[go: up one dir, main page]

JPH0931575A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH0931575A
JPH0931575A JP7202771A JP20277195A JPH0931575A JP H0931575 A JPH0931575 A JP H0931575A JP 7202771 A JP7202771 A JP 7202771A JP 20277195 A JP20277195 A JP 20277195A JP H0931575 A JPH0931575 A JP H0931575A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
powder
hydrogen
laves phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7202771A
Other languages
Japanese (ja)
Inventor
Koichi Morii
浩一 森井
Takao Okochi
敬雄 大河内
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7202771A priority Critical patent/JPH0931575A/en
Publication of JPH0931575A publication Critical patent/JPH0931575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a hydrogen storage alloy in which the amt. of hydrogen to be occluded remarkably increases by compounding specified amounts of AB2 type Laves phase hydrogen storage alloy powder and magnesium powder. SOLUTION: By weight, 80 to 95% AB2 type Laves phase hydrogen storage alloy powder and 5 to 20% Mg powder are compounded. This AB2 type Laves phase hydrogen storage alloy is composed of Tix Zr1-x My , where M denotes one or more kinds among Ni, Fe, Mn, V, Co, Sm, Cr, Al, Cu, Mo and W, and x=0 to 0.3atm% and y=1.6 to 2.4atm%. The hydrogen storage alloy powder and Mg powder are subjected to mixing, pulverizing and compounding in a horizontal ball mill in an inert atmosphere. By the compounding, the surface state is activated, and the amt. of hydrogen to be occluded increases from 1.4 to 2.3wt.%. In the case the content of Mg powder is less than 5%, the amt. of hydrogen to be occluded does not increase. In the case of >20%, Mg sticks to the inside wall of the ball mill, and compounding can not be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、AB2 型ラーベス
相水素吸蔵合金の水素吸蔵量を増加した水素吸蔵合金お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy in which the hydrogen storage capacity of an AB 2 type Laves phase hydrogen storage alloy is increased, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、水素を貯蔵・輸送するため
に、金属水素化物として固形化する技術が開発されてき
た。金属水素化物は金属結晶の格子中に水素が侵入して
結合するのでその水素密度は高く、液体水素のそれ以上
のもので、重量的にもボンベにつめた水素ガスよりも有
利なことが知られている。
2. Description of the Related Art Conventionally, a technique for solidifying a metal hydride has been developed in order to store and transport hydrogen. It is known that metal hydride has a high hydrogen density because hydrogen penetrates and bonds with the lattice of the metal crystal, and is more than liquid hydrogen, and it is also advantageous in terms of weight over hydrogen gas filled in a cylinder. Has been.

【0003】水素吸蔵合金としてはチタン系合金、ニッ
ケル系合金、マンガン系合金、マグネシウム系合金など
色々と提案されている。中でもマグネシウム系合金は密
度が小さく、安価である点で開発が進められている(特
開平4−187503号公報、特開平4−262501
号公報)。
Various hydrogen storage alloys such as titanium alloys, nickel alloys, manganese alloys and magnesium alloys have been proposed. Among them, magnesium alloys are under development because they have a low density and are inexpensive (Japanese Patent Laid-Open Nos. 4-187503 and 4-262501).
Issue).

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の水素吸
蔵合金は、水素吸蔵量が十分でなく、またMg2 Ni合
金は水素吸蔵量が2.0wt%以上であるが、200℃
以上の高温環境下でないと吸蔵しなという欠点があっ
た。本発明は、高温環境下でなくても水素吸蔵量が多い
水素吸蔵合金およびその製造方法を提供することを目的
としている。
However, the conventional hydrogen storage alloys do not have a sufficient hydrogen storage capacity, and the Mg 2 Ni alloy has a hydrogen storage capacity of 2.0 wt% or more.
There is a drawback that it does not occlude unless it is under the above high temperature environment. An object of the present invention is to provide a hydrogen storage alloy having a large hydrogen storage capacity even under a high temperature environment and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の水素吸蔵合金においては、AB2 型ラーベ
ス相水素吸蔵合金粉末80〜95重量%とマグネシウム
粉末5〜20重量%とを複合化、すなわちAB2 型ラー
ベス相水素吸蔵合金粉末の表面にマグネシウムを被覆
し、一部を合金化することである。
To achieve the above object, in the hydrogen storage alloy of the present invention, a mixture of AB 2 type Laves phase hydrogen storage alloy powder of 80 to 95% by weight and magnesium powder of 5 to 20% by weight is used. That is, the surface of the AB 2 type Laves phase hydrogen storage alloy powder is coated with magnesium to partially alloy it.

【0006】また、本発明の水素吸蔵合金においては、
AB2 型ラーベス相水素吸蔵合金として、次式で示され
る組成からなるものを用いることである。 TiX Zr1-X Y 但しM:Ni,Fe,Mn,V,Co,Sm,Cr,A
l,Cu,Mo,Wの一種以上 x=0〜0.3 atm% y=1.6〜2.4 atm% また、本発明の水素吸蔵合金の製造方法においては、A
2 型ラーベス相水素吸蔵合金粉末80〜95重量%
と、マグネシウム粉末5〜20重量%とをボールミル内
において不活性雰囲気中で混合−粉砕−複合化すること
である。さらに、本発明の水素吸蔵合金の製造方法にお
いては、ボールミルとして横型ボールミルを使用するこ
とである。
Further, in the hydrogen storage alloy of the present invention,
As the AB 2 type Laves phase hydrogen storage alloy, one having a composition represented by the following formula is used. Ti X Zr 1-X M Y However, M: Ni, Fe, Mn, V, Co, Sm, Cr, A
1 or more of 1, Cu, Mo, W x = 0 to 0.3 atm% y = 1.6 to 2.4 atm% In the method for producing a hydrogen storage alloy of the present invention, A
B 2 type Laves phase hydrogen storage alloy powder 80 to 95 wt%
And 5 to 20% by weight of magnesium powder in a ball mill in an inert atmosphere by mixing-grinding-compositing. Furthermore, in the method for producing a hydrogen storage alloy of the present invention, a horizontal ball mill is used as the ball mill.

【0007】[0007]

【作用】本発明の水素吸蔵合金は、通常のラーベス相合
金粉末とマグネシウム粉末を不活性雰囲気のボールミル
中で混合−粉砕処理を行なうことにより、ラーベス相合
金とマグネシウムとがその表面で機械的に接触し、複合
化、すなわちメカニカルアロイイングしたもので、複合
化することによってきわめて活性な表面状態となったも
のと推測される。その結果、室温以下の穏和な環境にお
ける原料合金単体の場合、水素吸蔵量が1.4wt%程
度であったものが、2.3wt%程度にまで増大した。
次に、原料粉末の混合物中のマグネシウム粉末含有割合
を5〜20重量%に限定した理由を説明すると、マグネ
シウム粉末が5%未満の添加では水素吸蔵量が増加せ
ず、また20%を超えるとボールミルの内壁にマグネシ
ウムが付着して複合化できないからである。
In the hydrogen storage alloy of the present invention, the ordinary Laves phase alloy powder and the magnesium powder are mixed and pulverized in a ball mill in an inert atmosphere, so that the Laves phase alloy and magnesium are mechanically bonded on the surface. It is assumed that it was brought into contact with the composite, that is, mechanically alloyed, and the composite was brought into an extremely active surface state. As a result, in the case of the raw material alloy alone in a mild environment at room temperature or lower, the hydrogen storage amount increased from about 1.4 wt% to about 2.3 wt%.
Next, the reason why the content ratio of the magnesium powder in the mixture of the raw material powders is limited to 5 to 20% by weight will be explained. If the addition amount of the magnesium powder is less than 5%, the hydrogen storage amount does not increase, and if it exceeds 20%. This is because magnesium adheres to the inner wall of the ball mill and cannot be composited.

【0008】[0008]

【発明の実施の形態】本発明の実施例を説明するが、こ
れらによって本発明が限定されるものではない。原料と
して、通常のラーベス相合金粉末とマグネシウム粉末を
準備する。ラーベス相合金粉末として化学式Ti0.24
0.76(Ni0.55Fe0.085 Mn0.3 0.065 2.1
表されるラーベス相合金を用いた。この合金は、成分均
一化の為、真空中で1080℃×10hr熱処理されて
おり、粒径は100μm以下である。マグネシウムは試
薬級で、粒径150μm以下である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described, but the present invention is not limited by these embodiments. Normal Laves phase alloy powder and magnesium powder are prepared as raw materials. Chemical formula Ti 0.24 Z as Laves phase alloy powder
A Laves phase alloy represented by r 0.76 (Ni 0.55 Fe 0.085 Mn 0.3 V 0.065 ) 2.1 was used. This alloy has been heat-treated at 1080 ° C. for 10 hours in a vacuum in order to make the components uniform, and has a grain size of 100 μm or less. Magnesium is reagent grade and has a particle size of 150 μm or less.

【0009】前記合金粉末90gとマグネシウム粉末1
0gとをステンレス鋼製ボールと一緒に内径188mm
のボールミル容器に入れ、容器内部を不活性ガスのアル
ゴンで置換する。次に前記ボールミル容器を横型ボール
ミル装置にセットし、70rpmで20時間と110時
間処理して混合−粉砕−複合化した。その結果マグネシ
ウムが被覆された75μm以下の混合粉末が得られた。
これらの混合粉末を次のようにしてその特性を測定し
た。
90 g of the alloy powder and 1 of magnesium powder
0g together with stainless steel balls, inner diameter 188mm
Then, the inside of the container is replaced with an inert gas of argon. Next, the ball mill container was set in a horizontal ball mill device and treated at 70 rpm for 20 hours and 110 hours to carry out mixing-grinding-compositing. As a result, a mixed powder of 75 μm or less coated with magnesium was obtained.
The characteristics of these mixed powders were measured as follows.

【0010】測定にはジーベルツ式PCT測定装置を使
用し、試料を250℃で活性化させた後、測定試料容器
を真空に排気し、真空原点法により水素吸蔵量を測定し
た。測定結果を図1に示す。室温以下の0℃という穏和
な環境における原料合金単体の場合、水素吸蔵量が1.
45wt%であったものが、20時間処理したものでは
1.6wt%、110時間処理したものでは2.3wt
%になり、110時間処理したものでは約1.6倍の吸
蔵量になった。
For the measurement, a Sibelts type PCT measuring device was used. After activating the sample at 250 ° C., the measurement sample container was evacuated to a vacuum and the hydrogen storage amount was measured by the vacuum origin method. FIG. 1 shows the measurement results. In the case of a raw material alloy alone in a mild environment of 0 ° C. below room temperature, the hydrogen storage capacity is 1.
What was 45 wt% was 1.6 wt% when treated for 20 hours and 2.3 wt% when treated for 110 hours
%, And the amount of occlusion was about 1.6 times when treated for 110 hours.

【0011】本例では、図1の特性曲線からみて、絶対
的な水素吸蔵量は大きくなったものの有効水素量が少な
く、プラトー領域の平坦性が良くないため、急速な水素
の吸収・放出には適しているといえないが、気体状化学
反応原料から不要な水素を除去する場合などのゲッター
材として有効であり、またヒートポンプ、水素貯蔵容器
等にも使用できる。
In this example, as seen from the characteristic curve of FIG. 1, although the absolute hydrogen storage amount is large, the effective hydrogen amount is small and the flatness of the plateau region is not good, which results in rapid hydrogen absorption / desorption. Is not suitable, but it is effective as a getter material when removing unnecessary hydrogen from a gaseous chemical reaction raw material, and can also be used for a heat pump, a hydrogen storage container and the like.

【0012】[0012]

【発明の効果】本発明の水素吸蔵合金は、室温以下の0
℃という穏和な環境における水素吸蔵量が従来の水素吸
蔵合金に比べ大幅に増加するという優れた効果を奏す
る。
The hydrogen storage alloy of the present invention has a temperature of room temperature or lower.
It has an excellent effect that the hydrogen storage amount in a mild environment of ℃ significantly increases compared to the conventional hydrogen storage alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水素吸蔵合金の特性を示す説明図
である。
FIG. 1 is an explanatory diagram showing characteristics of a hydrogen storage alloy according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 AB2 型ラーベス相水素吸蔵合金粉末8
0〜95重量%とマグネシウム粉末5〜20重量%とを
複合化した水素吸蔵合金。
1. AB 2 type Laves phase hydrogen storage alloy powder 8
A hydrogen storage alloy that is a composite of 0 to 95% by weight and 5 to 20% by weight of magnesium powder.
【請求項2】 AB2 型ラーベス相水素吸蔵合金が、次
式で示される組成からなることを特徴とする請求項1記
載の水素吸蔵合金。 TiX Zr1-X Y 但しM:Ni,Fe,Mn,V,Co,Sm,Cr,A
l,Cu,Mo,Wの一種以上 x=0〜0.3 atm% y=1.6〜2.4 atm%
2. The hydrogen storage alloy according to claim 1, wherein the AB 2 type Laves phase hydrogen storage alloy has a composition represented by the following formula. Ti X Zr 1-X M Y However, M: Ni, Fe, Mn, V, Co, Sm, Cr, A
1 or more of 1, Cu, Mo, W x = 0 to 0.3 atm% y = 1.6 to 2.4 atm%
【請求項3】 AB2 型ラーベス相水素吸蔵合金粉末8
0〜95重量%と、マグネシウム粉末5〜20重量%と
をボールミル内において不活性雰囲気中で混合−粉砕−
複合化することを特徴とする請求項1または請求項2記
載の水素吸蔵合金の製造方法。
3. AB 2 type Laves phase hydrogen storage alloy powder 8
Mixing 0 to 95% by weight and 5 to 20% by weight of magnesium powder in an inert atmosphere in a ball mill-grinding-
The method for producing a hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy is compounded.
【請求項4】 ボールミルが横型ボールミルであること
を特徴とする請求項3記載の水素吸蔵合金の製造方法。
4. The method for producing a hydrogen storage alloy according to claim 3, wherein the ball mill is a horizontal ball mill.
JP7202771A 1995-07-18 1995-07-18 Hydrogen storage alloy and its production Pending JPH0931575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7202771A JPH0931575A (en) 1995-07-18 1995-07-18 Hydrogen storage alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7202771A JPH0931575A (en) 1995-07-18 1995-07-18 Hydrogen storage alloy and its production

Publications (1)

Publication Number Publication Date
JPH0931575A true JPH0931575A (en) 1997-02-04

Family

ID=16462910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7202771A Pending JPH0931575A (en) 1995-07-18 1995-07-18 Hydrogen storage alloy and its production

Country Status (1)

Country Link
JP (1) JPH0931575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902845B2 (en) * 2001-03-09 2005-06-07 Canon Kabushiki Kaisha Alkaline rechargeable battery and process for the production thereof
CN111621673A (en) * 2020-07-22 2020-09-04 江苏美特林科特殊合金股份有限公司 Intermediate alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902845B2 (en) * 2001-03-09 2005-06-07 Canon Kabushiki Kaisha Alkaline rechargeable battery and process for the production thereof
CN111621673A (en) * 2020-07-22 2020-09-04 江苏美特林科特殊合金股份有限公司 Intermediate alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3528599B2 (en) Hydrogen storage alloy
Lee et al. Effect of the second phase on the initiation of hydrogenation of TiFe1− xMx (M= Cr, Mn) alloys
EP1174385B1 (en) Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle
JP3397981B2 (en) Hydrogen storage alloy and manufacturing method
JPH0931575A (en) Hydrogen storage alloy and its production
JPS61199045A (en) Hydrogen occluding alloy
US4721697A (en) Substance for reversibly absorbing and desorbing hydrogen
JPH1180865A (en) Hydrogen storage alloy with excellent durability and method for producing the same
JP2003193166A (en) Mg-based hydrogen storage alloy and method for producing the same
JPS61250136A (en) Titanium-type hydrogen occluding alloy
JPH108180A (en) Hydrogen storage alloy
WO2002066695A1 (en) Hydrogen occlusion alloy
JP2000239703A (en) Method for producing hydrogen storage alloy powder with excellent oxidation resistance
JPH0542489B2 (en)
JP2002105562A (en) Hydrogen storage alloy
JP4250218B2 (en) Hydrogen storage alloy
JPS59208037A (en) Alloy for storing hydrogen
JP2896433B2 (en) Magnesium hydrogen storage alloy
JP3795443B2 (en) Titanium-chromium-manganese hydrogen storage alloy
JP4304000B2 (en) Mg-Co based hydrogen storage alloy and method for producing the same
JPS6369701A (en) Metallic material for occluding hydrogen
JPH10298681A (en) Hydrogen storage alloy
JP2003253360A (en) Mg-Ti-BASE ALLOY AND ITS MANUFACTURING METHOD
JPH1030138A (en) Hydrogen storage body
JPS60135540A (en) Hydrogenatable alloy