an external force such as a thermal stress acts on the joint. That is, in the semiconductor device according to the present embodiment, the insulating buffer layer 40 holds the joint portion, and at the same time, the insulating buffer layer 40 is deformed when stress acts on the joint portion to slightly displace the joint portion. It prevents the stress from directly acting on. In this way, it is possible to prevent the joint portion from being damaged by thermal stress or the like generated when the semiconductor device is mounted.

【0018】(第2実施形態)上述した第1実施形態は
キャビティアップタイプの半導体装置であるが、回路基
板10の端子パッド14を形成した面に絶縁緩衝層40
を設ける半導体装置としては、図2に示すようなキャビ
ティダウンタイプの製品についても同様に適用可能であ
る。図2に示す実施形態の場合も絶縁緩衝層40を設け
たことにより、半導体装置を実装した際に接合部に作用
する熱応力を効果的に緩和させることができる。38は
半導体素子30を封止したポッティング樹脂である。ま
た、キャビティダウンタイプの他の実施形態として、回
路基板10に素子搭載孔を貫通して設け、素子搭載部の
外面に放熱板を接合した放熱板付きの半導体装置にも同
様に適用できる。
(Second Embodiment) Although the first embodiment described above is a cavity-up type semiconductor device, the insulating buffer layer 40 is formed on the surface of the circuit board 10 on which the terminal pads 14 are formed.
The semiconductor device having the same can be similarly applied to a cavity-down type product as shown in FIG. In the case of the embodiment shown in FIG. 2 also, by providing the insulating buffer layer 40, it is possible to effectively relieve the thermal stress that acts on the bonding portion when the semiconductor device is mounted. A potting resin 38 seals the semiconductor element 30. Further, as another embodiment of the cavity-down type, the present invention can be similarly applied to a semiconductor device with a heat dissipation plate, which is provided by penetrating an element mounting hole in the circuit board 10 and a heat dissipation plate is joined to the outer surface of the element mounting portion.

【0019】(第3実施形態)図3は半導体装置の第3
実施形態を示す。本実施形態では2層の絶縁緩衝層40
b、40cによって構成したことを特徴とする。このよ
うに、絶縁緩衝層を複数層で形成する効果は、異なる素
材によって形成する絶縁緩衝層を複合することにより、
全体として接合部に作用する熱応力を有効に抑えること
が可能になる点にある。
(Third Embodiment) FIG. 3 shows a third semiconductor device.
An embodiment is shown. In this embodiment, the two insulating buffer layers 40 are provided.
b, 40c. In this way, the effect of forming the insulating buffer layer with a plurality of layers is that by combining the insulating buffer layers formed of different materials,
The point is that the thermal stress acting on the joint as a whole can be effectively suppressed.

【0020】たとえば、回路基板10に接する側の絶縁
緩衝層40bの熱膨張係数を回路基板10の熱膨張係数
に近い値とし、外面側の絶縁緩衝層40cの熱膨張係数
を実装基板の熱膨張係数に近い値とすることによって、
絶縁緩衝層を1層のみ設ける場合にくらべて回路基板1
0と絶縁緩衝層40bとの熱膨張係数の差と、絶縁緩衝
層40cと実装基板との間の熱膨張係数の差を小さくす
ることが可能になり、接合部に作用する熱応力を全体と
して好適に緩和することが可能である。
For example, the thermal expansion coefficient of the insulating buffer layer 40b on the side in contact with the circuit board 10 is set to a value close to the thermal expansion coefficient of the circuit board 10, and the thermal expansion coefficient of the insulating buffer layer 40c on the outer surface side is the thermal expansion of the mounting board. By setting the value close to the coefficient,
Circuit board 1 compared to the case where only one insulating buffer layer is provided
It is possible to reduce the difference in the coefficient of thermal expansion between 0 and the insulating buffer layer 40b and the difference in the coefficient of thermal expansion between the insulating buffer layer 40c and the mounting substrate, and to reduce the thermal stress acting on the joint as a whole. It can be suitably mitigated.

【0021】回路基板10に絶縁緩衝層40を被着した
場合は、基板と絶縁緩衝層40との熱膨張係数の差によ
って基板が反る場合があるが、上記のように絶縁緩衝層
を複数層で形成して、絶縁緩衝層の熱膨張係数に傾斜を
もたせる方法は基板の反りを好適に防止できる点からも
有効である。また、絶縁緩衝層40を複数層とすること
により絶縁緩衝層40全体を必要以上に厚くせずに半導
体装置と実装基板との熱膨張係数のマッチングを図るこ
とが可能になる。
When the insulating buffer layer 40 is adhered to the circuit board 10, the substrate may warp due to the difference in thermal expansion coefficient between the substrate and the insulating buffer layer 40. However, as described above, a plurality of insulating buffer layers are provided. The method of forming the insulating buffer layer with a layer so that the coefficient of thermal expansion of the insulating buffer layer has an inclination is effective from the viewpoint that the warp of the substrate can be preferably prevented. Further, by forming the insulating buffer layer 40 in a plurality of layers, it is possible to match the thermal expansion coefficients of the semiconductor device and the mounting substrate without making the entire insulating buffer layer 40 thicker than necessary.

【0022】(第4実施形態)図4は半導体装置の第4
実施形態を示す。本実施形態では回路基板10に被着形
成する絶縁緩衝層40に設ける貫通孔42の内壁面に金
属層46を形成したことを特徴とする。上記各実施形態
で絶縁緩衝層40に設けた貫通孔42では内底面で露出
する端子パッド14を除き、貫通孔42の内壁面とはん
だ等の導電材料とは濡れ性がなく、導通部44は内底面
でのみ接合する。本実施形態は貫通孔42の内壁面に金
属層46を設け、貫通孔42の内壁面全体とはんだ等の
導電材料が濡れて接合するようにしたものである。
(Fourth Embodiment) FIG. 4 shows a fourth semiconductor device.
An embodiment is shown. The present embodiment is characterized in that the metal layer 46 is formed on the inner wall surface of the through hole 42 provided in the insulating buffer layer 40 formed on the circuit board 10. In the through holes 42 provided in the insulating buffer layer 40 in each of the above-described embodiments, except for the terminal pads 14 exposed on the inner bottom surface, the inner wall surface of the through holes 42 and the conductive material such as solder have no wettability, and the conductive portion 44 is Join only on the inner bottom surface. In this embodiment, a metal layer 46 is provided on the inner wall surface of the through hole 42 so that the entire inner wall surface of the through hole 42 and the conductive material such as solder are wet and bonded.

【0023】図5に外部接続端子12を接合した部位を
拡大して示す。貫通孔42の内底面に端子パッド14が
位置し、貫通孔42の内壁面に金属層46が形成され、
導通部44が貫通孔42の内面全体に接合して支持され
ている。実施形態では貫通孔42の開口部の縁部に金属
層46aを縁取りして形成しているが、この金属層46
aははんだボール等の外部接続端子12を接合する際
に、導通部44の縁部での濡れ性を良好にして外部接続
端子12が確実に接合されるようにする目的で設けてい
る。
FIG. 5 shows an enlarged view of the portion to which the external connection terminal 12 is joined. The terminal pad 14 is located on the inner bottom surface of the through hole 42, and the metal layer 46 is formed on the inner wall surface of the through hole 42.
The conducting portion 44 is joined to and supported by the entire inner surface of the through hole 42. In the embodiment, the metal layer 46 a is formed by edging the edge of the opening of the through hole 42.
When the external connection terminal 12 such as a solder ball is joined, a is provided for the purpose of ensuring the wettability at the edge of the conductive portion 44 and ensuring that the external connection terminal 12 is joined.

【0024】以上説明したように、回路基板10の端子
パッド14を形成した面に絶縁緩衝層40を設けて外部
接続端子12を接合することにより接合部に作用する熱
応力等の外力を緩和する方法は、上記実施形態のような
セラミック回路基板を用いた半導体装置に限らず、プラ
スチック回路基板、ガラス回路基板またはシリコン回路
基板などを用いる半導体装置にも同様に適用することが
可能である。そして、このような構成を採用することに
より、半導体装置を実装基板に実装した際の接続部分の
信頼性を向上させることができ、半導体パッケージを大
型にすることを可能にし、多ピン化にも好適に対応する
ことが可能になる。
As described above, the insulating buffer layer 40 is provided on the surface of the circuit board 10 on which the terminal pads 14 are formed, and the external connection terminals 12 are bonded to alleviate external force such as thermal stress acting on the bonded portions. The method is not limited to the semiconductor device using the ceramic circuit board as in the above embodiment, but can be similarly applied to the semiconductor device using a plastic circuit board, a glass circuit board, a silicon circuit board, or the like. By adopting such a configuration, it is possible to improve the reliability of the connection portion when the semiconductor device is mounted on the mounting board, it is possible to increase the size of the semiconductor package, and to increase the number of pins. It becomes possible to respond appropriately.

【0025】なお、基板に接合する外部接続端子12と
してははんだボールに限らず、たとえば銅、ニッケル等
の金属球体を芯材として外面にはんだめっきを施したも
の、表面実装用または差し込み用のリードピン等が使用
できる。また、外部接続端子12を導通部44と別体で
設けるかわりに、絶縁緩衝層40に設ける低融点はんだ
の導通部44を貫通孔42の開口部から外方にバンプ状
に突出させて外部接続端子とすることも可能である。
The external connection terminals 12 to be joined to the substrate are not limited to solder balls, but may be, for example, metal spheres made of copper, nickel, or the like, the outer surfaces of which are solder-plated, and lead pins for surface mounting or insertion. Etc. can be used. Further, instead of providing the external connection terminal 12 as a separate body from the conducting portion 44, the conducting portion 44 of the low melting point solder provided in the insulating buffer layer 40 is projected outward from the opening portion of the through hole 42 in a bump shape and externally connected. It can also be a terminal.

【0026】[0026]

【実施例】【Example】

(実施例1)図1に示す半導体装置の製造例につき、図
6に従って説明する。この実施例の半導体装置は、半導
体素子を搭載するためのセラミック回路基板に、絶縁緩
衝層40として0.2mm厚のガラス繊維入りBT(ビ
スマレイミド・トリアジン)レジン(ヤング率1.0×
104kgf/mm2以下)を被着して成る。
Example 1 An example of manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIG. In the semiconductor device of this embodiment, a BT (bismaleimide triazine) resin (Young's modulus of 1.0 ×) containing glass fiber having a thickness of 0.2 mm is used as an insulating buffer layer 40 on a ceramic circuit board on which a semiconductor element is mounted.
10 4 kgf / mm 2 or less).

【0027】実施例では回路基板10として92%アル
ミナセラミックを使用した。このアルミナセラミックに
配線パターン34、内部配線パターン34a、ビア34
b、端子パッド14を形成するため、半導体素子搭載用
にキャビティ部分の孔明け加工などをあらかじめ施して
所定形状に加工したアルミナセラミックグリーンシート
に、タングステンなどのメタライズペーストを所定のパ
ターンでスクリーン印刷し、セラミックグリーンシート
を積層した後、所定温度で焼成して回路基板10を得た
(図6(a))。なお、端子パッド14は実施例では0.8
64mm径とした。
In the embodiment, 92% alumina ceramic is used as the circuit board 10. Wiring pattern 34, internal wiring pattern 34a, and via 34 are formed on this alumina ceramic.
b. In order to form the terminal pad 14, a metallizing paste such as tungsten is screen-printed in a predetermined pattern on an alumina ceramic green sheet that has been processed into a predetermined shape by previously forming holes in the cavity for mounting semiconductor elements. After laminating the ceramic green sheets, they were fired at a predetermined temperature to obtain a circuit board 10 (FIG. 6 (a)). The terminal pad 14 is 0.8 in the embodiment.
The diameter was 64 mm.

【0028】次に、この回路基板10に絶縁緩衝層40
を形成するため、接着フィルムとして厚さ約60μmの
BTレジン系のプリプレグを使用し、回路基板10の端
子パッド14を形成した面に、0.2mm厚のガラス繊
維入りBTレジン板40aを、200℃、30kg/cm
2 で加熱加圧して接合する(図6(b))。ガラス繊維入り
BTレジン板40aには端子パッド14と位置合わせし
てあらかじめ貫通孔42が形成してある。また、前記B
Tレジン系のプリプレグにも貫通孔42に位置合わせし
て貫通孔を設け、ガラス繊維入りBTレジン板40aを
接着した状態で貫通孔42の底面で端子パッド14が露
出するようにする。 実施例ではガラス繊維入りBTレ
ジン板40aとBTレジン系のプリプレグに透設する貫
通孔は0.684mm径とした。
Next, the insulating buffer layer 40 is formed on the circuit board 10.
BT resin prepreg having a thickness of about 60 μm is used as an adhesive film to form a BT resin plate 40a containing a glass fiber having a thickness of 0.2 mm on the surface of the circuit board 10 on which the terminal pads 14 are formed. ℃, 30kg / cm
Bonding is performed by heating and pressing at 2 (Fig. 6 (b)). A through hole 42 is formed in advance in the glass fiber-containing BT resin plate 40a in alignment with the terminal pad 14. Also, the B
A T resin prepreg is also provided with a through hole in alignment with the through hole 42 so that the terminal pad 14 is exposed at the bottom surface of the through hole 42 with the glass fiber-containing BT resin plate 40a bonded. In the embodiment, the diameter of the through hole penetrating the glass fiber-containing BT resin plate 40a and the BT resin-based prepreg is 0.684 mm.

【0029】回路基板10にガラス繊維入りBTレジン
板40aを接着した後、回路基板10に半導体素子30
を搭載する。回路基板10のキャビティ凹部32に半導
体素子30をダイ付けし、半導体素子30と配線パター
ン34とをワイヤボンディングした後、キャビティ凹部
32の開口部の周縁にキャップ36を封着して半導体素
子30を封止する(図6(c))。
After the glass fiber-containing BT resin plate 40a is adhered to the circuit board 10, the semiconductor element 30 is attached to the circuit board 10.
With. After the semiconductor element 30 is die-attached to the cavity recess 32 of the circuit board 10 and the semiconductor element 30 and the wiring pattern 34 are wire-bonded, a cap 36 is sealed around the opening of the cavity recess 32 to form the semiconductor element 30. It is sealed (FIG. 6 (c)).

【0030】次に、貫通孔42に導通部44を形成する
ため、ガラス繊維入りBTレジン板40aを上向きにし
て回路基板10を支持した状態で、ガラス繊維入りBT
レジン板40aに設けた貫通孔42に約0.6mm径の
錫−鉛共晶はんだ製のピンを振り込むようにして挿入
し、加熱して貫通孔42内でピンを溶融し導通部44を
形成する。図6(d) は貫通孔42に導通部44を形成し
た状態を示す。貫通孔42にセットする錫−鉛共晶はん
だのピンの長さを適当に設定することにより貫通孔42
をちょうど満たすようにすることができる。
Next, in order to form the conducting portion 44 in the through hole 42, the glass fiber-containing BT resin board 40a is supported upward to support the circuit board 10 while the glass fiber-containing BT resin board 40a is supported.
A pin made of tin-lead eutectic solder having a diameter of about 0.6 mm is inserted into the through hole 42 provided in the resin plate 40a so that it is heated, and the pin is melted in the through hole 42 to form the conductive portion 44. To do. FIG. 6D shows a state in which the conducting portion 44 is formed in the through hole 42. By appropriately setting the length of the pin of the tin-lead eutectic solder set in the through hole 42, the through hole 42
Can be just met.

【0031】貫通孔42の外側にバンプ状に導通部44
を突出させて形成する場合は、貫通孔42にセットする
はんだピンの長さを調節し、はんだが溶融した際に貫通
孔42部分でバンプ状に盛り上がるようにすればよい。
なお、導通部44を形成する導電材料はもちろん錫−鉛
共晶はんだに限定されるものではなく、錫−ビスマス、
錫−アンチモン、錫−銀、錫−インジウムなどの低融点
合金が使用できる。
A conductive portion 44 is formed in a bump shape on the outside of the through hole 42.
In the case of forming the protrusion, the length of the solder pin set in the through hole 42 may be adjusted so that when the solder is melted, the solder pin rises like a bump in the through hole 42.
The conductive material forming the conductive portion 44 is not limited to the tin-lead eutectic solder, and tin-bismuth,
Low melting point alloys such as tin-antimony, tin-silver, tin-indium can be used.

【0032】導通部44を形成した後、導通部44の外
面に外部接続端子12としてはんだボールを接合し図1
に示す半導体装置を得る。はんだボールには高融点はん
だを使用し、導通部44の低融点合金を溶融してはんだ
ボールを接合する。半導体装置を実装基板に実装する際
には実装基板側の電極と半導体装置のはんだボールの一
方あるいは両方に低融点はんだをつけ、この低融点はん
だを溶融して実装すればよい。
After the conductive portion 44 is formed, solder balls are bonded to the outer surface of the conductive portion 44 as the external connection terminals 12 as shown in FIG.
Is obtained. A high melting point solder is used for the solder ball, and the low melting point alloy of the conductive portion 44 is melted to bond the solder ball. When mounting the semiconductor device on the mounting substrate, a low melting point solder may be attached to one or both of the electrodes on the mounting substrate side and the solder balls of the semiconductor device, and the low melting point solder may be melted for mounting.

【0033】本実施例の半導体装置ではガラス繊維入り
BTレジン板40aが絶縁緩衝層40として作用し、半
導体装置を実装した際に接合部に作用する熱応力を好適
に緩和することができる。すなわち、外部接続端子12
に対して応力が作用した際には絶縁緩衝層40が変形し
て応力を緩和させ、接合部に余分な応力が直接的に作用
しないようにする。絶縁緩衝層40に形成された導通部
44は絶縁緩衝層40に接合しないから、絶縁緩衝層4
0とは独立に移動可能で、これによっても効果的に熱応
力を緩和させることができる。
In the semiconductor device of this embodiment, the glass fiber-containing BT resin plate 40a acts as the insulating buffer layer 40, and the thermal stress acting on the joint portion when the semiconductor device is mounted can be appropriately relaxed. That is, the external connection terminal 12
When a stress is applied to the insulating buffer layer 40, the insulating buffer layer 40 is deformed to relieve the stress so that the excess stress does not directly act on the joint. Since the conductive portion 44 formed on the insulating buffer layer 40 does not bond to the insulating buffer layer 40, the insulating buffer layer 4
It can be moved independently of 0, and this can also effectively alleviate thermal stress.

【0034】なお、上記実施例では絶縁緩衝層40を構
成する材料として0.2mm厚のガラス繊維入りBTレ
ジン(ヤング率1.0×104kgf/mm2以下)を使用した
が、絶縁緩衝層40を構成する有機材料としては、もち
ろんこれ以外の材料を使用することが可能で、たとえ
ば、エポキシ樹脂、ポリイミド樹脂、ポリイミドシロキ
サン樹脂、ポリエステル樹脂、シリコーン系ゴム、ポリ
ウレタン樹脂等が使用できる。
In the above embodiment, the BT resin (Young's modulus of 1.0 × 10 4 kgf / mm 2 or less) having a thickness of 0.2 mm was used as the material for the insulating buffer layer 40. As the organic material forming the layer 40, it is of course possible to use other materials, for example, epoxy resin, polyimide resin, polyimide siloxane resin, polyester resin, silicone rubber, polyurethane resin and the like.

【0035】絶縁緩衝層40の膜厚も絶縁緩衝層40に
用いる材料によって、また半導体パッケージの材料や半
導体パッケージの大きさ等によって適宜選択すればよい
が、絶縁緩衝層40としての緩衝作用を得るためには
0.05mm程度以上の厚さが必要である。すなわち、
絶縁緩衝層40はある程度の厚さ以上とすることによっ
所要の緩衝作用を得ることができ、従来のプリント回路
基板の表面を被覆するソルダレジスト等の保護膜のよう
に20μm程度の膜厚では十分な緩衝作用を発揮させる
ことができない。なお、絶縁緩衝層40の膜厚が厚過ぎ
る場合は基板に反りが生じるから膜厚は最大で1mm程
度が適当である。
The thickness of the insulating buffer layer 40 may be appropriately selected depending on the material used for the insulating buffer layer 40, the material of the semiconductor package, the size of the semiconductor package, etc., but the insulating buffer layer 40 has a buffering effect. Therefore, a thickness of about 0.05 mm or more is required. That is,
The insulating buffer layer 40 can obtain a required buffering action by having a certain thickness or more, and when the insulating buffer layer 40 has a thickness of about 20 μm like a protective film such as a solder resist covering the surface of a conventional printed circuit board. It is not possible to exert a sufficient buffering effect. If the insulating buffer layer 40 is too thick, the substrate will warp, so that the maximum thickness is about 1 mm.

【0036】また、絶縁緩衝層40に用いる有機物材料
は接合部が変位できるようにするためある程度の柔軟性
が要求される。柔軟性としてはヤング率で約1.0×10
4kgf/mm2程度以下が必要である。絶縁緩衝層40が変形
しにくい材質の場合は接合部に作用する熱応力を有効に
緩和することができず、この点で適当でない。また、本
実施例では回路基板10としてアルミナセラミックを使
用したが、回路基板としては、これ以外に窒化アルミニ
ウム、ムライト、二酸化ケイ素、窒化ホウ素等が使用で
きる。
Further, the organic material used for the insulating buffer layer 40 is required to have some flexibility so that the joint can be displaced. As flexibility, Young's modulus is about 1.0 x 10
4 kgf / mm 2 or less is required. If the insulating buffer layer 40 is made of a material that is difficult to deform, the thermal stress acting on the joint cannot be effectively relaxed, which is not suitable in this respect. Although alumina ceramic is used as the circuit board 10 in this embodiment, aluminum nitride, mullite, silicon dioxide, boron nitride, or the like can be used as the circuit board.

【0037】(実施例2)図4に示す半導体装置の製法
につき、図7、8にしたがって説明する。図4に示す半
導体装置は回路基板10に被着形成した絶縁緩衝層40
の貫通孔42の内壁面に金属層46を形成したことを特
徴とする。図7(a) は絶縁緩衝層40を形成するための
有機材50である。この有機材50は実施例1で用いた
と同様なガラス繊維入りBTレジン板を基材とし、この
基材の両面に銅箔52を被着形成したものである。有機
材50は150μm程度の厚さのものを使用する。
(Embodiment 2) A method of manufacturing the semiconductor device shown in FIG. 4 will be described with reference to FIGS. The semiconductor device shown in FIG. 4 has an insulating buffer layer 40 formed on the circuit board 10.
The metal layer 46 is formed on the inner wall surface of the through hole 42. FIG. 7A shows an organic material 50 for forming the insulating buffer layer 40. This organic material 50 has a glass fiber-containing BT resin plate similar to that used in Example 1 as a base material, and copper foil 52 is adhered and formed on both surfaces of the base material. The organic material 50 has a thickness of about 150 μm.

【0038】図7(b) は有機材50に孔明け加工を施
し、外部端子12を接合する導通部44を形成するため
の透孔54を設けた状態を示す。透孔54は回路基板1
0の端子パッド14の配置位置に合わせてドリル加工等
で形成する。次に、スルーホールめっきにより透孔54
の内壁面に金属層46を形成する(図7(c))。金属層4
6は透孔54の内面に無電解銅めっきを施した後、電解
銅めっきを施す方法、あるいはダイレクトプレーティン
グにより銅めっきを施す方法によって形成することがで
きる。これによって、透孔54の内壁面と有機材50の
表面の銅箔52が連続する。なお、スルーホールめっき
は透孔54の内壁面を金属化するための一つの手段であ
り、スパッタリング法等の他の方法を利用してもよい。
FIG. 7B shows a state in which the organic material 50 is perforated and a through hole 54 for forming the conducting portion 44 for joining the external terminal 12 is provided. The through hole 54 is the circuit board 1.
It is formed by drilling or the like in accordance with the arrangement position of the 0 terminal pad 14. Next, through holes 54 are formed by through-hole plating.
A metal layer 46 is formed on the inner wall surface of the (FIG. 7 (c)). Metal layer 4
6 can be formed by a method of performing electroless copper plating on the inner surface of the through hole 54 and then performing electrolytic copper plating, or a method of performing copper plating by direct plating. As a result, the inner wall surface of the through hole 54 and the copper foil 52 on the surface of the organic material 50 are continuous. The through hole plating is one means for metallizing the inner wall surface of the through hole 54, and another method such as a sputtering method may be used.

【0039】次に、透孔54の内壁面の金属層46と透
孔54の上下面の開口縁に金属層46aを残して表面の
銅箔52をエッチングにより除去する(図7(d))。な
お、金属層46、46aの表面には電解めっき法などで
ニッケルめっきを施しておくのがよい。次に、この有機
材50の表面に実施例1と同様に接着用として厚さ約6
0μmのBTレジン系のプリプレグ56を被着する。こ
のBTレジン系のプリプレグ56には透孔54に位置合
わせしてあらかじめ透孔を設け、有機材50に重ね合わ
せて接着した(図7(e))。
Next, the metal layer 46 on the inner wall surface of the through hole 54 and the copper foil 52 on the surface are removed by etching, leaving the metal layer 46a at the opening edges of the upper and lower surfaces of the through hole 54 (FIG. 7 (d)). . The surfaces of the metal layers 46 and 46a are preferably plated with nickel by an electrolytic plating method or the like. Next, in the same manner as in Example 1, a thickness of about 6 was applied to the surface of the organic material 50 for adhesion.
A 0 μm BT resin-based prepreg 56 is applied. This BT resin-based prepreg 56 was previously provided with a through hole in alignment with the through hole 54, and was superposed and adhered to the organic material 50 (FIG. 7 (e)).

【0040】こうして得られた有機材50を回路基板1
0と位置合わせし、実施例1と同様に加熱加圧により回
路基板10に接合して、絶縁緩衝層40を有する半導体
パッケージが得られる。本実施例では有機材50の基材
であるガラス繊維入りBTレジン板が絶縁緩衝層40で
あり、透孔54が導通部44を形成するための貫通孔4
2であり、貫通孔42の内壁面が金属層46によって被
覆されている。図8に回路基板10に位置合わせして上
記方法によって得られた絶縁緩衝層40を接着する状態
を示す。
The organic material 50 thus obtained is used as the circuit board 1.
The semiconductor package having the insulating buffer layer 40 is obtained by aligning with 0 and bonding to the circuit board 10 by heating and pressurizing as in the first embodiment. In this embodiment, the glass fiber-containing BT resin plate, which is the base material of the organic material 50, is the insulating buffer layer 40, and the through hole 54 is the through hole 4 for forming the conducting portion 44.
2 and the inner wall surface of the through hole 42 is covered with the metal layer 46. FIG. 8 shows a state in which the insulating buffer layer 40 obtained by the above method is bonded to the circuit board 10 by aligning it.

【0041】導通部44は回路基板10に有機材50を
接着した後、実施例1と同様に貫通孔42にはんだ等の
低融点金属製のピンを挿入して形成することもできる
し、図7(e) の状態で透孔54に高融点はんだペースト
等の導体材料を充填して導通部44を形成し、導通部4
4を形成した絶縁緩衝層40を回路基板10に接着する
方法によることもできる。
The conducting portion 44 can be formed by adhering the organic material 50 to the circuit board 10 and then inserting a pin made of a low melting point metal such as solder into the through hole 42 as in the first embodiment. In the state of 7 (e), the through hole 54 is filled with a conductive material such as a high melting point solder paste to form the conductive portion 44, and the conductive portion 4 is formed.
It is also possible to adhere the insulating buffer layer 40 formed with No. 4 to the circuit board 10.

【0042】[0042]

【発明の効果】本発明に係る半導体パッケージ及び半導
体装置は、上述したように、回路基板よりも小さなヤン
グ率の絶縁緩衝層を回路基板の実装面に被着し、絶縁緩
衝層を介在させて外部接続端子を接続するよう構成した
ことにより、半導体装置を実装基板に実装した際に回路
基板と実装基板との熱膨張係数の差によって接合部に作
用する熱応力を効果的に緩和することができ、これによ
って実装時における半導体装置の信頼性を向上させるこ
とができる。また、絶縁緩衝層の導通部を構成する貫通
孔の内壁面を金属層で被着した場合は接合部の接合面積
が増大することにより接合部の接続信頼性をさらに高め
ることができる。このように、接合部に作用する熱応力
を有効に緩和することができることから半導体パッケー
ジの大型化を図ることが可能になり、多ピン化に有効に
対応することが可能になる等の著効を奏する。
As described above, in the semiconductor package and the semiconductor device according to the present invention, an insulating buffer layer having a Young's modulus smaller than that of the circuit board is attached to the mounting surface of the circuit board, and the insulating buffer layer is interposed. With the configuration in which the external connection terminals are connected, when the semiconductor device is mounted on the mounting board, the thermal stress acting on the joint due to the difference in thermal expansion coefficient between the circuit board and the mounting board can be effectively relaxed. Therefore, the reliability of the semiconductor device at the time of mounting can be improved. Further, when the inner wall surface of the through hole forming the conductive portion of the insulating buffer layer is coated with the metal layer, the joint area of the joint portion increases, so that the connection reliability of the joint portion can be further improved. As described above, since the thermal stress acting on the joint can be effectively relaxed, it is possible to increase the size of the semiconductor package, and it is possible to effectively cope with the increase in the number of pins. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体装置の第1実施形態を示す
断面図である。
FIG. 1 is a sectional view showing a first embodiment of a semiconductor device according to the present invention.

【図2】本発明に係る半導体装置の第2実施形態を示す
断面図である。
FIG. 2 is a sectional view showing a second embodiment of a semiconductor device according to the present invention.

【図3】本発明に係る半導体装置の第3実施形態を示す
断面図である。
FIG. 3 is a sectional view showing a third embodiment of the semiconductor device according to the present invention.

【図4】本発明に係る半導体装置の第4実施形態を示す
断面図である。
FIG. 4 is a sectional view showing a fourth embodiment of a semiconductor device according to the present invention.

【図5】第4実施形態での外部接続端子の接合部の近傍
の構成を示す断面図である。
FIG. 5 is a cross-sectional view showing a configuration in the vicinity of a joint of an external connection terminal according to a fourth embodiment.

【図6】第1実施形態の半導体装置の製造方法を示す説
明図である。
FIG. 6 is an explanatory diagram showing the manufacturing method of the semiconductor device of the first embodiment.

【図7】第4実施形態の半導体装置の製造に用いる絶縁
緩衝層の製造方法を示す説明図である。
FIG. 7 is an explanatory diagram showing a method of manufacturing an insulating buffer layer used for manufacturing the semiconductor device of the fourth embodiment.

【図8】第4実施形態の半導体装置の製造方法を示す説
明図である。
FIG. 8 is an explanatory diagram showing the manufacturing method of the semiconductor device of the fourth embodiment.

【図9】外部接続端子の接合部の従来の構成を示す断面
図である。
FIG. 9 is a cross-sectional view showing a conventional configuration of a joint portion of an external connection terminal.

【図10】外部接続端子の接合部の従来の他の構成を示
す断面図である。
FIG. 10 is a cross-sectional view showing another conventional configuration of the joint portion of the external connection terminal.

【符号の説明】[Explanation of symbols]

10 セラミック基板 12 外部接続端子 14 端子パッド 30 半導体素子 32 キャビティ凹部 34 配線パターン 40 絶縁緩衝層 40a ガラス繊維入りBTレジン板 40 絶縁緩衝層 42 貫通孔 44 導通部 46 金属層 46a 金属層 50 有機材 52 銅箔 56 BTレジン系のプリプレグ 10 Ceramic Substrate 12 External Connection Terminal 14 Terminal Pad 30 Semiconductor Element 32 Cavity Recess 34 Wiring Pattern 40 Insulation Buffer Layer 40a Glass Fiber BT Resin Board 40 Insulation Buffer Layer 42 Through Hole 44 Conducting Portion 46 Metal Layer 46a Metal Layer 50 Organic Material 52 Copper foil 56 BT resin type prepreg

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子が搭載される回路基板の実装
面に、はんだボール等の外部接続端子が電気的に導通し
て取り付けられる端子パッドが設けられ、 該端子パッドが設けられた前記回路基板の外面に、ヤン
グ率1.0×104 kgf/mm2 以下、厚さ0.05mm以上
の電気的絶縁性を有する絶縁緩衝層が被着形成され、 該絶縁緩衝層の前記端子パッドに対応する部位に貫通孔
が透設されたことを特徴とする半導体パッケージ。
1. A terminal board to which an external connection terminal such as a solder ball is electrically connected and attached is provided on a mounting surface of a circuit board on which a semiconductor element is mounted, and the circuit board provided with the terminal pad. An insulating buffer layer having a Young's modulus of 1.0 × 10 4 kgf / mm 2 or less and a thickness of 0.05 mm or more and having an electrical insulating property is adhered and formed on the outer surface of, and corresponds to the terminal pad of the insulating buffer layer. A semiconductor package characterized in that a through hole is transparently provided in a portion to be formed.
【請求項2】 貫通孔の内壁面に金属層が被着形成され
たことを特徴とする請求項1記載の半導体パッケージ。
2. The semiconductor package according to claim 1, wherein a metal layer is deposited on the inner wall surface of the through hole.
【請求項3】 絶縁緩衝層が、ガラス繊維入りBT(ビ
スマレイミド トリアジン)レジンから成るものである
ことを特徴とする請求項1または2記載の半導体パッケ
ージ。
3. The semiconductor package according to claim 1, wherein the insulating buffer layer is made of glass fiber-containing BT (bismaleimide triazine) resin.
【請求項4】 絶縁緩衝層が、異種材料を用いて複数層
に形成されたことを特徴とする請求項1、2または3記
載の半導体パッケージ。
4. The semiconductor package according to claim 1, wherein the insulating buffer layer is formed in a plurality of layers using different materials.
【請求項5】 絶縁緩衝層が、エポキシ樹脂、BT樹
脂、ポリイミド樹脂、ポリイミドシロキサン樹脂、ポリ
エステル樹脂、シリコーン系ゴム、ポリウレタン樹脂か
ら選択された有機材料から成ることを特徴とする請求項
4記載の半導体パッケージ。
5. The insulating buffer layer is made of an organic material selected from epoxy resin, BT resin, polyimide resin, polyimide siloxane resin, polyester resin, silicone rubber and polyurethane resin. Semiconductor package.
【請求項6】 請求項1、2、3、4または5記載の半
導体パッケージの回路基板の素子搭載面に半導体素子が
搭載され、 前記貫通孔内に導電材料が充填されて成る導通部が形成
され、 該導通部により前記端子パッドと外部接続端子とが電気
的に接続されたことを特徴とする半導体装置。
6. A semiconductor element is mounted on the element mounting surface of the circuit board of the semiconductor package according to claim 1, a conductive portion is formed by filling a conductive material in the through hole. The semiconductor device is characterized in that the terminal pad and the external connection terminal are electrically connected by the conductive portion.
【請求項7】 請求項1、2、3、4または5記載の半
導体パッケージの回路基板の素子搭載面に半導体素子が
搭載され、 前記貫通孔内に導電材料が充填されて成る導通部が形成
され、 該導通部が前記端子パッドに接続されるとともに、前記
外部接続端子が前記導通部と一体に前記絶縁緩衝層の表
面から突出するバンプ状に形成されたことを特徴とする
半導体装置。
7. A conductive portion is formed by mounting a semiconductor element on an element mounting surface of a circuit board of the semiconductor package according to claim 1, and filling the through hole with a conductive material. The semiconductor device is characterized in that the conductive portion is connected to the terminal pad, and the external connection terminal is formed in a bump shape protruding integrally with the conductive portion from the surface of the insulating buffer layer.
JP14142596A 1996-03-22 1996-06-04 Semiconductor package and semiconductor device Pending JPH09321168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14142596A JPH09321168A (en) 1996-03-22 1996-06-04 Semiconductor package and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6636596 1996-03-22
JP8-66365 1996-03-22
JP14142596A JPH09321168A (en) 1996-03-22 1996-06-04 Semiconductor package and semiconductor device

Publications (1)

Publication Number Publication Date
JPH09321168A true JPH09321168A (en) 1997-12-12

Family

ID=26407561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14142596A Pending JPH09321168A (en) 1996-03-22 1996-06-04 Semiconductor package and semiconductor device

Country Status (1)

Country Link
JP (1) JPH09321168A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917195A4 (en) * 1997-01-17 2000-03-22 Seiko Epson Corp ELECTRONIC COMPONENT, SEMICONDUCTOR DEVICE, MANUFACTURING METHOD, PRINTED BOARD, AND ELECTRONIC EQUIPMENT
JP2002217357A (en) * 2001-01-19 2002-08-02 Kyocera Corp Semiconductor device
US6953708B2 (en) 2002-08-29 2005-10-11 Infineon Technologies Ag Method of producing a semiconductor component having a compliant buffer layer
KR100651323B1 (en) * 2004-12-30 2006-11-29 삼성전기주식회사 Semiconductor Package Substrate With Bending Resistance Material Layer
JP2006351886A (en) * 2005-06-17 2006-12-28 Sony Corp Semiconductor device and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485973B2 (en) 1997-01-17 2009-02-03 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US6323542B1 (en) 1997-01-17 2001-11-27 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US6518651B2 (en) 1997-01-17 2003-02-11 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US7235881B2 (en) 1997-01-17 2007-06-26 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US7307351B2 (en) 1997-01-17 2007-12-11 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
EP0917195A4 (en) * 1997-01-17 2000-03-22 Seiko Epson Corp ELECTRONIC COMPONENT, SEMICONDUCTOR DEVICE, MANUFACTURING METHOD, PRINTED BOARD, AND ELECTRONIC EQUIPMENT
US7755205B2 (en) 1997-01-17 2010-07-13 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US7888177B2 (en) 1997-01-17 2011-02-15 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US8399999B2 (en) 1997-01-17 2013-03-19 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
JP2002217357A (en) * 2001-01-19 2002-08-02 Kyocera Corp Semiconductor device
US6953708B2 (en) 2002-08-29 2005-10-11 Infineon Technologies Ag Method of producing a semiconductor component having a compliant buffer layer
KR100651323B1 (en) * 2004-12-30 2006-11-29 삼성전기주식회사 Semiconductor Package Substrate With Bending Resistance Material Layer
JP2006351886A (en) * 2005-06-17 2006-12-28 Sony Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3704864B2 (en) Semiconductor element mounting structure
US5367124A (en) Compliant lead for surface mounting a chip package to a substrate
US5057461A (en) Method of mounting integrated circuit interconnect leads releasably on film
US6927095B2 (en) Low cost and compliant microelectronic packages for high I/O and fine pitch
US20010048591A1 (en) Microelectronics component with rigid interposer
US5736790A (en) Semiconductor chip, package and semiconductor device
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
JPH10242210A (en) Mounting structure for integrated circuit and manufacturing method thereof
US6201707B1 (en) Wiring substrate used for a resin-sealing type semiconductor device and a resin-sealing type semiconductor device structure using such a wiring substrate
KR19980054344A (en) Surface-Mount Semiconductor Packages and Manufacturing Method Thereof
US7923835B2 (en) Package, electronic device, substrate having a separation region and a wiring layers, and method for manufacturing
US6486551B1 (en) Wired board and method of producing the same
US5196268A (en) Integrated circuit interconnect leads releasably mounted on film
JPH09199635A (en) Multilayer film for forming circuit substrate, multilayer circuit substrate using it, and package for semiconductor device
JP2001085470A (en) Semiconductor device and manufacturing method thereof
JPH10173006A (en) Semiconductor device and method of manufacturing semiconductor device
JP3627428B2 (en) Semiconductor device
JPH0831868A (en) BGA type semiconductor device
JPH09321168A (en) Semiconductor package and semiconductor device
US20070075415A1 (en) Semiconductor device and semiconductor device production method
JPH09298252A (en) Semiconductor package and semiconductor device using the semiconductor package
JP2000208675A (en) Semiconductor device and its manufacture
JP4577980B2 (en) Mounting board
JPH0846084A (en) Surface mounting type semiconductor package, method of manufacture and semiconductor device
JPH08172144A (en) Semiconductor device and manufacturing method thereof