[go: up one dir, main page]

JPH09318185A - Absorption heat pump and its operating method - Google Patents

Absorption heat pump and its operating method

Info

Publication number
JPH09318185A
JPH09318185A JP8132984A JP13298496A JPH09318185A JP H09318185 A JPH09318185 A JP H09318185A JP 8132984 A JP8132984 A JP 8132984A JP 13298496 A JP13298496 A JP 13298496A JP H09318185 A JPH09318185 A JP H09318185A
Authority
JP
Japan
Prior art keywords
absorption
heat
solution
heat pump
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132984A
Other languages
Japanese (ja)
Inventor
Takahide Sugiyama
隆英 杉山
Nakahiro Inagaki
那加博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8132984A priority Critical patent/JPH09318185A/en
Publication of JPH09318185A publication Critical patent/JPH09318185A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】 【課題】 外気の熱を利用する吸収式ヒートポンプにお
いて、ヒートポンプ運転時に外気温度が計画温度以上に
低下しても、連続的な運転を可能とする。 【解決手段】 液冷媒を蒸発器に導く配管67に一つの
入り口と二つの出口をもつ三方弁66を設け、一方の出
口を蒸発器に、他方の出口を吸収器の溶液散布装置に接
続する。暖房運転時、外気温度が予め設定された温度以
下に低下したら、三方弁66を操作して、液冷媒を蒸発
器へではなく吸収器の溶液散布装置51へ導く。
(57) Abstract: An absorption heat pump that uses the heat of the outside air can be continuously operated even when the outside air temperature drops below a planned temperature during operation of the heat pump. SOLUTION: A pipe 67 for guiding a liquid refrigerant to an evaporator is provided with a three-way valve 66 having one inlet and two outlets, one outlet is connected to the evaporator, and the other outlet is connected to a solution spraying device of an absorber. . During the heating operation, when the outside air temperature falls below a preset temperature, the three-way valve 66 is operated to guide the liquid refrigerant to the solution spraying device 51 of the absorber instead of to the evaporator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式ヒートポン
プに係り、特に水−アンモニアを作動媒体とした吸収式
ヒートポンプとその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump using water-ammonia as a working medium and a method of operating the same.

【0002】[0002]

【従来の技術】図2に、水−アンモニアを作動媒体とす
る吸収式ヒートポンプを用いた一般的によく知られてい
る空調装置を示す。図示の空調装置は、強溶液を冷媒蒸
気と弱溶液に分離する再生器ユニット31と、該再生ユ
ニット31で分離された冷媒蒸気を凝縮液化する凝縮器
32と、該凝縮器32で生成された液冷媒を膨張弁34
を介して導入し、熱媒との熱交換により蒸発させる蒸発
器35と、該蒸発器35で蒸発した冷媒蒸気を前記弱溶
液に吸収させる吸収ユニット36と、を含んで構成され
た吸収式ヒートポンプと、この吸収式ヒートポンプに冷
暖切換装置63を介して熱媒体回路により接続された室
内空気熱交換器64及び室外空気熱交換器65と、を含
んで構成されている。
2. Description of the Related Art FIG. 2 shows a generally well-known air conditioner using an absorption heat pump using water-ammonia as a working medium. The air-conditioning apparatus shown in the figure is generated by a regenerator unit 31 for separating a strong solution into a refrigerant vapor and a weak solution, a condenser 32 for condensing and liquefying the refrigerant vapor separated by the regeneration unit 31, and a condenser 32. Expansion valve 34 for liquid refrigerant
Absorption heat pump including an evaporator 35 that is introduced via a heat medium and evaporates by heat exchange with a heat medium, and an absorption unit 36 that absorbs the refrigerant vapor evaporated in the evaporator 35 into the weak solution. And an indoor air heat exchanger 64 and an outdoor air heat exchanger 65 which are connected to the absorption heat pump via a heating / cooling switching device 63 by a heat medium circuit.

【0003】吸収式ヒートポンプの再生器ユニット31
は、上方から順に配置された分縮器42、精留器41、
弱溶液熱交換器40及び再生入熱器39と、それらを内
装した再生器ユニット容器31aとを含んで構成され、
弱溶液熱交換器40の下端は再生器ユニット容器31a
の底部に接続されている。また、前記凝縮器32は冷媒
流路をなす熱交換器45を管側流路、熱媒体流路を胴側
流路とする管胴型で、再生器ユニット容器31aの上端
部は、前記凝縮器32に内装された熱交換器45の上端
(入り側)に接続されている。
The regenerator unit 31 of the absorption heat pump
Is a decomposing device 42, a rectifying device 41 arranged in order from the top,
A weak solution heat exchanger 40 and a regenerative heat input device 39, and a regenerator unit container 31a in which they are installed,
The lower end of the weak solution heat exchanger 40 has a regenerator unit container 31a.
Attached to the bottom of. Further, the condenser 32 is of a tubular body type in which the heat exchanger 45 forming the refrigerant passage is the tube side passage and the heat medium passage is the body side passage, and the upper end of the regenerator unit container 31a is It is connected to the upper end (entrance side) of the heat exchanger 45 installed in the vessel 32.

【0004】吸収ユニット36は、上方から順に配置さ
れた溶液散布装置51、吸収熱回収熱交換部52及び吸
収熱放熱部53と、それらを内装した吸収ユニット容器
36aと、吸収ユニット容器36a底部に吸い込み側を
接続した溶液循環ポンプ37とを含んで構成され、溶液
循環ポンプ37の出側は、分縮器42の上端(入側)に
接続されている。また、吸収熱回収熱交換部52の上端
(出側)は再生器ユニット容器31aの精留器41の位
置に接続され、吸収熱回収熱交換部52の下端(入り
側)は、分縮器42の下端(出側)に接続されている。
さらに、前記再生器ユニット31の弱溶液熱交換器40
の上端(出側)は減圧弁57を介して溶液散布装置51
に接続され、吸収熱放熱部53の上端(出側)は凝縮器
32の胴側下端に接続されている。
The absorption unit 36 includes a solution spraying device 51, an absorption heat recovery heat exchange section 52, an absorption heat radiating section 53, an absorption unit container 36a in which they are installed, and a bottom of the absorption unit container 36a. The solution circulating pump 37 is connected to the suction side, and the outlet side of the solution circulating pump 37 is connected to the upper end (inlet side) of the partial condenser 42. Further, the upper end (outlet side) of the absorbed heat recovery heat exchange part 52 is connected to the position of the rectifier 41 of the regenerator unit container 31a, and the lower end (inlet side) of the absorbed heat recovery heat exchange part 52 is a dephlegmator. It is connected to the lower end (outlet side) of 42.
Further, the weak solution heat exchanger 40 of the regenerator unit 31.
The upper end (outlet side) of the solution spraying device 51
The upper end (outlet side) of the absorption heat radiating portion 53 is connected to the lower end of the condenser 32 on the body side.

【0005】蒸発器35は、冷媒流路をなす熱交換器4
8を管側流路、熱媒体流路を胴側流路とする管胴型で、
前記凝縮器32に内装された熱交換器45の下端(出
側)は、膨張弁34を介して液冷媒配管67により熱交
換器48の上端(入り側)に接続されている。また、熱
交換器48の下端(出側)は吸収ユニット容器36aの
下部に接続されている。
The evaporator 35 is a heat exchanger 4 forming a refrigerant flow path.
8 is a tube body type in which the tube side channel and the heat medium channel are the body side channels,
The lower end (outlet side) of the heat exchanger 45 installed in the condenser 32 is connected to the upper end (inlet side) of the heat exchanger 48 by the liquid refrigerant pipe 67 via the expansion valve 34. The lower end (outlet side) of the heat exchanger 48 is connected to the lower part of the absorption unit container 36a.

【0006】冷暖切換装置63は、8個のポートをA,
B,C,D,E,F,G,Hを持つ流路切換弁で、ポー
トAが熱媒体循環ポンプ62を介して蒸発器35の胴側
下部に、ポートBが蒸発器35の胴側上部に、ポートC
が熱媒体循環ポンプ61を介して吸収ユニット36の吸
収熱放熱部53の下端(入り側)に、ポートDが凝縮器
32の胴側上部に、それぞれ接続されている。熱媒体循
環ポンプ62は吸い込み側をポートAに、熱媒体循環ポ
ンプ61は吸い込み側をポートCに、それぞれ接続して
配置されている。冷暖切換装置63は、冷房時にポート
A,BをポートE,Fに、ポートC,DをポートG,H
に、それぞれ連通し、暖房時にポートA,Bをポート
G,Hに、ポートC,DをポートE,Fに、それぞれ連
通するように操作される。なお、この例では冷暖切換装
置63として八方弁を用いているが、四方弁2個、ある
いは三方弁4個を用いた組合せとしてもよい。
The cooling / heating switching device 63 has eight ports A,
It is a flow path switching valve having B, C, D, E, F, G, and H, and port A is located below the body side of the evaporator 35 via the heat medium circulation pump 62, and port B is the body side of the evaporator 35. Port C on top
Is connected to the lower end (entrance side) of the absorption heat radiator 53 of the absorption unit 36 via the heat medium circulation pump 61, and the port D is connected to the upper side of the condenser 32 on the body side. The heat medium circulation pump 62 is arranged such that the suction side is connected to the port A and the heat medium circulation pump 61 is connected to the port C on the suction side. The cooling / heating switching device 63 sets ports A and B to ports E and F and ports C and D to ports G and H during cooling.
And ports A and B are communicated with ports G and H, and ports C and D are communicated with ports E and F, respectively. Although an eight-way valve is used as the cooling / heating switching device 63 in this example, a combination using two four-way valves or four three-way valves may be used.

【0007】室内空気熱交換器64は、その両端を冷暖
切換装置63のポートE,Fに接続して配置され、室外
熱交換器65はその両端を冷暖切換装置63のポート
G,Hに接続して配置されている。また、室内空気熱交
換器64、室外空気熱交換器65、吸収熱放熱部53、
凝縮器胴側、冷暖切換装置63及びそれらを接続する配
管で構成される循環系統には、水またはエチレングリコ
ール水溶液等の不凍液が熱媒体として充填されている。
The indoor air heat exchanger 64 is arranged such that both ends thereof are connected to the ports E and F of the cooling / heating switching device 63, and the outdoor heat exchanger 65 is connected to both ports G and H of the cooling / heating switching device 63. Are arranged. Further, the indoor air heat exchanger 64, the outdoor air heat exchanger 65, the absorption heat radiator 53,
An antifreezing liquid such as water or an ethylene glycol aqueous solution is filled as a heat medium in a circulation system formed of the condenser barrel side, the cooling / heating switching device 63 and a pipe connecting them.

【0008】再生器ユニット31は、溶液循環ポンプ3
7から分縮器42、吸収熱回収熱交換部52を経て供給
される強溶液(冷媒濃度の高い溶液)43aを、冷媒蒸
気と弱溶液(冷媒濃度の低い溶液)に分離し、冷媒蒸気
を凝縮器32の熱交換器45に、弱溶液を自身が内装し
た弱溶液熱交換器40に、それぞれ送り出す。
The regenerator unit 31 includes the solution circulation pump 3
The strong solution (solution with high refrigerant concentration) 43a supplied from 7 through the dephlegmator 42 and the absorption heat recovery heat exchange section 52 is separated into refrigerant vapor and weak solution (solution with low refrigerant concentration), and the refrigerant vapor is separated. The weak solution is sent to the heat exchanger 45 of the condenser 32 to the weak solution heat exchanger 40 in which the weak solution is internally housed.

【0009】凝縮器32は再生器ユニット31から内装
した熱交換器45内に送りこまれた冷媒蒸気を、胴側に
通流される熱媒体で冷却凝縮して液冷媒とする。生成さ
れた液冷媒は膨張弁34を通って蒸発器35に内装され
た熱交換器48に導かれ、熱交換器48を通過しつつ胴
側を流れる熱媒体の熱を奪って蒸発する。蒸発した冷媒
蒸気は、吸収ユニット容器36aの底部に導入される。
The condenser 32 cools and condenses the refrigerant vapor sent from the regenerator unit 31 into the heat exchanger 45 installed therein by the heat medium flowing to the shell side to form a liquid refrigerant. The generated liquid refrigerant is guided through the expansion valve 34 to the heat exchanger 48 incorporated in the evaporator 35, and while passing through the heat exchanger 48, the heat of the heat medium flowing on the cylinder side is taken and evaporated. The evaporated refrigerant vapor is introduced into the bottom of the absorption unit container 36a.

【0010】吸収ユニット容器36aの底部に溜った強
溶液は溶液循環ポンプ37により昇圧され、再生器ユニ
ット31の分縮器42を通って昇温され、さらに吸収ユ
ニット36の吸収熱回収熱交換部52の下部入口からそ
の熱交換流路内に導入される。吸収熱回収熱交換部52
を通った強溶液は、再生器ユニット31の精留器41の
中段に導入されている。再生器ユニット31の再生処理
により分離されて再生器ユニット容器31aの底部に溜
った弱溶液は、弱溶液熱交換器40と減圧弁57を経て
吸収ユニット36の頭頂部に設けられた溶液散布装置5
1に供給される。
The strong solution accumulated at the bottom of the absorption unit container 36a is increased in pressure by the solution circulation pump 37, heated up through the partial condenser 42 of the regenerator unit 31, and further absorbed heat recovery heat exchange section of the absorption unit 36. It is introduced into the heat exchange channel from the lower inlet of 52. Absorption heat recovery heat exchange section 52
The strong solution that has passed through is introduced into the middle stage of the rectifier 41 of the regenerator unit 31. The weak solution separated by the regeneration process of the regenerator unit 31 and accumulated at the bottom of the regenerator unit container 31a passes through the weak solution heat exchanger 40 and the pressure reducing valve 57 and is provided on the top of the absorption unit 36. 5
1 is supplied.

【0011】このように構成された空調装置の動作につ
いて、以下に説明する。吸収ユニット容器36aの頭頂
部に導入された弱溶液は、溶液散布装置51により容器
内部(胴側)に散布される。散布された溶液は、吸収熱
回収熱交換部52の伝熱壁の外表面を伝って流れ落ち、
あるいは空間を落下する。その過程で、溶液は吸収放熱
部53を通過してきた冷媒蒸気と接触してこれを吸収
し、これにより溶液の冷媒濃度が徐々に高められる。冷
媒蒸気の吸収により発生する吸収熱は、吸収熱回収熱交
換部52の内部を流れる強溶液に取り込まれ、再生に必
要な熱の一部として利用される。
The operation of the air conditioner thus configured will be described below. The weak solution introduced to the top of the absorption unit container 36a is sprayed inside the container (body side) by the solution spraying device 51. The sprayed solution flows down along the outer surface of the heat transfer wall of the absorption heat recovery heat exchange section 52,
Or fall in the space. In the process, the solution comes into contact with and absorbs the refrigerant vapor that has passed through the absorbing and radiating portion 53, whereby the refrigerant concentration of the solution is gradually increased. The absorption heat generated by the absorption of the refrigerant vapor is taken into the strong solution flowing inside the absorption heat recovery heat exchange section 52 and used as a part of the heat necessary for the regeneration.

【0012】吸収熱回収熱交換部52の領域を通過した
溶液は、吸収熱放熱部53の伝熱壁の外表面を伝って流
れ落ち、あるいは空間を落下する。その過程で、溶液は
吸収容器内に導入された冷媒蒸気と接触してこれを吸収
し、これにより溶液の冷媒濃度が更に高められる。この
時に発生する吸収熱は、吸収熱放熱部53の熱交換流路
内を流れる熱媒体に取り込まれる。吸収熱放熱部53を
通過した溶液は低温の強溶液となって吸収ユニット容器
36aの底部に溜る。
The solution that has passed through the area of the absorbed heat recovery heat exchange section 52 flows down along the outer surface of the heat transfer wall of the absorbed heat radiating section 53, or drops in the space. In the process, the solution comes into contact with the refrigerant vapor introduced into the absorption container and absorbs it, thereby further increasing the refrigerant concentration of the solution. The absorbed heat generated at this time is taken into the heat medium flowing in the heat exchange channel of the absorbed heat radiating section 53. The solution that has passed through the absorption heat radiating section 53 becomes a low temperature strong solution and accumulates at the bottom of the absorption unit container 36a.

【0013】吸収ユニット容器36aの底部に溜った強
溶液は、溶液循環ポンプ37によって昇圧され、分縮器
42の熱交換流路内に導入されて昇温された後、上述し
た吸収熱回収熱交換部52の下部入口から吸収熱回収熱
交換部52の熱交換流路に導入される。熱交換流路に導
入された強溶液は上部に向かって流れ、上部出口に近づ
くにつれて上述した吸収熱により加熱されて昇温し、飽
和温度に達すると沸騰を開始し、さらに温度を上げなが
ら冷媒濃度を低下させていく。
The strong solution accumulated at the bottom of the absorption unit container 36a is pressurized by the solution circulation pump 37, introduced into the heat exchange passage of the dephlegmator 42 and heated, and then the absorption heat recovery heat It is introduced into the heat exchange flow path of the absorbed heat recovery heat exchange section 52 from the lower inlet of the exchange section 52. The strong solution introduced into the heat exchange channel flows toward the upper part, is heated by the above-mentioned absorption heat as it approaches the upper outlet and rises in temperature, starts boiling when it reaches the saturation temperature, and further raises the temperature of the refrigerant. Decrease the concentration.

【0014】吸収熱回収熱交換部52において沸騰によ
り気液二相流となった強溶液は、吸収熱回収熱交換部5
2の上部出口から再生器ユニット31の精留器41に送
られる。精留器41に導入された二相流の強溶液は、冷
媒蒸気と弱溶液に分離される。冷媒蒸気は精留器41を
上昇する過程で濃度を高め、分縮器42において低温の
強溶液との熱交換を行って一部を凝縮、還流されたの
ち、凝縮器32に供給される。一方、強溶液は、精留器
41を下降する過程で冷媒濃度が減少し、弱溶液熱交換
器40の外表面、再生入熱器39の外表面を通過すると
弱溶液となって再生器ユニット容器31aの底部に集ま
る。再生器ユニット容器31aの底部に集まった弱溶液
は、前述したように弱溶液熱交換器40の内部流路、減
圧弁57を経て吸収ユニット36の頭頂部の溶液散布装
置51に供給される。
The strong solution which has become a gas-liquid two-phase flow due to boiling in the absorption heat recovery heat exchange section 52 is absorbed by the absorption heat recovery heat exchange section 5.
2 is sent to the rectifier 41 of the regenerator unit 31 from the upper outlet. The two-phase strong solution introduced into the rectifier 41 is separated into a refrigerant vapor and a weak solution. The refrigerant vapor increases in concentration in the process of rising in the rectifier 41, undergoes heat exchange with a low-temperature strong solution in the dephlegmator 42 to be partially condensed and refluxed, and then supplied to the condenser 32. On the other hand, the strong solution has a reduced refrigerant concentration in the process of descending the rectifier 41, and becomes a weak solution when passing through the outer surface of the weak solution heat exchanger 40 and the outer surface of the regenerative heat input device 39 to become a regenerator unit. Collect at the bottom of the container 31a. The weak solution collected at the bottom of the regenerator unit container 31a is supplied to the solution spraying device 51 at the top of the absorption unit 36 via the internal flow path of the weak solution heat exchanger 40 and the pressure reducing valve 57 as described above.

【0015】このようにして吸収工程と再生工程が繰返
し行われ、その過程で蒸発器35、凝縮器45または吸
収放熱部53から系外に冷熱または温熱が取り出され
る。
In this way, the absorption step and the regeneration step are repeated, and in the process, cold heat or hot heat is taken out of the system from the evaporator 35, the condenser 45 or the absorption / radiation section 53.

【0016】上記構成の空調装置において、冷房運転時
には、吸収放熱部53、凝縮器32の胴側は、冷暖切換
装置63を介して室外熱交換器65と接続される。吸収
放熱部53、凝縮器32の熱交換器45の熱は、熱媒体
循環ポンプ61で駆動されて循環する熱媒体で取り出さ
れ、室外空気熱交換器65で大気へ放出される。同時
に、蒸発器35の胴側は、冷暖切換装置63を介して室
内熱交換器64と接続され、熱交換器48内で蒸発する
冷媒に熱を奪われて冷却された熱媒体は、熱媒体循環ポ
ンプ62で駆動されて室内熱交換器64へ送られ、室内
空気の冷却に使用される。すなわち、室内熱交換器64
で室内空気の熱を取り出して、その熱を室外空気熱交換
器65で大気へ放出する。
In the air conditioner having the above-described structure, during cooling operation, the absorption / radiation section 53 and the trunk side of the condenser 32 are connected to the outdoor heat exchanger 65 via the cooling / heating switching device 63. The heat of the heat absorbing / dissipating portion 53 and the heat exchanger 45 of the condenser 32 is taken out by the heat medium circulating by being driven by the heat medium circulation pump 61, and is released to the atmosphere by the outdoor air heat exchanger 65. At the same time, the body side of the evaporator 35 is connected to the indoor heat exchanger 64 via the cooling / heating switching device 63, and the heat medium cooled by being deprived of heat by the refrigerant evaporated in the heat exchanger 48 is the heat medium. It is driven by the circulation pump 62, is sent to the indoor heat exchanger 64, and is used for cooling the indoor air. That is, the indoor heat exchanger 64
At, the heat of the indoor air is taken out, and the heat is released to the atmosphere by the outdoor air heat exchanger 65.

【0017】一方暖房運転時には、吸収放熱部53、凝
縮器32の胴側は、冷暖切換装置63を介して室内熱交
換器65と接続され、吸収放熱部53、凝縮器32の熱
交換器45の熱は、熱媒体循環ポンプ61で駆動されて
循環する熱媒体で取り出され、室内熱交換器65に送ら
れて室内空気の加熱に使用される。同時に、蒸発器35
の胴側は、冷暖切換装置63を介して室外熱交換器64
と接続され、熱交換器48内で蒸発する冷媒に熱を奪わ
れて冷却された熱媒体は、室外空気の熱で温められる。
On the other hand, during heating operation, the absorption / radiation unit 53 and the body side of the condenser 32 are connected to the indoor heat exchanger 65 via the cooling / heating switching device 63, and the absorption / radiation unit 53 and the heat exchanger 45 of the condenser 32 are connected. Is taken out by the circulating heat medium driven by the heat medium circulation pump 61, sent to the indoor heat exchanger 65, and used for heating the indoor air. At the same time, the evaporator 35
The outside of the heat exchanger 64 is connected to the trunk side of the
The heat medium cooled by being deprived of heat by the refrigerant evaporated in the heat exchanger 48 is heated by the heat of the outdoor air.

【0018】[0018]

【発明が解決しようとする課題】上記従来の技術におい
ては、暖房運転時、蒸発器35胴側と室外熱交換器65
の間を循環する熱媒体は、外気から熱を取り込むため
に、熱交換器48内で蒸発する冷媒に熱を奪われて外気
温度よりも低い温度に冷却される。逆に、外気温度より
も低い温度にならないと、外気に熱を放出することにな
る。このため、外気温度が計画温度以下に低下してくる
と、外気温度よりも低い温度に冷却される熱媒体の凍結
の可能性が生じ、運転できなくなるおそれがあった。
In the above conventional technique, during heating operation, the barrel side of the evaporator 35 and the outdoor heat exchanger 65 are provided.
The heat medium that circulates between the two is taken in by the heat from the outside air, so that the heat medium is deprived of the heat by the refrigerant evaporated in the heat exchanger 48 and cooled to a temperature lower than the outside air temperature. On the contrary, unless the temperature becomes lower than the outside air temperature, heat is released to the outside air. For this reason, when the outside air temperature falls below the planned temperature, there is a possibility that the heat medium cooled to a temperature lower than the outside air temperature may freeze, and there is a possibility that the operation cannot be performed.

【0019】本発明の課題は、外気の熱を利用する吸収
式ヒートポンプにおいて、ヒートポンプ運転時に外気温
度が計画温度以上に低下しても、連続的な運転を可能と
するにある。
An object of the present invention is to enable continuous operation of an absorption heat pump utilizing the heat of the outside air even if the outside air temperature drops below a planned temperature during operation of the heat pump.

【0020】[0020]

【課題を解決するための手段】本発明は上記の課題を解
決するために、強溶液を冷媒蒸気と弱溶液に分離する再
生器ユニットと、該再生ユニットで分離された冷媒蒸気
を凝縮液化する凝縮器と、該凝縮器で生成された液冷媒
を膨張弁を介して導入し、熱媒との熱交換により蒸発さ
せる蒸発器と、該蒸発器で蒸発した冷媒蒸気を前記弱溶
液に吸収させる吸収ユニットと、を含んでなる吸収式ヒ
ートポンプにおいて、前記膨張弁下流側の液冷媒配管に
出側を少なくとも二つ持つ流路切換手段を設け、該流路
切換手段の一方の出口を前記蒸発器に、他方の出口を前
記吸収ユニット上部に接続したことを特徴とする。
In order to solve the above-mentioned problems, the present invention condenses and liquefies a regenerator unit for separating a strong solution into a refrigerant vapor and a weak solution, and the refrigerant vapor separated by the regeneration unit. A condenser, an evaporator that introduces the liquid refrigerant generated in the condenser through an expansion valve and evaporates by heat exchange with a heat medium, and a refrigerant vapor evaporated in the evaporator is absorbed by the weak solution. In an absorption heat pump including an absorption unit, a flow path switching means having at least two outlet sides is provided in the liquid refrigerant pipe on the downstream side of the expansion valve, and one outlet of the flow path switching means is the evaporator. In addition, the other outlet is connected to the upper part of the absorption unit.

【0021】流路切換手段は、三方弁を用いて構成して
ももよいし、一端を膨張弁出側に接続したY形の分岐管
と、該Y形の分岐管の他の2個の端部にそれぞれ接続さ
れた開閉弁とを含んで構成してもよい。
The flow path switching means may be constituted by using a three-way valve, and a Y-shaped branch pipe having one end connected to the expansion valve outlet side and the other two Y-shaped branch pipes. You may comprise including the on-off valve each connected to the edge part.

【0022】また、吸収ユニットを吸収熱回収熱交換部
の上方に配置された溶液散布装置を含んで構成し、流路
切換手段を経て導入された液冷媒を前記溶液散布装置に
導いて溶液散布装置内で弱溶液と混合したのち、吸収熱
回収熱交換部に滴下されるようにするのが望ましい。
Further, the absorption unit comprises a solution spraying device arranged above the absorption heat recovery heat exchange section, and the liquid refrigerant introduced through the flow path switching means is guided to the solution spraying device to spray the solution. After being mixed with the weak solution in the apparatus, it is desirable that the solution is dropped into the absorption heat recovery heat exchange section.

【0023】[0023]

【発明の実施の形態】図1に、本発明に係る吸収式ヒー
トポンプを用いて構成した空調装置の系統図を示す。図
2に示す空調装置が前記図2に示した空調装置と異なる
のは、膨張弁34の下流側の液冷媒配管67に、膨張弁
34の出側に入り側を接続した三方弁66が流路切換手
段として介装され、この三方弁66の一方の出側が液冷
媒配管67により熱交換器48の上端(入り側)に、三
方弁66の他方の出側が液冷媒配管68により吸収ユニ
ット36の頭頂部に内装された溶液散布装置51に、そ
れぞれ接続されていることである。また、図示されてい
ない外気温センサが設けられ、該外気温センサの出力ま
たはセンサの出力によって演算した結果より出力される
信号に応じて動作するアクチュエータ(図示せず)また
は蒸発器出口熱媒温度センサが前記三方弁66を作動さ
せるようにしてある。他の構成は前記図2に示したもの
と同じであるので、同じ符号を付し、説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a system diagram of an air conditioner constructed using an absorption heat pump according to the present invention. The air conditioner shown in FIG. 2 differs from the air conditioner shown in FIG. 2 in that a three-way valve 66, which connects the outlet side and the inlet side of the expansion valve 34, flows in the liquid refrigerant pipe 67 on the downstream side of the expansion valve 34. One side of the three-way valve 66 is interposed by the liquid refrigerant pipe 67 to the upper end (entrance side) of the heat exchanger 48, and the other side of the three-way valve 66 is connected to the absorption unit 36 by the liquid refrigerant pipe 68. Are respectively connected to the solution spraying device 51 installed on the top of the head. Further, an outside air temperature sensor (not shown) is provided, and an actuator (not shown) or an evaporator outlet heat medium temperature that operates according to the output of the outside air temperature sensor or a signal output from the result calculated by the output of the sensor A sensor operates the three-way valve 66. The other structure is the same as that shown in FIG. 2, and therefore, the same reference numerals are given and the description thereof is omitted.

【0024】冷房運転時及び通常の暖房運転時(外気温
度が予め設定された下限温度以上のとき)は、三方弁6
6は、熱交換器45の出側と液冷媒管67を連通する位
置に操作されており、吸収冷凍サイクルが構成されてい
る。
During the cooling operation and the normal heating operation (when the outside air temperature is above the preset lower limit temperature), the three-way valve 6
6 is operated at a position where the outlet side of the heat exchanger 45 communicates with the liquid refrigerant pipe 67, and an absorption refrigeration cycle is constituted.

【0025】暖房運転時に、外気温センサで測定された
外気温度が予め設定された下限温度よりも低下すると、
三方弁66は、熱交換器45の出側と液冷媒管68を連
通する位置に前記アクチュエータによって切り替えられ
る。この切り替えにより、液冷媒(アンモニア液)は蒸
発器35の熱交換器48に流れ込む代わりに溶液散布装
置51に導かれる。溶液散布装置51に導かれた液冷媒
はそこで減圧弁57を経て溶液散布装置51に導入され
た弱溶液と混合され、吸収熱回収熱交換部52の外表面
上に滴下され、次いで吸収熱放熱部53外表面に沿って
流下する。弱溶液と液冷媒の混合で発生する稀釈熱や溶
液の顕熱は吸収熱回収熱交換部52内を流れる強溶液や
吸収熱放熱部53内を流れる熱媒体に回収される。蒸発
器35の熱交換器48には液冷媒は流入しないから、液
冷媒の蒸発はなく、したがって熱交換器48内の熱媒体
が冷却されることもない。この場合、ヒートポンプ効果
はなくなり、ボイラー運転と同等となって効率は落ちる
が、熱媒体が予め計画された外気温以下に冷却されるこ
とがないので、熱媒体の凍結の恐れはなくなり、暖房運
転は支障なく継続される。
During the heating operation, if the outside air temperature measured by the outside air temperature sensor becomes lower than the preset lower limit temperature,
The three-way valve 66 is switched by the actuator to a position where the outlet side of the heat exchanger 45 communicates with the liquid refrigerant pipe 68. By this switching, the liquid refrigerant (ammonia liquid) is guided to the solution spraying device 51 instead of flowing into the heat exchanger 48 of the evaporator 35. The liquid refrigerant guided to the solution spraying device 51 is mixed therewith via the pressure reducing valve 57 with the weak solution introduced into the solution spraying device 51, dropped on the outer surface of the absorption heat recovery heat exchange section 52, and then absorbed heat radiation. It flows down along the outer surface of the portion 53. Dilution heat and sensible heat of the solution generated by mixing the weak solution and the liquid refrigerant are recovered by the strong solution flowing in the absorption heat recovery heat exchange section 52 and the heat medium flowing in the absorption heat radiating section 53. Since the liquid refrigerant does not flow into the heat exchanger 48 of the evaporator 35, the liquid refrigerant does not evaporate and therefore the heat medium in the heat exchanger 48 is not cooled. In this case, the heat pump effect disappears and the efficiency becomes equivalent to that of boiler operation, but the heat medium is not cooled below the planned outside temperature, so there is no fear of freezing of the heat medium, and heating operation Will continue without any problems.

【0026】なお、このとき、吸収ユニット容器36a
には冷媒蒸気の流入はなく、吸収熱の発生もない。外気
温が前記下限温度以上に回復したら、再び三方弁66を
操作して液冷媒を蒸発器35の熱交換器48に導いて蒸
発させ、室外空気熱交換器65と蒸発器胴側の間を循環
する熱媒体を冷却するようにすればよい。三方弁66の
ハンチングを避けるために、三方弁66の出側を液冷媒
配管67側に連通するように動作させるときの外気温度
または熱媒温度(下限温度)を、三方弁66の出側を液
冷媒配管68側に連通するように動作させるときの下限
温度よりも、若干高めに設定しておくのが望ましい。
At this time, the absorption unit container 36a
There is no inflow of refrigerant vapor and no heat of absorption is generated. When the outside air temperature is recovered to be equal to or higher than the lower limit temperature, the three-way valve 66 is operated again to guide the liquid refrigerant to the heat exchanger 48 of the evaporator 35 to evaporate it, and the space between the outdoor air heat exchanger 65 and the evaporator barrel side The circulating heat medium may be cooled. In order to avoid hunting of the three-way valve 66, the outside air temperature or the heat medium temperature (lower limit temperature) when operating the outlet side of the three-way valve 66 so as to communicate with the liquid refrigerant pipe 67 side, It is desirable to set the temperature slightly higher than the lower limit temperature when operating so as to communicate with the liquid refrigerant pipe 68 side.

【0027】上記実施例においては、流路切換手段とし
て三方弁66が用いられているが、一つの入口から流入
した冷媒をすくなくとも二つの出口のいずれかに切り替
えて導くことができれば、必ずしも三方弁を用いる必要
はない。例えば、Y形の分岐管を設け、出側となる二つ
の枝管それぞれに止め弁を設けてもよい。
In the above embodiment, the three-way valve 66 is used as the flow path switching means. However, if the refrigerant flowing from one inlet can be switched to at least one of the two outlets and guided, it is not necessarily a three-way valve. Need not be used. For example, a Y-shaped branch pipe may be provided, and a stop valve may be provided in each of the two branch pipes on the outlet side.

【0028】また、流路切換手段を経て吸収ユニット3
6に供給される液冷媒が、吸収ユニット36に内装され
た溶液散布装置51内で弱溶液と混合されるように配管
系を構成するのが熱回収の点から望ましいが、吸収熱回
収熱交換部52の外表面上で弱溶液と混合されるように
してもよい。
Further, the absorption unit 3 is passed through the flow path switching means.
From the viewpoint of heat recovery, it is desirable to configure the piping system so that the liquid refrigerant supplied to 6 is mixed with the weak solution in the solution spraying device 51 installed in the absorption unit 36. It may be mixed with a weak solution on the outer surface of the part 52.

【0029】[0029]

【発明の効果】本発明によれば、暖房運転時、外気温が
予め設定された温度以下に低下すると、蒸発器における
冷媒の蒸発が行われなくなるので、蒸発器における熱媒
体の冷却が停止され、熱媒体の凍結によるヒートポンプ
の運転停止はなくなる。
According to the present invention, when the outside air temperature falls below a preset temperature during the heating operation, the refrigerant is not evaporated in the evaporator, so that the cooling of the heat medium in the evaporator is stopped. The heat pump will not be stopped due to the freezing of the heat medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された空調装置の例を示す系統図
である。
FIG. 1 is a system diagram showing an example of an air conditioner to which the present invention is applied.

【図2】従来技術の例を示す空調装置の系統図である。FIG. 2 is a system diagram of an air conditioner showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

31 再生器ユニット 31a 再生器
ユニット容器 32 凝縮器 34 膨張弁 35 蒸発器 36 吸収ユニ
ット 36a 吸収ユニット容器 37 溶液循環
ポンプ 39 再生入熱器 40 弱溶液熱
交換器 41 精留器 42 分縮器 43a 強溶液 45 熱交換器 48 熱交換器 51 溶液散布
装置 52 吸収熱回収熱交換部 53 吸収熱放
熱部 57 減圧弁 61 熱媒体循
環ポンプ 62 熱媒体循環ポンプ 63 冷暖切換
装置 64 室内空気熱交換器 65 室外空気
熱交換器 66 三方弁 67 液冷媒配
管 68 液冷媒配管
31 Regenerator Unit 31a Regenerator Unit Container 32 Condenser 34 Expansion Valve 35 Evaporator 36 Absorption Unit 36a Absorption Unit Container 37 Solution Circulation Pump 39 Regeneration Heater 40 Weak Solution Heat Exchanger 41 Fractionator 42 Splitter 43a Strong Solution 45 Heat exchanger 48 Heat exchanger 51 Solution spraying device 52 Absorption heat recovery heat exchange part 53 Absorption heat radiation part 57 Pressure reducing valve 61 Heat medium circulation pump 62 Heat medium circulation pump 63 Cooling / heating switching device 64 Indoor air heat exchanger 65 Outdoor Air heat exchanger 66 Three-way valve 67 Liquid refrigerant pipe 68 Liquid refrigerant pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 強溶液を冷媒蒸気と弱溶液に分離する再
生器ユニット31と、該再生器ユニット31で分離され
た冷媒蒸気を凝縮液化する凝縮器32と、該凝縮器32
で生成された液冷媒を膨張弁34を介して導入し、熱媒
との熱交換により蒸発させる蒸発器35と、該蒸発器3
5で蒸発した冷媒蒸気を前記弱溶液に吸収させる吸収ユ
ニット36と、を含んでなる吸収式ヒートポンプにおい
て、前記膨張弁34下流側の液冷媒配管67に出側を少
なくとも二つ持つ流路切換手段66を設け、該流路切換
手段の一方の出口を前記蒸発器35に、他方の出口を前
記吸収ユニット36上部に接続したことを特徴とする吸
収式ヒートポンプ。
1. A regenerator unit 31 for separating a strong solution into a refrigerant vapor and a weak solution, a condenser 32 for condensing and liquefying the refrigerant vapor separated by the regenerator unit 31, and a condenser 32.
An evaporator 35 that introduces the liquid refrigerant generated in step 3 through an expansion valve 34 and evaporates by heat exchange with a heat medium, and the evaporator 3
5. An absorption heat pump including an absorption unit 36 for absorbing the refrigerant vapor evaporated in step 5 into the weak solution, and a flow path switching means having at least two outlet sides in the liquid refrigerant pipe 67 downstream of the expansion valve 34. 66, an absorption heat pump characterized in that one outlet of the flow path switching means is connected to the evaporator 35 and the other outlet is connected to the upper part of the absorption unit 36.
【請求項2】 流路切換手段が三方弁66であることを
特徴とする請求項1に記載の吸収式ヒートポンプ。
2. The absorption heat pump according to claim 1, wherein the flow path switching means is a three-way valve 66.
【請求項3】 流路切換手段が一端を膨張弁出側に接続
したY形の分岐管と、該Y形の分岐管の他の2個の端部
にそれぞれ接続された開閉弁とを含んで構成されている
ことを特徴とする請求項1に記載の吸収式ヒートポン
プ。
3. The flow path switching means includes a Y-shaped branch pipe having one end connected to the expansion valve outlet side, and an on-off valve connected to the other two ends of the Y-shaped branch pipe. The absorption heat pump according to claim 1, wherein the absorption heat pump is configured as follows.
【請求項4】 吸収ユニット36は吸収熱回収熱交換部
52の上方に配置された溶液散布装置51を含んでな
り、流路切換手段を経て導入された液冷媒は前記溶液散
布装置51に導かれて弱溶液と混合されるように構成さ
れていることを特徴とする請求項1乃至3のいずれかに
記載の吸収式ヒートポンプ。
4. The absorption unit 36 includes a solution spraying device 51 disposed above the absorption heat recovery heat exchange part 52, and the liquid refrigerant introduced through the flow path switching means is guided to the solution spraying device 51. The absorption heat pump according to any one of claims 1 to 3, wherein the absorption heat pump is configured so as to be mixed with the weak solution.
【請求項5】 強溶液を冷媒蒸気と弱溶液に分離する再
生器ユニット31と、該再生ユニットで分離された冷媒
蒸気を凝縮液化する凝縮器32と、該凝縮器32で生成
された液冷媒を膨張弁34を介して導入し、熱媒との熱
交換により蒸発させる蒸発器35と、該蒸発器35で蒸
発した冷媒蒸気を前記弱溶液に吸収させる吸収ユニット
36と、を含んでなる吸収式ヒートポンプの運転方法に
おいて、暖房運転時、外気温度を測定し、測定された外
気温度が予め設定された下限温度以下に低下したとき、
前記膨張弁34を通過した冷媒を、吸収ユニット36に
導き、吸収ユニット36内で弱溶液に混合することを特
徴とする吸収式ヒートポンプの運転方法。
5. A regenerator unit 31 for separating a strong solution into a refrigerant vapor and a weak solution, a condenser 32 for condensing and liquefying the refrigerant vapor separated by the regenerator unit, and a liquid refrigerant produced by the condenser 32. Is introduced through an expansion valve 34 and evaporates by heat exchange with a heat medium, and an absorption unit 36 that absorbs the refrigerant vapor evaporated in the evaporator 35 into the weak solution. In the method of operating the type heat pump, during heating operation, the outside air temperature is measured, and when the measured outside air temperature falls below a preset lower limit temperature,
A method of operating an absorption heat pump, characterized in that the refrigerant that has passed through the expansion valve 34 is guided to an absorption unit 36 and mixed with a weak solution in the absorption unit 36.
JP8132984A 1996-05-28 1996-05-28 Absorption heat pump and its operating method Pending JPH09318185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132984A JPH09318185A (en) 1996-05-28 1996-05-28 Absorption heat pump and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132984A JPH09318185A (en) 1996-05-28 1996-05-28 Absorption heat pump and its operating method

Publications (1)

Publication Number Publication Date
JPH09318185A true JPH09318185A (en) 1997-12-12

Family

ID=15094072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132984A Pending JPH09318185A (en) 1996-05-28 1996-05-28 Absorption heat pump and its operating method

Country Status (1)

Country Link
JP (1) JPH09318185A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000498A (en) * 2012-06-15 2014-01-09 Yamato Scient Co Ltd Solvent recovery device
JP2019158308A (en) * 2018-03-16 2019-09-19 三菱電機株式会社 Refrigeration cycle device
WO2021260351A1 (en) * 2020-06-22 2021-12-30 Skywell Solutions Limited An apparatus for extracting water from the atmosphere

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000498A (en) * 2012-06-15 2014-01-09 Yamato Scient Co Ltd Solvent recovery device
JP2019158308A (en) * 2018-03-16 2019-09-19 三菱電機株式会社 Refrigeration cycle device
WO2021260351A1 (en) * 2020-06-22 2021-12-30 Skywell Solutions Limited An apparatus for extracting water from the atmosphere

Similar Documents

Publication Publication Date Title
US4667485A (en) Absorption refrigeration and heat pump system
GB2024388A (en) Heat activated absorption heat pump apparatus and method of absorption heating
EP0354749B1 (en) Air-cooled absorption Air-conditioner
CN117847829A (en) Heat pump unit with plate-sleeve type condenser
JPH09318185A (en) Absorption heat pump and its operating method
US5857354A (en) Air-cooled absorption-type air conditioning apparatus with vertical heat-transfer fins
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
KR100493871B1 (en) Equipment for dehumidification and dryness
KR100213780B1 (en) Hot water supply system of absorption type air conditioner.
JP3231441B2 (en) Absorption refrigerator, chiller / heater and heat pump with steam turbine and compressor in absorber
JPH061139B2 (en) Cold / hot water production facility
JPH10306959A (en) Absorption chiller and refrigeration apparatus provided with the same
KR0161033B1 (en) Absorptive type airconditioner
JPS5849872A (en) heat pump equipment
JP2962020B2 (en) Absorption type heat pump device
KR0139277Y1 (en) Absorptive refrigerator
JP2957191B2 (en) Defrosting mechanism for absorption heat pump and absorption heat pump cooling / heating device provided with the defrosting mechanism
JP2787182B2 (en) Single / double absorption chiller / heater
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP3084650B2 (en) Absorption chiller / heater and its control method
JPS599037B2 (en) Absorption heating and cooling equipment
JP2000146355A (en) Composite heat transfer system
JP3300962B2 (en) Absorption chiller / heater
JPH0354378Y2 (en)