JPH09312597A - Echo canceling method and apparatus for multi-channel audio communication conference - Google Patents
Echo canceling method and apparatus for multi-channel audio communication conferenceInfo
- Publication number
- JPH09312597A JPH09312597A JP8254868A JP25486896A JPH09312597A JP H09312597 A JPH09312597 A JP H09312597A JP 8254868 A JP8254868 A JP 8254868A JP 25486896 A JP25486896 A JP 25486896A JP H09312597 A JPH09312597 A JP H09312597A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- vector
- echo
- echo signal
- residual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Telephonic Communication Services (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Filters That Use Time-Delay Elements (AREA)
Abstract
(57)【要約】
【課題】 チャネル間信号に相互相関があっても反響消
去可能とする。
【解決手段】 多チャネル音声通信会議用反響消去にお
いて、複数のチャネルの受話信号を複数の再生器からそ
れぞれ音響信号として再生し、それらのチャネルの受話
信号ベクトルからそれらの結合ベクトルと、それらの少
なくとも2つのチャネルを入れ替えた場合の並べ替え受
話信号ベクトルを生成し、それらの再生器から少なくと
も1つの集音器に至る反響路を模擬する疑似反響信号生
成部に受話信号結合ベクトルを入力して疑似反響信号を
生成し、集音器から得られた反響信号から疑似反響信号
を減算して残留反響信号を得て、受話信号ベクトルと、
それに対応した残留反響信号との関係と、並べ替え受話
信号ベクトルとそれに対応した近似残留反響信号との関
係から、疑似反響信号生成部のインパルス応答を表す疑
似反響路ベクトルを修正する修正ベクトルを得る。
(57) [Abstract] [PROBLEMS] Echo cancellation is possible even if there is cross-correlation between channels. In echo cancellation for a multi-channel audio communication conference, received signals of a plurality of channels are reproduced as acoustic signals from a plurality of regenerators, respectively, and a combined vector of the received signal vectors of the channels and at least those vectors. A rearranged reception signal vector is generated when two channels are exchanged, and the reception signal combination vector is input to a pseudo echo signal generation unit that simulates an echo path from the regenerator to at least one sound collector. Generate a reverberation signal, subtract the pseudo reverberation signal from the reverberation signal obtained from the sound collector to obtain the residual reverberation signal, and the received signal vector,
From the relationship between the corresponding residual echo signal and the relationship between the rearranged received signal vector and the corresponding approximate residual echo signal, obtain a modified vector that modifies the pseudo echo path vector that represents the impulse response of the pseudo echo signal generator. .
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】この発明は、多チャネル再生
系を有する通信会議システムにおいて、ハウリングの原
因および聴覚上の障害となる室内反響信号を消去する多
チャネル音声通信会議用反響消去方法及びそれを使った
反響消去装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverberation canceling method for a multi-channel voice communication conference and a reverberation canceling method for canceling a room reverberation signal which is a cause of howling and an auditory obstacle in a communication conference system having a multi-channel reproducing system. It relates to the echo canceller used.
【0002】[0002]
【従来の技術】同時通話性能に優れ反響感の少ない拡声
通話システムを提供するために、反響消去装置がある。
まず、1チャネル用の反響消去装置について、従来の反
響消去方法および装置構成を図1を参照して説明する。
拡声通話において、受話端子11に相手の発話等で得ら
れる受話信号は、そのままスピーカ(再生器)12から
再生される場合と、スピーカ12へ送る前に、受話信号
の振幅やパワー等の大きさに応じて自動的に利得を調節
する受話信号加工部13が挿入され、受話信号に何らか
の加工が施された後に、スピーカ12から再生される場
合とがある。このため、この明細書で受話信号x1(k) と
は、相手からの受話信号そのものとは限らず、受話信号
加工部13が挿入されたときは、加工された後の受話信
号を指すものとする。kは離散時間を表す。反響消去装
置14は、受話信号x1(k) がスピーカ12から反響路1
5を経て、マイクロホン(集音器)16に集音されて得
られる反響信号y1(k)を消去する。ここで、反響信号y
1(k)は、時刻kにおける反響路15のインパルス応答を
h11(k,n)として、 y1(k)=Σh11(k,n)x1(k−n) (1) ただしΣはn=0からL-1までについての加算を表す のような畳み込み演算で得られるものとモデル化でき
る。Lはタップ数で、反響路15の残響時間に対応させ
て、あらかじめ設定しておく定数である。まず、受話信
号蓄積・ベクトル生成部17において、受話信号x1(k)
をL-1 時刻過去のものまで蓄積しておく。蓄積された信
号は、受話信号ベクトルx1(k) 、即ち、 x1(k)=[x1(k),x1(k-1),…, x1(k-L+1)]T (2) として出力される。但し、(*)T はベクトルの転置を表
す。疑似反響信号生成部18では、式(2)の受話信号ベ
クトルx1(k) と、反響路推定部19から得られる疑
似反響ベクトルh^11(k) との内積演算2. Description of the Related Art There is an echo canceller in order to provide a loud voice communication system which has excellent simultaneous call performance and little reverberation.
First, a conventional echo canceling method and device structure of the echo canceller for one channel will be described with reference to FIG.
In a voice call, the received signal obtained by the other party's utterance at the receiving terminal 11 is reproduced from the speaker (reproducer) 12 as it is, and before the speaker 12 is sent to the speaker 12, the amplitude and power of the received signal are large. In some cases, the reception signal processing unit 13 that automatically adjusts the gain in accordance with the above is inserted, and the reception signal is reproduced from the speaker 12 after being subjected to some processing. Therefore, in this specification, the reception signal x 1 (k) is not limited to the reception signal itself from the other party, but refers to the reception signal after being processed when the reception signal processing unit 13 is inserted. And k represents a discrete time. The echo canceller 14 outputs the received signal x 1 (k) from the speaker 12 to the echo path 1
The reverberant signal y 1 (k) obtained by being collected by the microphone (sound collector) 16 via 5 is erased. Where the echo signal y
1 (k) is the impulse response of the echo path 15 at time k
As h 11 (k, n), y 1 (k) = Σh 11 (k, n) x 1 (k−n) (1) where Σ represents addition from n = 0 to L-1 It can be modeled as that obtained by simple convolution operation. L is the number of taps, which is a constant set in advance corresponding to the reverberation time of the echo path 15. First, in the reception signal accumulation / vector generation unit 17, the reception signal x 1 (k)
Are stored up to L-1 time past. The accumulated signal is the received signal vector x 1 (k), that is, x 1 (k) = [x 1 (k), x 1 (k-1), ..., x 1 (k-L + 1)] It is output as T (2). However, (*) T represents the transposition of the vector. The pseudo echo signal generation unit 18 calculates the inner product of the received signal vector x 1 (k) of the equation (2) and the pseudo echo vector h ^ 11 (k) obtained from the echo path estimation unit 19.
【0003】[0003]
【数1】 を行ない、その結果として、疑似反響信号y^1(k)を生成
する。この内積演算は、式(1)のような畳み込み演算と
等価である。反響路推定部19では、疑似反響信号生成
部18で用いる疑似反響路ベクトル h^11(k)を生成
する。この反響路推定に用いる最も一般的なアルゴリズ
ムは、NLMSアルゴリズム(学習同定法)である。N
LMSアルゴリズムでは、時刻kにおける受話信号ベク
トルx1(k) と、残留反響信号 e1(k)、すなわち差回
路21でマイクロホン16の出力から疑似反響信号を差
し引いた次式 e1(k)=y1(k)−y^1(k) (4) とから、時刻k+1 において用いる疑似反響路ベクトル
h^11(k+1)を次式のように求める。[Equation 1] And the resulting pseudo-echo signal y ^ 1 (k). This inner product operation is equivalent to the convolution operation like the expression (1). The echo path estimation unit 19 generates the pseudo echo path vector h ^ 11 (k) used by the pseudo echo signal generation unit 18. The most general algorithm used for this echo path estimation is the NLMS algorithm (learning identification method). N
In the LMS algorithm, the received signal vector x 1 (k) at time k and the residual echo signal e 1 (k), that is, the following expression e 1 (k) = the difference circuit 21 subtracting the pseudo echo signal from the output of the microphone 16 From y 1 (k) −y ^ 1 (k) (4), the pseudo echo path vector used at time k + 1
h ^ 11 (k + 1) is calculated by the following equation.
【0004】[0004]
【数2】 但し、αはステップサイズパラメータと呼ばれ0<α<
2の範囲で適応動作の調整に用いる。以上のような処理
を繰り返すことにより、反響路推定部19では、次第に
疑似反響路ベクトル h^11(k)を、真の反響路15の
インパルス応答h11(k,n)の時系列を各要素として持つ反
響路ベクトルh11(k)、即ち h11(k)=[h11(k,0),h11(k,1),…,h11(k,L-1)]T (6) と一致させることが可能となり、その結果、式(4)の残
留反響信号 e1(k)を小さくすることができる。[Equation 2] However, α is called a step size parameter and 0 <α <
It is used for adjusting the adaptive operation in the range of 2. By repeating the above processing, the echo path estimation unit 19 gradually obtains the pseudo echo path vector h ^ 11 (k) and the time series of the impulse response h 11 (k, n) of the true echo path 15. Echo path vector h 11 (k) as an element, that is, h 11 (k) = [h 11 (k, 0), h 11 (k, 1), ..., h 11 (k, L-1)] T ( 6), and as a result, the residual reverberation signal e 1 (k) in equation (4) can be reduced.
【0005】一般にN(>2)チャネルの再生系と、M
(>1)チャネルの集音系とで構成される通信会議シス
テムの場合の反響の消去は、図2に示すような構成によ
り行われる。すなわち再生側の全Nチャネルと集音側の
各1チャネルとの間にN入力1出力時系列信号を処理す
るNチャネル反響消去装置221,222,…,22M をそ
れぞれ接続した反響消去システム23として実現され
る。この場合システム全体でN×M個の反響路15
nm(1<n<N,1<m<M)が存在する。このシステ
ムの構成単位である再生側の全Nチャネルと集音側の各
1チャネルとの間に接続されるNチャネル反響消去装置
221,222,…,22M については、図1に示した反響
消去装置14の構成を拡張して、図3に示すように構成
される。これは例えばB.Widrow and S.D.Stearns,"Adap
tive signal processing," Prince-Hall, Inc., pp. 19
8-200, (1985)に詳しく述べられている。ここで、集音
側が第m集音チャネル(1<m<M)に接続されている
Nチャネル反響消去装置22m を考える。第mチャネル
の集音器16m で集音される反響信号は、各再生チャネ
ルの受話信号がそれぞれの反響路151m〜15Nmを経て
集音側で全て加算されることにより得られるために、反
響路推定を、どの再生チャネルについても、統一的に同
じ1つの残留反響信号 em(k)のみを評価して行なうため
の工夫が必要となる。まず、各再生チャネルの受話信号
について、受話信号蓄積・ベクトル生成部171,172,
…,17N により、受話信号ベクトル x1(k)=[x1(k),x1(k-1),…,x1(k-L+1)]T (7) x2(k)=[x2(k),x2(k-1),…,x2(k-L+1)]T (8) : xN(k)=[xN(k),xN(k-1),…,xN(k-L+1)]T (9) を生成する。但し、Lはタップ数で、各反響路の残響時
間に対応させて、あらかじめ設定する定数である。これ
らのベクトルをベクトル結合部24によって、Generally, a reproducing system of N ( > 2) channels and M
Elimination of echoes in the case of a communication conference system composed of ( > 1) channel sound collecting system is performed by the configuration shown in FIG. That is, echo cancellers that connect N-channel echo cancellers 22 1 , 22 2 , ..., 22 M for processing N input 1 output time-series signals between all N channels on the reproducing side and each 1 channel on the sound collecting side. It is realized as the system 23. In this case, N × M echo paths 15 in the entire system
nm (1 < n < N, 1 < m < M) exists. The N-channel echo cancellers 22 1 , 22 2 , ..., 22 M connected between all N channels on the reproducing side and each one channel on the sound collecting side, which is a structural unit of this system, are shown in FIG. The echo canceller 14 is expanded to have the structure shown in FIG. This is for example B. Widrow and SDStearns, "Adap
tive signal processing, "Prince-Hall, Inc., pp. 19
8-200, (1985). Now, consider an N-channel echo canceller 22 m whose sound collecting side is connected to the m-th sound collecting channel (1 < m < M). Since the echo signal collected by the m-th channel sound collector 16 m is obtained by adding all the reception signals of the respective reproduction channels through the echo paths 15 1 m to 15 Nm on the sound collecting side. , It is necessary to devise an echo path estimation by uniformly evaluating only one residual echo signal e m (k) for all reproduction channels. First, with respect to the reception signal of each reproduction channel, the reception signal accumulation / vector generation units 17 1 , 17 2 ,
…, 17 N , the reception signal vector x 1 (k) = [x 1 (k), x 1 (k-1), ..., x 1 (k-L + 1)] T (7) x 2 (k ) = [x 2 (k), x 2 (k-1), ..., x 2 (k-L + 1)] T (8): x N (k) = [x N (k), x N ( k−1), ..., X N (k-L + 1)] T (9) is generated. However, L is the number of taps and is a constant set in advance corresponding to the reverberation time of each echo path. These vectors are calculated by the vector combiner 24.
【0006】[0006]
【数3】 と結合する。また、反響路推定部19m においても、各
再生チャネルと第m集音チャネルとの間のN個の反響路
を模擬するためのそれぞれの疑似反響路ベクトルh^
1m(k),h^2m(k),…,h^Nm(k)を結合して(Equation 3) Combine with Also in the echo path estimation unit 19 m , each pseudo echo path vector h ^ for simulating N echo paths between each reproduction channel and the m-th sound collection channel.
Combining 1m (k), h ^ 2m (k),…, h ^ Nm (k)
【0007】[0007]
【数4】 として扱う。疑似反響路結合ベクトルh^m(k)の更新
は、NLMSアルゴリズムを用いた場合、(Equation 4) Treat as When the NLMS algorithm is used to update the pseudo echo path coupling vector h ^ m (k),
【0008】[0008]
【数5】 のように行なわれる。疑似反響信号生成部18m では、
内積演算(Equation 5) It is performed like. In the pseudo echo signal generator 18 m ,
Inner product operation
【0009】[0009]
【数6】 により、第m集音チャネルで集音された反響信号ym(k)
に対する疑似反響信号y^ m(k)を生成する。このように、
各チャネル毎のベクトルを結合して1つのベクトルとし
て扱うことにより、基本的な処理の流れは、図1に示し
た1チャネル反響消去装置と同様となる。(Equation 6)By the echo signal y collected on the mth sound collection channelm(k)
Pseudo echo signal for y ^ mGenerate (k). in this way,
Combine the vectors for each channel into one vector
The basic processing flow is shown in Fig. 1.
It is similar to the one-channel echo canceller.
【0010】Nチャネルの再生系とMチャネルの集音系
とで構成される通信会議システムに用いられる従来の反
響消去システムの欠点のうち、この発明が解決しようと
するものを、具体例に沿って説明する。図4に示すよう
に、A地点とB地点との間において、2チャネルで集音
・再生を行なうステレオ音声会議装置に従来の反響消去
システムを適用した場合、B地点側の反響路が全く変動
しない場合においても、A地点側で発話者が移動あるい
は交替を行なう度にその発話に対するB地点からの反響
音が増大するという問題がある。これは、B地点側の反
響消去システムにおいて反響路推定が正しく行なわれて
いないために起こる問題である。Among the drawbacks of the conventional echo canceling system used in the communication conference system including the N-channel reproducing system and the M-channel sound collecting system, the problems to be solved by the present invention will be described with reference to specific examples. Explain. As shown in FIG. 4, when a conventional echo canceling system is applied to a stereo audio conference apparatus that collects and reproduces two channels between point A and point B, the echo path on the point B side changes completely. Even if it does not, there is a problem that the echo sound from the point B increases with respect to the utterance each time the speaker moves or changes at the point A side. This is a problem that occurs because the echo path estimation is not performed correctly in the echo canceling system on the B point side.
【0011】そこで、この問題を説明するために、B地
点における反響消去システムの構成単位である2チャネ
ル反響消去装置のうちの1つである第1集音チャネルに
接続された装置22b1の動作に注目する。以下では、各再
生チャネルの動作を明確化するために、従来技術の項で
用いた結合ベクトルの各再生チャネルについての要素が
明示された形で表記する。結合ベクトルを用いずに各再
生チャネル毎のベクトルで表記するB地点側における2
チャネル受話信号ベクトルをx1(k)とx2(k)とす
る。各再生チャネルに対する真の反響路1511,1521の反
響路ベクトルをh11(k),h21(k)とすると、これら
反響路1511,1521を経て集音される反響信号y1(k) は、Therefore, in order to explain this problem, the operation of the device 22b 1 connected to the first sound collecting channel, which is one of the two-channel echo cancellers, which is a constituent unit of the echo canceller at the point B, is explained. Pay attention to. In the following, in order to clarify the operation of each reproduction channel, the elements for each reproduction channel of the combination vector used in the section of the prior art will be described in a clearly defined form. 2 at the point B side expressed by a vector for each reproduction channel without using a combined vector
The channel reception signal vectors are x 1 (k) and x 2 (k). When the echo path vectors of the true echo paths 15 11 and 15 21 for each reproduction channel are h 11 (k) and h 21 (k), the echo signal y 1 collected through these echo paths 15 11 and 15 21. (k) is
【0012】[0012]
【数7】 と表される。一方、反響消去装置22b1内で生成される疑
似反響信号y^1(k)は、装置内で生成される疑似反響路
h^11(k) とh^21(k) とを用いて、(Equation 7) It is expressed as On the other hand, the pseudo echo signal y ^ 1 (k) generated in the echo canceller 22b 1 uses the pseudo echo paths h ^ 11 (k) and h ^ 21 (k) generated in the device,
【0013】[0013]
【数8】 と得られる。A地点から同一人の話者が発話した場合に
は、この受話信号ベクトルx1(k)とx2(k)との間に
は、非常に強い相互相関がある。x1(k)とx 2(k)と
の間に、一定の相互相関がある場合には、 y^1(k)=y1(k) (16) の解としての結合ベクトル[h^11 T(k),h^
21 T(k)]Tは無数に存在し、x 1(k) とx2(k) との相
互相関に固有な部分空間Hx を形成する。このため、N
LMSアルゴリズムのような一般的な逐次誤差最小化ア
ルゴリズムを用いた場合に、結合ベクトル[h^
11 T(k),h^21 T(k)]Tは初期値から部分空間Hx まで
の距離が最小となる点に収束し、一般に真値[h
11 T(k),h21 T(k)]Tには収束しない。(Equation 8)Is obtained. When the same speaker speaks from point A
Is the received signal vector x1(k) and xTwobetween (k)
Have a very strong cross-correlation. x1(k) and x Two(k) and
If there is a constant cross-correlation between, then y ^1(k) = y1(k) The combined vector [h ^ as the solution of (16)11 T(k), h ^
twenty one T(k)]TExist innumerably, x 1(k) and xTwoPhase with (k)
Subspace H peculiar to cross-correlationxTo form Therefore, N
General sequential error minimization algorithm such as LMS algorithm
When the algorithm is used, the connection vector [h ^
11 T(k), h ^twenty one T(k)]TIs the subspace H from the initial valuexUntil
Converge to a point where the distance of
11 T(k), htwenty one T(k)]TDoes not converge to.
【0014】説明を簡単にするために、一定なスカラー
値p1,p2 と原信号ベクトルs(k)により、受話信号
ベクトルx1(k),x2(k)が、 x1(k)= p1s(k),x2(k)= p2s(k) (17) と表される場合を考える。結合ベクトル[h^
11 T(k),h^21 T(k)] が存在し得る部分空間Hx は、[0014] For ease of description, the constant scalar values p 1, p 2 and the original signal vector s (k), the received signal vector x 1 (k), x 2 (k) is, x 1 (k ) = P 1 s (k), x 2 (k) = p 2 s (k) (17). Join vector [h ^
The subspace H x in which 11 T (k), h ^ 21 T (k)] can exist is
【0015】[0015]
【数9】 を満たす図5中の直線のように見なすことができ、初期
値0から適応を開始した場合、収束点[h^11p T(k),
h^21p T(k)] は、[Equation 9] Can be regarded as the straight line in FIG. 5 that satisfies the above condition, and when the adaptation is started from the initial value 0, the convergence point [h ^ 11p T (k),
h ^ 21p T (k)] is
【0016】[0016]
【数10】 のように得られる。このため、スカラー値p1 とp2 と
の間の比が変動した時点で、式(18)は満足されなくな
るため、反響を消去できなくなり、相手側に戻る反響が
増大する。(Equation 10) Is obtained as. Therefore, when the ratio between the scalar values p 1 and p 2 fluctuates, the equation (18) is no longer satisfied, so that the echo cannot be canceled and the echo returning to the other party increases.
【0017】[0017]
【発明が解決しようとする課題】以上の例からも分かる
ように、一般にNチャネルの再生系とMチャネルの集音
系とで構成される通信会議システムに、従来の反響消去
装置を適用した場合は、各チャネルの受話信号間に強い
相互相関があると反響路の推定が正しく行なわれないた
め、受話信号間の相互相関が変動する度に反響が増大す
る問題が生じる。As can be seen from the above example, when the conventional echo canceller is applied to a communication conference system generally composed of an N-channel reproduction system and an M-channel sound collection system. However, if there is a strong cross-correlation between the received signals of the respective channels, the echo path is not correctly estimated, so that the echo increases every time the cross-correlation between the received signals changes.
【0018】この発明の目的は、従来の多チャネル音声
通信会議用反響消去システムにおいて、以上に挙げたよ
うな、受話信号間に相互相関があっても、反響消去可能
な多チャネル音声通信会議用の反響消去方法及び装置を
提供することにある。An object of the present invention is to provide a conventional multichannel audio communication conference echo canceling system capable of canceling echoes even if there is cross-correlation between received signals as described above. To provide an echo canceling method and device.
【0019】[0019]
【課題を解決するための手段】この発明の原理によれ
ば、各チャネルの受話信号がそのまま対応するチャネル
から音響信号として再生されて反響路に入力され、その
反響路の出力が集音器で実際に観測可能な従来法でも利
用されている入出力関係に加えて、各チャネルの受話信
号のいくつか、あるいは全てが入れ替わって、対応する
チャネルとは異なるチャネルから音響信号として再生さ
れた場合の入力と、この入力が反響路を経て集音器で反
響信号として観測された場合に得られるべき出力とによ
る、未知の入出力関係を近似的に求めて、この両入出力
関係を用いて疑似反響路の修正ベクトルの導出に利用す
る。According to the principle of the present invention, the received signal of each channel is directly reproduced as an acoustic signal from the corresponding channel and input to the echo path, and the output of the echo path is output by the sound collector. In addition to the input / output relationship that is also used in the conventional method that can be actually observed, when some or all of the received signals of each channel are replaced and reproduced as an acoustic signal from a channel different from the corresponding channel An unknown input / output relationship between the input and the output that should be obtained when this input is observed as a reverberant signal by the sound collector through the reverberant path is approximately obtained, and the pseudo input / output relationship is used. It is used to derive the correction vector of the echo path.
【0020】この発明による多チャネル音声通信会議用
反響消去方法は、以下のステップを含む: (a) 複数のチャネルの受話信号をそれぞれ対応する複数
の再生器で音響信号として再生し、(b) 上記複数の再生
器からそれぞれの反響路を経て少なくとも1つの集音器
において加算され観測可能な反響信号として得て、(c)
上記複数のチャネルの上記受話信号をそれぞれ所定時間
蓄積し、チャネルごとに蓄積されている受話信号により
受話信号ベクトルを生成し、(d) 全てのチャネルについ
ての上記受話信号ベクトルを結合して観測可能な受話信
号結合ベクトルを生成し、(e) それぞれの上記反響路の
インパルス応答が表す反響路ベクトルの結合ベクトルを
模擬する疑似反響路結合ベクトルを有する疑似反響路に
上記受話信号結合ベクトルを与えることによりその出力
に上記観測可能な反響信号を模擬する疑似反響信号を生
成し、上記受話信号結合ベクトルとそれに対応する上記
反響信号は上記複数の反響路についての観測可能な入出
力関係に対応しており、(f) 上記反響信号から上記疑似
反響信号を減算して残留反響信号を得て、(g) 上記複数
のチャネルの少なくとも2つの受話信号を入れ替えた場
合の入れ替え受話信号結合ベクトルを上記疑似反響路に
与えた場合の近似疑似反響信号を求め、(h) 上記受話信
号を上記ステップ(g) と同様に入れ替えた場合に上記複
数の反響路を通って上記集音器より得られるべき反響信
号を近似により求め、これを近似反響信号とし、(i) 上
記近似反響信号から上記近似疑似反響信号を減算して近
似残留反響信号を求め、(j) 上記観測受話信号結合ベク
トルとそれに対応する上記観測可能な残留反響信号の関
係を表す観測可能な入出力関係と、上記入れ替えた受話
信号結合ベクトルと上記近似残留反響信号との関係を表
す近似入出力関係を評価し、その評価に基づいて上記修
正ベクトルを求め、(k) 上記修正ベクトルにより上記疑
似反響路ベクトルを修正する。The echo canceling method for a multi-channel audio communication conference according to the present invention includes the following steps: (a) Receiving signals of a plurality of channels are reproduced as acoustic signals by a plurality of corresponding reproducers, and (b) From each of the plurality of regenerators, through each echo path, added in at least one sound collector to obtain an observable echo signal, (c)
Accumulate the received signals of the above multiple channels for a predetermined time, generate the received signal vector from the received signals accumulated for each channel, and (d) combine the observed signal vectors of all channels and observe. (E) giving the received signal connection vector to a pseudo echo path having a pseudo echo path connection vector that simulates the connection vector of the echo path vectors represented by the impulse responses of the echo paths. By generating a pseudo echo signal that simulates the observable echo signal at its output, the received signal coupling vector and the corresponding echo signal corresponding to the observable input-output relationship for the plurality of echo paths. And (f) subtracting the pseudo echo signal from the echo signal to obtain a residual echo signal, (g) at least one of the plurality of channels. Interchange when two received signals are exchanged. An approximate pseudo echo signal is obtained when the receive signal combination vector is given to the above pseudo echo path, and (h) when the above received signals are exchanged in the same manner as in step (g) above. The echo signal to be obtained from the sound collector through the plurality of echo paths is obtained by approximation, and this is used as the approximate echo signal, and (i) the approximate pseudo echo signal is subtracted from the approximate echo signal to approximate the residual echo. Signal, (j) observable input / output relationship representing the relationship between the observed received signal combination vector and the corresponding observable residual echo signal, and the replaced received signal combination vector and the approximate residual echo signal The approximate input / output relationship representing the relationship is evaluated, the correction vector is obtained based on the evaluation, and (k) the pseudo echo path vector is corrected by the correction vector.
【0021】この発明の多チャネル音声通信会議用反響
消去装置は以下を含む:複数のチャネルの受話信号をそ
れぞれ音響信号に再生して出力する複数の再生器と、少
なくとも1つの送信用チャネルに接続された集音器と、
上記音響信号が上記複数の再生器から上記集音器に至る
音響路は反響路をそれぞれ形成し、上記集音器に集音さ
れ、合成された上記音響信号は反響信号として上記送話
チャネルに入力され、上記複数のチャネルの受話信号を
それぞれ一時的に保持して各受話信号ベクトルを生成す
る受話信号ベクトル生成部と、上記複数のチャネルの受
話信号ベクトルを結合して受話信号結合ベクトルを生成
するベクトル結合部と、上記受話信号結合ベクトルが与
えられ、上記複数の再生器から上記集音器に至る上記反
響路のインパルス応答を表す反響路ベクトルを結合した
反響路結合ベクトルを模擬する疑似反響路結合ベクトル
を有し、上記受話信号結合ベクトルが入力されて、上記
観測可能な反響信号を模擬する疑似反響信号を出力する
疑似反響信号生成部と、上記集音器からの反響信号から
上記疑似反響信号を減算して、その差を観測可能な残留
反響信号として出力する減算器と、上記複数チャネルの
少なくとも2つの受話信号を入れ替えて結合して得た並
べ替え受話信号結合ベクトルを生成するベクトル並べ替
え結合部と、少なくとも上記観測受話信号結合ベクトル
と、それに対応する上記観測可能な残留反響信号とが与
えられ、上記並べ替え受話信号結合ベクトルを上記疑似
反響路に与えた場合の近似疑似反響信号を求め、上記受
話信号を入れ替えた場合に上記集音器より得られるべき
反響信号を近似により近似反響信号として求め、上記近
似反響信号から上記近似疑似反響信号を減算して近似残
留反響信号を求め、上記受話信号結合ベクトルとそれに
対応する上記観測可能な残留反響信号との関係を表す観
測可能な入出力関係と、上記並べ替え受話信号結合ベク
トルとそれに対応する上記近似残留反響信号との関係を
表す近似入出力関係を評価し、その評価に基づいて上記
修正ベクトルを求め、上記修正ベクトルにより上記疑似
反響路ベクトルを修正した疑似反響路ベクトルを生成し
上記疑似反響信号生成部に与える反響路推定部。The echo canceller for a multi-channel audio communication conference according to the present invention includes the following: a plurality of regenerators for reproducing the received signals of a plurality of channels as acoustic signals and outputting the acoustic signals, and at least one transmission channel. The collected sound collector,
The acoustic paths from the plurality of regenerators to the sound collector form echo paths, and the acoustic signals collected by the sound collectors and synthesized are sent to the transmission channel as echo signals. A received signal vector generation unit that holds the received signals of the plurality of channels and temporarily generates each received signal vector, and a received signal vector of the plurality of channels are combined to generate a received signal combination vector. And the received signal combination vector are given, and a pseudo echo that simulates an echo path combination vector that combines echo path vectors representing the impulse response of the echo path from the plurality of regenerators to the sound collector. Pseudo echo signal generation that has a path coupling vector and outputs the pseudo echo signal that simulates the observable echo signal when the received signal coupling vector is input And a subtracter that subtracts the pseudo echo signal from the echo signal from the sound collector and outputs the difference as an observable residual echo signal, and at least two reception signals of the plurality of channels are exchanged and combined. The rearranged reception signal combination vector for generating the rearranged reception signal combination vector obtained by the above, at least the observed reception signal combination vector and the corresponding observable residual echo signal are given, and the rearranged reception signal combination vector is given. To obtain an approximate pseudo-echo signal when given to the pseudo-echo path, obtain an approximate echo signal that should be obtained from the sound collector when the received signal is replaced by an approximate echo signal, and from the approximate echo signal The approximate pseudo echo signal is subtracted to obtain the approximate residual echo signal, and the received signal combination vector and the corresponding observable residual echo signal are obtained. And an observable input / output relationship representing the relationship between the rearranged received signal combination vector and the corresponding approximate residual echo signal, and the approximate input / output relationship is evaluated, and the modified vector is based on the evaluation. And an echo path estimation unit that generates a pseudo echo path vector in which the pseudo echo path vector is corrected by the correction vector and gives the pseudo echo signal vector to the pseudo echo signal generation unit.
【0022】[0022]
【実施例】原理 まず、この発明の原理を簡単のため受話信号が2チャネ
ルの場合で説明する。図4及び5を参照して先に説明し
たように、受話信号x1(k),x2(k)が再生されたとき、こ
れらが、対応する反響路h1m(k),h2m(k)を経て、
第m集音チャネル(ただし図4ではm=2の場合を示し
ている)で反響信号ym(k) として集音されるときの入出
力関係は、DESCRIPTION OF THE PREFERRED EMBODIMENTS Principle First, for simplicity, the principle of the present invention will be described in the case where a received signal has two channels. As described above with reference to FIGS. 4 and 5, when the received signals x 1 (k) and x 2 (k) are reproduced, these are the corresponding echo paths h 1m (k) and h 2m ( via k),
The input-output relation when the sound is collected as the reverberation signal y m (k) in the m-th sound collection channel (however, m = 2 is shown in FIG. 4) is
【0023】[0023]
【数11】 となり、受話信号ベクトルx1(k),x2(k)の相互相
関が一定である場合、前述のように、式(21)の関係を満
足させる疑似反響路ベクトルh^1m(k),h^2 m(k)を
一意に決定できない。そこで、いま、受話信号ベクトル
x1(k),x2(k)とは相互相関の異なる受話信号ベク
トルx'1(k),x'2(k)に対する第m集音チャネルに
おける反響信号y'm(k) が観測されたとすると、式(21)
と同様に、[Equation 11] When the cross-correlation between the received signal vectors x 1 (k) and x 2 (k) is constant, as described above, the pseudo echo path vector h ^ 1m (k), which satisfies the relationship of the equation (21), h ^ 2 m (k) cannot be uniquely determined. Therefore, now, the received signal vectors x 1 (k), the echo signal in the m pickup channel to the received signal vector x different cross-correlation '1 (k), x' 2 (k) and x 2 (k) y If ' m (k) is observed, then equation (21)
alike,
【0024】[0024]
【数12】 なる関係が得られる。一方、受話信号x1(k),x
2(k)とx'1(k),x'2(k)のそれぞれの組が与えられ
た場合の第m集音チャネルに対する対する疑似反響信号
をy^m,y^'m とすると、(Equation 12) Is obtained. On the other hand, the received signal x 1 (k), x
2 (k) and x '1 (k), x ' the echo replica against for the first m pickup channel when each set of 2 (k) is given y ^ m, When y ^ 'm,
【0025】[0025]
【数13】 となる。さらに、反響信号ym(k),y'm(k) と疑似反響信
号y^m,y^'m との誤差信号をそれぞれem(k),e'm(k) と
し、また、反響路h1m(k),h2m(k)と疑似反響路ベ
クトルh^1m(k),h^2m(k)との反響路推定誤差ベク
トルをΔh1m(k),Δh2m(k)とすると、(Equation 13) Becomes Moreover, echo signals y m (k), and y 'm (k) and the estimated echo signal y ^ m, y ^' respectively an error signal between the m e m (k), and e 'm (k), also, echo path h 1m (k), h 2m (k) and the estimated echo path vector h ^ 1m (k), h ^ 2m (k) and the echo path estimation error vector Δh 1m (k), Δh 2m (k) Then,
【0026】[0026]
【数14】 となる。つまり[Equation 14] Becomes I mean
【0027】[0027]
【数15】 なる関係が得られる。式(27)からは、反響路推定誤差ベ
クトルΔh1m(k),Δh2m(k) を一意に求めること
はできないが、その最小ノルム解をΔh^1m(k),Δ
h^2m(k) とすると、(Equation 15) Is obtained. Although the echo path estimation error vectors Δh 1m (k) and Δh 2m (k) cannot be uniquely calculated from Eq. (27), the minimum norm solution is Δh ^ 1m (k), Δ
h ^ 2m (k),
【0028】[0028]
【数16】 と得られる。但し、(*)+ は一般化逆行列を表す。こ
れより、疑似反響路ベクトルh^1m(k),h^2m(k)
は、最小ノルム解Δh^1m(k),Δh^2m(k)を修正ベ
クトルとして(Equation 16) Is obtained. However, (*) + represents a generalized inverse matrix. From this, the pseudo echo path vectors h ^ 1m (k), h ^ 2m (k)
Is the minimum norm solution Δh ^ 1m (k), Δh ^ 2m (k) as a correction vector
【0029】[0029]
【数17】 と修正することができる。但し、μm はステップサイズ
パラメータである。このとき、修正ベクトルΔh^
1m(k),Δh^2m(k)は、受話信号x1(k),x2(k)
とは異なる相互相関を持つことができ、受話信号間の相
互相関に依存せずに、真の反響路の特性が推定可能とな
る。しかしながら、上記の議論は、受話信号x1(k),
x2(k)とは相互相関の異なる受話信号x'1(k),
x'2(k)に対する式(22)で表される入出力関係が観測
可能という前提のもとに成り立つのであり、実際には、
この入出力関係は未知である。そこで、この発明では、
近似的にこの入出力関係を満足する状態を利用する。[Equation 17] Can be modified. However, μ m is a step size parameter. At this time, the correction vector Δh ^
1m (k) and Δh ^ 2m (k) are the received signals x 1 (k) and x 2 (k)
It is possible to have a cross-correlation different from that, and it is possible to estimate the characteristics of the true echo path without depending on the cross-correlation between the received signals. However, the above discussion is based on the received signal x 1 (k),
x 2 (k) and the received signal x '1 different cross-correlations (k),
x '2 (k) with respect to it than established based on the assumption that the input-output relationship is observable represented by the formula (22), in fact,
This input / output relationship is unknown. Therefore, in the present invention,
A state that approximately satisfies this input / output relationship is used.
【0030】まず、受話信号x'1(k),x'2(k)とし
ては、受話信号x1(k),x2(k)と相互相関が異なる
任意の信号が利用可能である。そこで式(22)の入出力関
係を近似的に満足すると考えられる状態として、2つの
受話信号チャネルの受話信号を互いに入れ替えることに
より、 x'1(k)=x2(k) (31) x'2(k)=x1(k) (32) として再生した場合を考える。つまりx1(k):x
2(k)の相関が例えば1:2の場合、チャネル入れ替えに
より、x'1(k):x'2(k)が2:1となり、相互相関
が異なる。即ちこの発明では、一般に多チャネルの受話
信号が再生される場合には、任意の2チャネルについて
受話信号が入れ替わった信号の組合せを式(28)のように
解くことにより修正ベクトルを求める。この原理を使っ
て修正ベクトルΔh^1m(k),Δh^2m(k)を求める方
法を以下にいくつか示す。方法1 方法1では、式(21)で表される観測可能な入出力関係
と、式(31)、(32)により信号を入れ替えた場合に近似的
に得られると推測される式(22)の入出力関係とを異なる
重みで評価する。例えば誤差信号em(k)とe'm(k) とを異
なる重み付けで評価する。この重み付けは、時間によら
ず一定の場合と、時間的に変化させる場合との2通りあ
る。First, as the reception signals x ′ 1 (k) and x ′ 2 (k), any signals having a cross correlation different from those of the reception signals x 1 (k) and x 2 (k) can be used. Therefore, assuming that the input / output relation of the equation (22) is considered to be approximately satisfied, by exchanging the reception signals of the two reception signal channels with each other, x ′ 1 (k) = x 2 (k) (31) x Consider the case of reproduction as' 2 (k) = x 1 (k) (32). That is, x 1 (k): x
When the correlation of 2 (k) is, for example, 1: 2, by switching channels, x ′ 1 (k): x ′ 2 (k) becomes 2: 1 and the cross correlation is different. That is, according to the present invention, in general, when a multi-channel reception signal is reproduced, a correction vector is obtained by solving a combination of signals in which reception signals are exchanged for arbitrary two channels, as shown in Expression (28). Several methods for obtaining correction vectors Δh ^ 1m (k) and Δh ^ 2m (k) using this principle are shown below. Method 1 Method 1 uses the observable input / output relationship expressed by Expression (21) and Expression (22) that is estimated to be approximately obtained when the signals are exchanged by Expressions (31) and (32). Evaluate the input-output relationship of the with different weights. For example evaluates the error signal e m (k) and e 'm (k) in different weights. There are two types of weighting, one is constant regardless of time and the other is temporal change.
【0031】方法(1-a) 例えば再生が2チャネルの場合には、式(27)における、
誤差em(k)とe'm(k) とを異なる重みで評価するために、
重み係数γm,γ'm を導入し、Method (1-a) For example, in the case of reproducing two channels,
To evaluate the error e m (k) and e 'm (k) at different weights,
Weighting factor gamma m, introducing gamma 'm,
【0032】[0032]
【数18】 を解くことにより、修正ベクトルを求める。 方法(1-b) 誤差e'm(k)を、誤差em(k) と相関のある成分と、それ以
外の成分とに分離したあとで、重み係数を導入する。つ
まり、例えば、受話信号間の相関に着目すると、x'1
(k),x'2(k)は次式(Equation 18) The correction vector is obtained by solving Method (1-b) The error e ′ m (k) is separated into a component having a correlation with the error e m (k) and other components, and then a weighting factor is introduced. That is, for example, focusing on the correlation between the received signals, x ′ 1
(k), x '2 ( k) is expressed by the following equation
【0033】[0033]
【数19】 のように、x1(k),x2(k)と相関のある部分(式(3
4)右辺第2項)とそれ以外の部分(式(34)右辺第1項)
とに分離できる。さらに、式(34)の両辺に、左から[Δ
h1m T(k),Δh2m T(k)]を乗じ、式(25)、(26)の関
係を用いると、誤差e'm(k)は、[Equation 19] Such as x 1 (k), x 2 (k) (equation (3
4) The second term on the right side) and other parts (the first term on the right side of Equation (34))
And can be separated into In addition, add [Δ
h 1m T (k), Δh 2m T (k)] and using the relations of equations (25) and (26), the error e ′ m (k) is
【0034】[0034]
【数20】 となり、受話信号の相関という観点から、誤差em(k) と
相関のある成分(式(37)右辺第2項)と、それ以外の成
分(式(37)右辺第1項)とに分離される。これより、式
(27)は、(Equation 20) Next, separated from the point of view of the correlation of the received signal, the error e m (k) and a correlation component (formula (37) the second term on the right side), and other components (formula (37) the first term) To be done. From this, the formula
(27) is
【0035】[0035]
【数21】 となる。ここで、誤差e'm(k)について、誤差em(k) と相
関のある成分と、それ以外の成分とにそれぞれ独立に係
数v,wを乗じることにより、式(38)は更に、(Equation 21) Becomes Here, with respect to the error e ′ m (k), the component correlating with the error e m (k) and the other components are independently multiplied by the coefficients v and w, respectively, so that the equation (38) further becomes
【0036】[0036]
【数22】 となり、これを解くことにより、修正ベクトルを求め
る。式(39)に示すように、誤差e'm(k)を、誤差em(k) と
相関のある成分と、それ以外の成分とに分離し、それぞ
れの成分を独立に重み付けすることにより、v=0,w=1
とすれば、得られる修正ベクトルは、従来の技術で述べ
たNLMSアルゴリズムにより得られる修正ベクトルと
一致する。また、v=1,w=0とすれば、近似入出力関係
に関して得られた誤差e'm(k)のうち、観測可能な入出力
関係に関して得られた誤差em(k) と相関のある成分、即
ち冗長な成分を取り除いて評価し、修正ベクトルを求め
ることに相当すること等からも分るように、物理的な意
味をより明確化して重み付けを行なうことができる。(Equation 22) Then, the correction vector is obtained by solving this. As shown in equation (39), the error e 'm (k), a component having a correlation with the error e m (k), then separated into the other ingredients, by weighting each component independently , V = 0, w = 1
Then, the obtained correction vector matches the correction vector obtained by the NLMS algorithm described in the prior art. Further, v = 1, if w = 0, of the error e 'm obtained for the approximation input-output relationship (k), the correlation between the error obtained for observable input-output relationships e m (k) As can be seen from the fact that a certain component, that is, a redundant component is removed and evaluated, and a correction vector is obtained, it is possible to make the physical meaning clearer and perform weighting.
【0037】以上のような重み係数を時間的に変化させ
る場合の方法の一つとして、後述するこの発明の効果で
示すように基本的には疑似反響路ベクトルの真の反響路
の模擬の程度に応じて変化させる。例えば前述の方法(1
-a) においてはγm(k)=1とし、γ'm(k) を1より小と
し、真の反響路の模擬が悪い時はγ'm(k) を1を超えな
い範囲で大とする。また方法(1-b) においては、模擬が
悪いときはv=0,w=1として従来法と一致させ、状態が
良くなるに従ってv,wの値を変化させる。As one of the methods for changing the above weighting factors with time, basically, the degree of simulating the true echo path of the pseudo echo path vector is shown, as shown by the effect of the present invention described later. Change according to. For example, the method (1
In -a) and γ m (k) = 1, γ 'm (k) small city than 1, the gamma when the poor simulation of the true echo path' large within a range that does not exceed the 1 m (k) And In method (1-b), when the simulation is bad, v = 0 and w = 1 are set to match the conventional method, and the values of v and w are changed as the state improves.
【0038】この模擬の程度を評価するためには、反響
信号ym(k) と残留反響信号(即ち誤差信号)em(k) との
比、反響信号と残留反響信号との平均電力比、残留反響
信号の絶対値、残留反響信号の平均電力、のうちの少な
くとも一つを利用する。方法2 この発明の原理の説明中の式(28)、又は方法(1-a)及び
(1-b)における式(33)、(39)において、Δh1m(k),Δ
h2m(k)を求める具体的方法を次に説明する。各チャ
ネルの受話信号のいくつか、あるいは全てが入れ替わっ
て、対応するチャネルとは異なるチャネルから音響信号
として再生された場合の反響路への入力と、この入力が
それぞれ対応する反響路を経て集音器で反響信号として
観測された場合に得られるべき出力とによる、未知の入
出力関係を近似して求める。この近似を行うためにここ
では、各チャネルの受話信号xm(k) がそのまま音響信号
として再生されてそれぞれ対応する反響路を経て集音器
で実際に観測される既知の入出力関係と、この入出力関
係の評価に用いられる残留反響信号(誤差信号)及び反
響路の類似性を利用する。その具体的方法として、以下
の方法がある。In order to evaluate the degree of this simulation, the ratio of the echo signal y m (k) to the residual echo signal (that is, the error signal) e m (k), the average power ratio of the echo signal to the residual echo signal, and , At least one of the absolute value of the residual echo signal and the average power of the residual echo signal is used. Method 2 Equation (28) in the description of the principle of the present invention, or method (1-a) and
In equations (33) and (39) in (1-b), Δh 1m (k), Δ
A specific method for obtaining h 2m (k) will be described below. Input to the echo path when some or all of the received signals of each channel are exchanged and reproduced as an acoustic signal from a channel different from the corresponding channel, and this input collects sound through the corresponding echo path. The unknown input-output relationship with the output that should be obtained when it is observed as a reverberant signal by the instrument is obtained by approximation. In order to perform this approximation, here, the received signal x m (k) of each channel is reproduced as an acoustic signal as it is, and the known input / output relationship actually observed by the sound collector via the corresponding echo paths, The similarity of the residual echo signal (error signal) and the echo path used for the evaluation of the input / output relationship is used. The specific method is as follows.
【0039】[0039]
【数23】 方法(2-a) 方法(2-a) は、特に反響路の類似性を利用する方法であ
り、再生器、集音器間の距離、向きなどの物理的配置関
係が類似した再生器、集音器間における反響路は互いに
等しいと仮定して利用する。例えば、再生、集音がとも
に2チャネルの場合、それぞれの集音チャネルに対する
入出力関係は、(Equation 23) Method (2-a) Method (2-a) is a method that particularly utilizes the similarity of the echo paths, that is, a regenerator that has a similar physical layout relationship such as the distance between the sound collectors and the sound collectors, and the orientation. The echo paths between the sound collectors are assumed to be equal to each other. For example, if both playback and sound collection are 2 channels, the input / output relationship for each sound collection channel is
【0040】となる。ここで図6に示すようにスピーカ
121 ,122 、マイクロホン161,162 がこれら
の指向特性も含めて左右対称に配置されたとき、 h11(k)=h22(k) (42) h21(k)=h12(k) (43) が成り立つものとし、これらと、式(40),(41)より、## EQU4 ## Here, as shown in FIG. 6, when the speakers 12 1 and 12 2 and the microphones 16 1 and 16 2 are symmetrically arranged including these directional characteristics, h 11 (k) = h 22 (k) (42 ) h 21 (k) = h 12 (k) (43) holds, and from these, and equations (40) and (41),
【0041】[0041]
【数24】 なる関係が得られる。これらは正に、式(40)、(41)に対
して、受話信号の再生チャネルを入れ替えた場合の入出
力関係であり、従ってe'1(k)=e2(k) 及びe'2(k)=e
1(k) が成り立つ。これらの近似結果を式(44)、(45)と
共に式(28)、(33)及び(39)に適用するとそれぞれ以下の
3つの方法が得られる。 方法(2-a-1) 即ち、式(28)にチャネル入れ替えと反響路近似を適用す
ると次の連立方程式(Equation 24) Is obtained. These are exactly the input / output relationships when the reproduction channels of the received signal are exchanged with respect to the equations (40) and (41), and therefore, e ′ 1 (k) = e 2 (k) and e ′ 2 (k) = e
1 (k) holds. When these approximation results are applied to Eqs. (28), (33) and (39) together with Eqs. (44) and (45), the following three methods are obtained. Method (2-a-1) That is, if the channel replacement and the echo path approximation are applied to Equation (28), the following simultaneous equations are obtained.
【0042】[0042]
【数25】 が得られ、これを解くことにより修正ベクトルを得るこ
とができる。 方法(2-a-2) 即ち、式(33)にチャネル入れ替えと反響路近似を適用す
ると次の連立方程式(Equation 25) And the correction vector can be obtained by solving this. Method (2-a-2) That is, applying the channel swapping and the echo path approximation to Equation (33) gives the following simultaneous equations.
【0043】[0043]
【数26】 が得られ、これを解くことにより修正ベクトルを得るこ
とができる。 方法(2-a-3) c(k)=r'(k)r-1(k)とおき、式(39)にチャネル入れ替えと
反響路近似を適用すると次の連立方程式(Equation 26) And the correction vector can be obtained by solving this. Method (2-a-3) c (k) = r '(k) r -1 (k), and applying channel permutation and echopath approximation to Eq. (39), the following simultaneous equations are obtained.
【0044】[0044]
【数27】 が得られ、これを解くことにより修正ベクトルを得るこ
とができる。 方法(2-b) もう1つの方法(2-b)は 、上記方法(2-a) における仮
定、例えば式(42)、(43)のような物理的配置関係の類似
した再生器、集音器間における反響路は互いに等しいと
する仮定が精度良く成り立たない場合にも対応可能な方
法である。前述の例と同様に、再生、集音がともに2チ
ャネルの場合、式(42)、(43)の代わりに、 h11(k)=h22(k)+f1(k) (49) h21(k)=h12(k)+f2(k) (50) を用いる。ここでf1(k)及びf2(k)は真の反響路ベ
クトルh11(k)とh2 2(k)の類似性誤差及び真の反響
路ベクトルh12(k)とh21(k)の類似性誤差を表して
いる。これに対して疑似反響路ベクトルh^11(k)と
h^22(k)の類似性誤差f^1(k)と、疑似反響路ベク
トルh^12(k)とh^21(k)の類似性誤差f^2(k)を
次式 h^11(k)=h^22+f^1(k) (51) h^21(k)=h^12(k)+f^2(k) (52) のように表し、更にこれら真の反響路と疑似反響路につ
いての類似性誤差ベクトルの差分を次式 Δf1(k)=f1(k)−f^1(k) (53) Δf2(k)=f2(k)−f^2(k) (54) で定義し、これらを類似性誤差差分と呼ぶことにする。
そこで、再生チャネルを入れ替えて受話信号x1(k),
x2(k)を再生した場合に、第1集音チャネルで得られ
る出力をy'1(k)、第2集音チャネルで得られる出力をy'
2(k)とすると、式(49)、(50)と式(40)、(41)の関係を利
用することにより、[Equation 27] And the correction vector can be obtained by solving this. Method (2-b) Another method (2-b) is a regenerator having a similar physical arrangement as in the above method (2-a), for example, equations (42) and (43). This is a method that can be applied even when the assumption that the echo paths between sound devices are equal to each other does not hold with high accuracy. Similar to the above example, when both reproduction and sound collection are two channels, instead of equations (42) and (43), h 11 (k) = h 22 (k) + f 1 (k) (49) h 21 (k) = h 12 (k) + f 2 (k) (50) is used. Where f 1 (k) and f 2 (k) are the similarity error of the true echo path vectors h 11 (k) and h 2 2 (k) and the true echo path vectors h 12 (k) and h 21 ( It represents the similarity error of k). On the other hand, the similarity error f ^ 1 (k) between the pseudo echo path vectors h ^ 11 (k) and h ^ 22 (k), and the pseudo echo path vectors h ^ 12 (k) and h ^ 21 (k). The similarity error f ^ 2 (k) of h ^ 11 (k) = h ^ 22 + f ^ 1 (k) (51) h ^ 21 (k) = h ^ 12 (k) + f ^ 2 (k) (52), and the difference between the similarity error vectors of the true echo path and the pseudo echo path is expressed by the following equation Δf 1 (k) = f 1 (k) −f ^ 1 (k) (53) It is defined by Δf 2 (k) = f 2 (k) −f ^ 2 (k) (54), and these are called similarity error differences.
Therefore, by changing the reproduction channels, the received signal x 1 (k),
When x 2 (k) is reproduced, the output obtained in the first sound collection channel is y ′ 1 (k) and the output obtained in the second sound collection channel is y ′.
2 (k), by using the relationship between equations (49) and (50) and equations (40) and (41),
【0045】[0045]
【数28】 が得られる。また、出力y'1(k),y'2(k)は、それぞれ疑
似反響路ベクトルh^1 1(k),h^21(k),h^
12(k),h^22(k)と式(51)、(52)を用いて、次式のよ
うにy^'1(k),y^'2(k)と模擬される。[Equation 28] Is obtained. The outputs y ′ 1 (k) and y ′ 2 (k) are pseudo echo path vectors h ^ 1 1 (k), h ^ 21 (k) and h ^, respectively.
Using 12 (k), h ^ 22 (k) and equations (51) and (52), y ^ ' 1 (k) and y ^' 2 (k) are simulated as in the following equation.
【0046】[0046]
【数29】 y'1(k),y'2(k)とそれらを模擬したy^'1(k),y^'2(k)と
の誤差e'1(k),e'2(k)は、(Equation 29) y '1 (k), y ' 2 (k) and they simulated the y ^ '1 (k), y ^' 2 (k) error e between the '1 (k), e' 2 (k) is ,
【0047】[0047]
【数30】 但し、[Equation 30] However,
【0048】[0048]
【数31】 である。式(63)、(64)より、類似性誤差差分Δf^
1(k),Δf^2(k)がそれぞれ未知の類似性誤差ベクト
ルf1(k),f2(k)で表されているため、e'1(k),e'
2(k)を正確に知ることはできない。そこで、式(59)、(6
0)を既知のe2(k),e1(k)について解くと、[Equation 31] It is. From equations (63) and (64), the similarity error difference Δf ^
Since 1 (k) and Δf ^ 2 (k) are represented by unknown similarity error vectors f 1 (k) and f 2 (k), respectively, e ′ 1 (k) and e ′
We cannot know 2 (k) exactly. Therefore, equations (59) and (6
Solving (0) for known e 2 (k) and e 1 (k),
【0049】[0049]
【数32】 となる。一方、式(25)より、(Equation 32) Becomes On the other hand, from equation (25),
【0050】[0050]
【数33】 である。従って、式(65)〜(68)より、[Expression 33] It is. Therefore, from equations (65) to (68),
【0051】[0051]
【数34】 なる連立方程式が得られる。疑似反響路ベクトルの修正
ベクトルは、式(69)の連立方程式の最小ノルム解として
得られる。ここで、類似性誤差差分Δf^1(k),Δ
f^2(k)は、実際には求める必要はない。 方法(2-b-1) 式(69)に基づく疑似反響路修正ベクトルを求める場合
に、前述の方法(1-a) の式(33)における重み付け係数を
導入すると、(Equation 34) The following simultaneous equations are obtained. The modified vector of the pseudo echo path vector is obtained as the minimum norm solution of the simultaneous equations of Equation (69). Here, the similarity error difference Δf ^ 1 (k), Δ
f ^ 2 (k) does not actually have to be obtained. Method (2-b-1) When obtaining the pseudo echo path correction vector based on Equation (69), introducing the weighting coefficient in Equation (33) of Method (1-a) above,
【0052】[0052]
【数35】 となる。ここでは、式(59)、(60)に従い、(Equation 35) Becomes Here, according to equations (59) and (60),
【0053】[0053]
【数36】 として、重み係数を適用した。 方法(2-b-2) この方法(2-b-2) では、反響路類似誤差ベクトルの影響
を調節可能とする時不変あるいは時変の重み係数を導入
する。例えば、再生、集音がともに2チャネルの場合、
上記類似性誤差差分Δf^1(k),Δf^2(k)の評価
を、Δh^11(k),Δh^21(k),Δh^12(k),Δ
h^22(k)の評価に対して重み付けする。例えば式(63)
に、Δf^1(k),Δf^2(k)がそれぞれ乗算される各
要素に重み係数κ1,κ2,κ3,κ4 をそれぞれ導入す
ると、[Equation 36] The weighting coefficient is applied as Method (2-b-2) This method (2-b-2) introduces a time-invariant or time-varying weighting factor that makes it possible to adjust the influence of the echo path similarity error vector. For example, if both playback and sound collection are for 2 channels,
The evaluations of the similarity error differences Δf ^ 1 (k) and Δf ^ 2 (k) are calculated as Δh ^ 11 (k), Δh ^ 21 (k), Δh ^ 12 (k), Δ.
We weight the evaluation of h ^ 22 (k). For example, equation (63)
Introducing the weighting factors κ 1 , κ 2 , κ 3 , and κ 4 into each element multiplied by Δf ^ 1 (k) and Δf ^ 2 (k), respectively,
【0054】[0054]
【数37】 となる。この場合式(46)、(47)から、‖h^11(k)-
h^22(k)‖/‖h^11(k)‖が小さければf1(k) が
小さいことが推定されるので、例えば予め決めた閾値K1
より小さければκ1 を例えば1より小とするような制御
を行う。同様に、‖h^21(k)-h^12(k)‖/‖h^
21(k)‖が予め決めた閾値K2より小さければκ 2 を例え
ば1より小とするように制御する。(37)Becomes In this case, from equations (46) and (47), ‖h ^11(k)-
h ^twenty two(k) ‖ / ‖h ^11If (k) ‖ is small, f1(k) is
Since it is estimated to be small, for example, a predetermined threshold K1
Less than κ1 Is controlled to be less than 1, for example
I do. Similarly, ‖h ^twenty one(k) -h ^12(k) ‖ / ‖h ^
twenty oneIf (k) ‖ is smaller than a predetermined threshold K2, then κ Two For example
If it is less than 1, control is performed.
【0055】方法(2-b-3) この方法では、方法(2-b) に基づく式(69)に、方法(1-
b) に基づく重み付け係数v1,v2,w1,w2を導入し、c
(k)=r'(k)r-1(k)とおくと、Method (2-b-3) In this method, in the formula (69) based on the method (2-b), the method (1-b
Introducing weighting factors v 1 , v 2 , w 1 , w 2 based on b), c
Setting (k) = r '(k) r -1 (k),
【0056】[0056]
【数38】 (38)
【0057】[0057]
【数39】 とし、連立方程式(73)を解くことにより修正ベクトルを
求めることができる。方法3 第3の方法は、過去に得られた観測した入出力関係と近
似により得られた入出力関係と、現時刻における観測さ
れた入出力関係と近似により得られた入出力関係とを合
わせて評価することにより、疑似反響路ベクトルの修正
ベクトルを導出する。[Equation 39] Then, the correction vector can be obtained by solving the simultaneous equations (73). Method 3 The third method combines the observed input / output relationship obtained in the past and the input / output relationship obtained by approximation with the observed input / output relationship at the current time and the input / output relationship obtained by approximation. Then, the modified vector of the pseudo echo path vector is derived.
【0058】方法(3-a) 具体的には、射影アルゴリズムを前述のチャネル入れ替
えを利用した方法(2-a)、及び(2-b) に適用する。射影
アルゴリズムは、第m受話信号チャネルの現在を含めて
過去pm時刻における入出力関係を同時に満たすように、
疑似反響路ベクトルを修正する方法である。但し、pmは
疑似反響路ベクトルのタップ数Lを越えない整数であ
る。まず、現時刻からpm時刻過去までの第nチャネルの
受話信号ベクトルをまとめて、 Xn (pm)(k)=[xn(k),xn(k-1),…,xn(k-p+1)] (77) と表記する。再び、上述の再生、集音がともに2チャネ
ルの場合、誤差信号について、Method (3-a) Specifically, the projection algorithm is applied to the above-mentioned methods (2-a) and (2-b) using channel switching. The projection algorithm simultaneously satisfies the input / output relationship at the past p m time including the present of the mth received signal channel,
This is a method of correcting the pseudo echo path vector. However, p m is an integer that does not exceed the tap number L of the pseudo echo path vector. First, collectively received signal vector of the n-channel from the current time to p m time past, X n (pm) (k ) = [x n (k), x n (k-1), ..., x n (k-p + 1)] (77). Again, when the above-mentioned reproduction and sound collection are both for two channels, regarding the error signal,
【0059】[0059]
【数40】 として、式(73)に射影アルゴリズムを適用すると、(Equation 40) And applying the projection algorithm to equation (73),
【0060】[0060]
【数41】 となる。ここで、過去どの時刻までの入出力関係を用い
るのかを決定するパラメータは、min{p1,p2}≧max{p'1,
p'2}を満たすp1,p'1,p2,p'2のように、個々に疑似反
響路ベクトルのタップ数Lを越えない範囲で、それぞれ
独立に設定できるものとする。[Equation 41] Becomes Here, the parameters that determine up to what time in the past the input / output relationship is used are min {p 1 , p 2 } ≧ max {p ' 1 ,
Like p 1 , p ′ 1 , p 2 , and p ′ 2 that satisfy p ′ 2 }, they can be set independently within a range that does not exceed the number L of taps of the pseudo echo path vector.
【0061】方法(3-b) 方法(2-b-3)に基づく式(73)に式(77)〜(81)を利用する
射影アルゴリズムを適用し、相互相関に関する行列をMethod (3-b) Apply the projection algorithm using Equations (77) to (81) to Equation (73) based on Method (2-b-3), and calculate the matrix for cross-correlation.
【0062】[0062]
【数42】 とおくと、(Equation 42) If you put it
【0063】[0063]
【数43】 を得る。この連立方程式(84)の最小ノルム解として、修
正ベクトルを得る。但し、p時刻過去までの第nチャネ
ルの受話信号ベクトルをまとめて、 Xn (p)(k)=[xn(k),xn(k-1),…,xn(k-p+1)] (85) と表記し、過去何時刻までの入出力関係を用いるのかを
決定するパラメータを、p1,p'1,p2,p'2とし、これら
はmin{p1,p2}≧max{p'1,p'2}を満たし、[Equation 43] Get. A correction vector is obtained as the minimum norm solution of this simultaneous equation (84). However, the received signal vectors of the n-th channel up to the p time past are collected and X n (p) (k) = [x n (k), x n (k-1), ..., x n (k-p +1)] (85) and expressed, the parameter that determines whether to use the input-output relationship until past several times, and p 1, p '1, p 2, p' 2, which are min {p 1, met p 2} ≧ max {p ' 1, p' 2},
【0064】[0064]
【数44】 である。 方法(3-b-1) また、上記方法(3-b) の式(84)に対し、方法(2-b-2) の
反響路類似誤差ベクトルの影響を調節可能とする時不変
あるいは時変の重み係数κ1,κ2,κ3,κ4を式(82)と
同様に次式のように導入し、[Equation 44] It is. Method (3-b-1) In addition, with respect to the equation (84) of the above method (3-b), it is possible to adjust the effect of the echo path similarity error vector of the method (2-b-2) in time invariant or time. Introducing variable weighting factors κ 1 , κ 2 , κ 3 , and κ 4 as in the following equation as in equation (82),
【0065】[0065]
【数45】 として修正ベクトルを求めてもよい。 方法(3-b-2) 更に、式(94)に対し重み係数λ1 ,λ2 を次式のように
導入し、[Equation 45] The correction vector may be obtained as Method (3-b-2) Furthermore, the weighting factors λ 1 and λ 2 are introduced into the equation (94) as follows,
【0066】[0066]
【数46】 として、重み係数κ1,κ2,κ3,κ4と重み係数λ1,
λ2とのバランスにより、重み付けを調節して修正ベク
トルを求めてもよい。方法4 上述してきた各種方法において、さらに、反響路のイン
パルス応答の指数減衰性に基づいてタップ毎に異なる修
正重み係数を与えることのできるESアルゴリズムを適
用することができる。[Equation 46] As weighting factors κ 1 , κ 2 , κ 3 , κ 4 and weighting factors λ 1 ,
The correction vector may be obtained by adjusting the weighting depending on the balance with λ 2 . Method 4 In each of the various methods described above, an ES algorithm that can give a different correction weighting coefficient to each tap based on the exponential decay of the impulse response of the echo path can be applied.
【0067】例えば前述した方法(1-a) における式(33)
について、For example, the equation (33) in the above-mentioned method (1-a)
about,
【0068】[0068]
【数47】 とおくと、式(33)は、[Equation 47] Then, equation (33) becomes
【0069】[0069]
【数48】 となり、この連立方程式の最小ノルム解は、[Equation 48] And the minimum norm solution of this system of equations is
【0070】[0070]
【数49】 により与えられる。但し、Iは単位行列で、δは逆行
列演算を安定化させるための小さい定数である。これに
ESアルゴリズムを適用するには、[Equation 49] Given by However, I is an identity matrix, and δ is a small constant for stabilizing the inverse matrix operation. To apply the ES algorithm to this,
【0071】[0071]
【数50】 但し、 α(r) i=α(r)(λ(r))i-1, i=1,…,L (100) 0<λ(r)≦1 で表される基本指数減衰行列A(r) をつくる。あるい
は、式(100) により与えられるL個の数列を、等間隔あ
るいは不等間隔のブロックに分割して、各ブロック内に
おける各α(r) iの値は、同一ブロック内の先頭のα(r) i
の値に等しくすることにより、演算量の面においても有
利な簡略化された形により、基本指数減衰行列A(r)
を作る。そして、[Equation 50] However, α (r) i = α (r) (λ (r)) i-1, i = 1, ..., L (100) 0 <λ (r) Basic index represented by ≦ 1 decay matrix A ( r) Alternatively, the L number of the sequence given by equation (100) is divided into equal intervals or unequal intervals in the block, the value of each alpha (r) i in each block, the head of the same block alpha ( r) i
The basic exponential damping matrix A (r) is simplified by making it equal to the value of
make. And
【0072】[0072]
【数51】 とし、これを式(98)に適用して、(Equation 51) And applying this to equation (98),
【0073】[0073]
【数52】 として、得られる最小ノルム解により、それぞれの疑似
反響路ベクトルの修正ベクトルを得る。同様に、例えば
前述の射影アルゴリズムを適用した方法(3-a) における
式(82)について、[Equation 52] As a result, the correction vector of each pseudo echo path vector is obtained by the obtained minimum norm solution. Similarly, for example, with respect to the equation (82) in the method (3-a) to which the above projection algorithm is applied,
【0074】[0074]
【数53】 とおくと、式(82)は、(Equation 53) Then, equation (82) becomes
【0075】[0075]
【数54】 となり、この連立方程式の最小ノルム解は、(Equation 54) And the minimum norm solution of this system of equations is
【0076】[0076]
【数55】 により与えられる。これにESアルゴリズムを適用する
には、式(99)の基本指数減衰行列A(r) からなる次の
行列[Equation 55] Given by To apply the ES algorithm to this, the following matrix consisting of the basic exponential decay matrix A (r) of equation (99)
【0077】[0077]
【数56】 を生成し、これを式(105)に適用して、[Equation 56] And apply this to equation (105) to
【0078】[0078]
【数57】 として、得られる最小ノルム解により、それぞれの疑似
反響路ベクトルの修正ベクトルを得る。同様にして他の
方法にもESアルゴリズムを適用することができるのは
明かであり、それらについての説明は省略する。以上説
明したように、この発明による多チャネル反響消去方法
では、多チャネル受話信号間のいくつか、あるいは全て
が入れ替わって、対応するチャネルとは異なるチャネル
から音響信号として再生された場合の仮想入力と、この
仮想入力がそれぞれ対応する反響路を経て集音器で反響
信号として観測された場合に得られるべき仮想出力とに
よる、未知の入出力関係を、近似的に求めて、この近似
入出力関係と、従来法でも用いられている各チャネルの
受話信号がそのまま音響信号として再生されてそれぞれ
対応する反響路を経て集音器で実際に観測される入出力
関係との、両者を共に評価して疑似反響路の修正ベクト
ルを求めるため、反響路推定部における真の反響路の推
定速度を速めることができる。反響消去装置 次に、以上説明したこの発明の方法を実施する反響消去
装置の実施例を、従来法による装置構成と比較しながら
説明する。まず全体の構成であるが、Nチャネル受話系
とMチャネル送話系を有する反響消去システムを構成す
る場合、従来法では図2に示されるようにM個の集音チ
ャネルに対してそれぞれ独立にMチャネル反響消去装置
221 ,222 ,…,22M を設けて反響消去装置を構
成している。これに対し、この発明による方法を装置と
して構成する場合、図7に示すように、Nチャネル受話
系及びMチャネル送話系を有する反響消去システムをN
×Mチャネル反響消去装置23として構成し、その詳細
は図8に示すように、チャネル間相互で情報をやりとり
して反響路推定が行なえるようになっている。[Equation 57] As a result, the correction vector of each pseudo echo path vector is obtained by the obtained minimum norm solution. Similarly, it is apparent that the ES algorithm can be applied to other methods as well, and a description thereof will be omitted. As described above, in the multi-channel echo canceling method according to the present invention, some or all of the multi-channel received signals are exchanged, and a virtual input when reproduced as an acoustic signal from a channel different from the corresponding channel , Approximately, an unknown input / output relationship between the virtual input and the virtual output that should be obtained when the virtual input is observed as a reverberation signal by the sound collector through the corresponding reverberation paths, and the approximate input / output relationship is obtained. Both the input and output relationships that are also used in the conventional method and the received signal of each channel is reproduced as an acoustic signal as it is and actually observed by the sound collector through the corresponding echo path are both evaluated. Since the correction vector of the pseudo echo path is obtained, the estimated speed of the true echo path in the echo path estimation unit can be increased. Echo Canceller Next, an embodiment of the echo canceller for carrying out the above-described method of the present invention will be described in comparison with a conventional device configuration. First, regarding the overall configuration, in the case of constructing an echo canceling system having an N-channel receiving system and an M-channel transmitting system, in the conventional method, as shown in FIG. The M-channel echo cancellers 22 1 , 22 2 , ..., 22 M are provided to constitute the echo canceller. On the other hand, when the method according to the present invention is configured as an apparatus, as shown in FIG. 7, an echo canceling system having an N channel receiving system and an M channel transmitting system is used.
As shown in FIG. 8, it is configured as a × M channel echo canceller 23, and the echo path estimation can be performed by exchanging information between the channels.
【0079】図8の反響消去装置の構成は、上述してき
たこの発明による方法1〜4のどの実施例にも適用され
る基本的構成を示し、以下に説明するように従来型の図
3の反響路推定部19m と比較して特にベクトル並べ替
え・結合部41が設けられていることが特徴となってい
る。このベクトル並べ変え・結合部41において、受話
信号ベクトルx1(k),x2(k),…の並びを、他のチ
ャネルと受話信号ベクトルを入れ替えることにより並べ
替えることによりD通りの並び方を得、それらを結合し
て得られるD個の結合ベクトルx(1)(k),x
(2)(k),…,x(D)(k) を生成し、反響路の類似性を
用いて、結合ベクトルx(1)(k),x(2)(k),…,
x(D)(k)に対する入出力関係を近似的に求めて疑似反
響路修正ベクトルΔh^1(k),…,Δh^M(k)を求める
ことを可能としている。The structure of the echo canceller of FIG. 8 shows the basic structure applied to any of the embodiments of the methods 1 to 4 according to the present invention described above, and of the conventional type shown in FIG. 3 as described below. Compared with the echo path estimation unit 19 m , it is characterized in that a vector rearrangement / combination unit 41 is provided. In this vector rearrangement / combining unit 41, the arrangement of the reception signal vectors x 1 (k), x 2 (k), ... Is rearranged by exchanging the reception signal vectors with other channels, so that there are D arrangements. Then, the D combination vectors x (1) (k), x obtained by combining them are obtained.
(2) (k), ..., x (D) (k) are generated, and using the similarity of the echo paths, the connection vectors x (1) (k), x (2) (k), ...,
It is possible to obtain the pseudo echo path correction vector Δh ^ 1 (k), ..., Δh ^ M (k) by approximating the input-output relationship with respect to x (D) (k).
【0080】N×Mチャネル反響消去装置は図8に示す
ようにNチャネルに対応してN個の受話信号蓄積・ベク
トル生成部171〜17Nを有しており、図3における受
話信号蓄積・ベクトル生成部171〜17Nと同様に、そ
れぞれの受話信号チャネルに対し決めた現時点(k) まで
のL個の受話信号を保持し、式(7)〜(9)で表される受
話信号ベクトルx1(k)〜xN(k)を生成する。更にそ
れらの受話信号ベクトルx1(k)〜xN(k)をベクトル
結合部24で結合し、式(10)で表される結合ベクトル
x(k)を生成し、疑似反響信号生成部181〜18Mに
それぞれ与える。各第m集音チャネルに対する疑似反響
信号生成部18m(m=1,…,M) は、与えられた結合ベク
トルx(k)と疑似反響路結合ベクトルh^m(k)とから
式(13)により疑似反響信号y^m(k)を計算し、減算器21
m に与える。各減算器21m は、反響信号ym(k) と疑似
反響信号y^m(k)の差を残留反響信号(即ち誤差信号)em
(k)として出力する。As shown in FIG. 8, the N × M channel echo canceller has N reception signal storage / vector generation units 17 1 to 17 N corresponding to N channels. Similarly to the vector generators 17 1 to 17 N , the L reception signals up to the present time (k) determined for each reception signal channel are held, and the reception signals represented by the equations (7) to (9) are held. Generate signal vectors x 1 (k) to x N (k). Further, the received signal vectors x 1 (k) to x N (k) are combined by the vector combination unit 24 to generate the combined vector x (k) represented by the equation (10), and the pseudo echo signal generation unit 18 Give 1 to 18 M each. The pseudo echo signal generation unit 18 m (m = 1, ..., M) for each m-th sound collection channel uses the given combination vector x (k) and pseudo echo path combination vector h ^ m (k) to obtain an equation ( The pseudo echo signal y ^ m (k) is calculated by 13), and the subtractor 21
give to m . Each subtractor 21 m, the difference of the echo signal y m (k) and the estimated echo signal y ^ m (k) the residual echo signal (or error signal) e m
Output as (k).
【0081】前述のようにこの発明の方法を適用した反
響消去装置に特徴的なことは、ベクトル並べ変え・結合
部41が設けられ、Nチャネルの与えられた受話信号ベ
クトルx1(k)〜xN(k)の並びを、チャネルの受話信
号ベクトルを入れ替えることにより並べ替えることによ
って得られたD通りの受話信号ベクトルの並びをベクト
ル結合部24と同様に式(10)により結合してD個の結合
ベクトルx(1)(k),x(2)(k),…,x(D)(k)を生
成し、反響路推定部19に与える。反響路推定部19は
D個の結合ベクトルx(1)(k)〜x(D)(k)とベクトル
結合部24からの結合ベクトルx(k)と、減算器211
〜21Mからの誤差信号e1(k)〜eM(k)と、更に必要に応
じて破線で示すように反響信号y1(k)〜yM(k)が与えら
れ、前述した各種の方法のいずれかにより疑似反響路修
正ベクトルΔh^1(k)〜Δh^M(k)を計算し、更に例
えば式(29),(30) と同様にして次の時点(k+1) の疑似反
響路ベクトルh^1(k+1)〜h^M(k+1)を得る。As described above, the echo canceller to which the method of the present invention is applied is characterized by the vector rearrangement / combining unit 41, and the reception signal vector x 1 (k) to which N channels are given. The array of x N (k) is arranged by rearranging the receiving signal vectors of the channels, and the D kinds of receiving signal vector arrays obtained by combining are arranged by the equation (10) in the same manner as the vector combination unit 24 to obtain D. The individual connection vectors x (1) (k), x (2) (k), ..., X (D) (k) are generated and given to the echo path estimation unit 19. The echo path estimation unit 19 uses the D combined vectors x (1) (k) to x (D) (k), the combined vector x (k) from the vector combining unit 24, and the subtractor 21 1
To 21 and the error signal e 1 (k) ~e M ( k) from M, echo signal as indicated by a broken line y 1 (k) ~y M ( k) is given as necessary, various previously described The pseudo echo path correction vector Δh ^ 1 (k) to Δh ^ M (k) is calculated by any one of the above methods, and the next time point (k + 1) is calculated in the same manner as the equations (29) and (30). Pseudo echo path vectors h ^ 1 (k + 1) to h ^ M (k + 1) are obtained.
【0082】図9は誤差信号em(k)とe'm(k)に対し係数
γm、γ'mの重み付けを行う前述の方法(1-a),(2-a-1),
(2-a-2),(2-b-1),(2-b-2),(3-a) 等を実施する場合の反
響路推定部19の機能構成ブロック図を示す。ベクトル
並べ変え・結合部41からの結合ベクトルx(1)(k)〜
x(D)(k)とベクトル結合部24からの結合ベクトル
x(k)は修正ベクトル計算部19Aに与えられると共
に、重み係数付加部19Bにも与えられる。[0082] Figure 9 is the error signal e m (k) and e 'm (k) coefficient to γ m, γ' aforementioned methods (1-a) for weighting the m, (2-a-1 ),
The functional block diagram of the echo path estimation unit 19 when performing (2-a-2), (2-b-1), (2-b-2), (3-a), etc. is shown. Combined vector x (1) (k) from the vector rearrangement / combining unit 41
x (D) (k) and the combined vector x (k) from the vector combination unit 24 are supplied to the correction vector calculation unit 19A and also to the weighting coefficient addition unit 19B.
【0083】重み係数制御部19Eは、方法(1-a) によ
り実測入出力関係と近似入出力関係との間にそれぞれ重
み係数γm,γ'm を導入し、その重み係数を、疑似反響
路ベクトルの真の反響路に対する模擬程度に応じて変化
させ、重み係数付加部19B,19C,19Dに与え
る。即ち、重み係数制御部19Eは、この例では反響信
号y1(k)〜yM(k)を誤差信号e1(k)〜eM(k)と共に取り込ん
で各集音チャネルにおけるそれらの平均電力比rpm=Av|y
m(k)|2/Av|em(k)|2 (但しAvは平均値を表す)を疑似反
響路ベクトルの模擬程度を表す指標として計算し、その
値に基づいて重み係数γm,γ'mを決める。式(33),(7
0),(73),又は(82)におけるγm は、例えば常にγm=1 に
決めておき、電力比rpが予め決めた正の値rth より大き
くなれば、重み係数γ'mを1を超えない大きい正の所定
値とし、rpm≦rthとなれば重み係数γ'mを1を越えない
小さい正の所定値に設定する。重み係数評価及び制御部
19Gは方法(2-b-2)の場合に使用され、修正ベクトル
Δh^(k) に基づいて、反響路類似誤差ベクトルΔ
f^の影響を調節する重み係数κ1,κ2,κ3,κ4を
決定し、重み係数付加部19Bに与える。重み係数付加
部19Bは、式(73)中に示すように、受話信号ベクトル
xT 1,xT 2に対する重み係数κ1〜κ4とγ'1,γ'2
の組み合わせにより重みを与え、修正ベクトル計算部1
9Aに与える。重み係数付加部19C,19Dは、誤差
信号e1(k),e2(k)に対し重み係数γ'1,γ'2及びγ1,
γ2を与え、修正ベクトル計算部19Aに与える。修正
ベクトル計算部19Aは与えられた信号を使って式(3
3),(70),(73),(84)のいずれか1つを解くことにより修
正ベクトルΔh^mn(k)を得て、適応フィルタ更新部1
9Fに与える。適応フィルタ更新部19Fは式(29),(3
0)により、疑似反響路ベクトルを修正して、時点(k+1)
の疑似反響路ベクトルとして出力し、図8のそれぞれの
疑似反響信号生成部181〜18Mに与える。[0083] weighting factor controller 19E are respectively introduced weighting factor gamma m, the gamma 'm between the approximate input-output relationship between the measured input-output relationship according to the method (1-a), the weighting coefficients, estimated echo The weight is added to the weighting coefficient adding units 19B, 19C, 19D by changing the path vector according to the degree of simulation of the true echo path. That is, the weighting factor controller 19E, the average thereof in takes in each sound collecting channel with echo signal y 1 in this example (k) ~y M (k) an error signal e 1 (k) ~e M ( k) Power ratio r pm = Av | y
m (k) | 2 / Av | e m (k) | 2 (where Av represents the average value) is calculated as an index representing the simulated degree of the pseudo echo path vector, and the weighting factor γ m , determine the γ 'm. Equation (33), (7
Γ m in 0), (73), or (82) is, for example, always set to γ m = 1 and if the power ratio r p becomes larger than a predetermined positive value r th , the weighting factor γ ′ m Is set to a large positive predetermined value that does not exceed 1, and if r pm ≦ r th , the weighting coefficient γ ′ m is set to a small positive predetermined value that does not exceed 1. The weighting factor evaluation and control unit 19G is used in the case of the method (2-b-2), and based on the correction vector Δh ^ (k), the echo path similarity error vector Δ
Weighting factors κ 1 , κ 2 , κ 3 , κ 4 for adjusting the influence of f ^ are determined and given to the weighting factor adding unit 19B. Weight coefficient adding unit 19B, as shown in equation (73), the received signal vector x T 1, x T 2 weighting factor κ 1 ~κ 4 for gamma '1, gamma' 2
The weight is given by the combination of
Give to 9A. The weighting factor adding units 19C and 19D apply the weighting factors γ ′ 1 , γ ′ 2 and γ 1 to the error signals e 1 (k) and e 2 (k),
γ 2 is given to the correction vector calculation unit 19A. The correction vector calculation unit 19A uses the given signal to calculate the equation (3
3), (70), (73), (84) is solved to obtain the correction vector Δh ^ mn (k), and the adaptive filter updating unit 1
Give to 9F. The adaptive filter updating unit 19F uses the equations (29) and (3
(0), the pseudo echo path vector is modified, and the time (k + 1)
Is output as the pseudo echo path vector of the above and is given to the pseudo echo signal generation units 18 1 to 18 M of FIG.
【0084】図10は、誤差信号e'm(k)を成分に分けて
係数vとwの重み付けを行う前述の方法(1-b),(2-a-3),
(2-b-3),(3-b-1),(3-b-2) を実施する場合の多チャネル
反響消去装置の機能ブロック図を示す。この例におい
て、図10の場合と同様に重み係数評価・制御部19G
は反響路の類似性誤差差分Δf^(k) の影響を調節す
る重み係数κ1 〜κ4 を修正ベクトルΔh^(k) に基
づいて決定し、重み係数付加部19Bに与える。修正ベ
クトル計算部19Aには受話信号結合ベクトルx(k)
及びチャネル入れ替えした受話信号結合ベクトルx
(1)(k),…,x(D)(k)が与えられる。この実施例では誤
差信号e'm(k)を式(39),(74),(84),(94) あるいは(95)で
示されるようにem(k) と相関のある成分と、それ以外の
成分に分離してそれぞれ重み係数w、vを与えるため、
重み係数制御部19Eにおいて、前述と同様に反響信号
y1(k)〜yM(k)と誤差信号e1(k)〜eM(k)から各集音チャネ
ルにおけるそれらの平均電力比rpm=Av|ym(k)|2/Av|e
m(k)|2 を疑似反響路ベクトルの模擬程度を表す指標と
して計算し、w、vの値を決定する。更に、相互相関計
算部19Hで受話信号の相互相関に関する行列c(k)=r'
(k)r-1(k)あるいは式(86)〜(89)のC1(k),C2(k) により
求め、成分分離部19Jに与える。[0084] Figure 10, the aforementioned methods for weighting coefficients v and w are divided error signal e 'm (k) to the component (1-b), (2 -a-3),
A functional block diagram of a multi-channel echo canceller when performing (2-b-3), (3-b-1), and (3-b-2) is shown. In this example, as in the case of FIG. 10, the weighting factor evaluation / control unit 19G
Determines the weighting coefficients κ 1 to κ 4 which adjust the influence of the similarity error difference Δf ^ (k) of the echo path based on the correction vector Δh ^ (k), and gives it to the weighting coefficient adding unit 19B. The correction vector calculation unit 19A includes the received signal combination vector x (k)
And the received signal combination vector x with the channels replaced
(1) (k), ..., X (D) (k) are given. Wherein the error signal e 'm (k) in this embodiment (39), a component having a correlation with (74), (84), (94) or e m (k) as indicated by (95), In order to give the weighting factors w and v separately to the other components,
In the weighting factor control unit 19E, the echo signal
From y 1 (k) to y M (k) and error signal e 1 (k) to e M (k), their average power ratio in each sound collection channel r pm = Av | y m (k) | 2 / Av | e
The value of w and v is determined by calculating m (k) | 2 as an index representing the degree of simulation of the pseudo echo path vector. Further, the cross-correlation calculation unit 19H calculates the matrix c (k) = r 'regarding the cross-correlation of the received signal.
(k) r -1 (k) or C 1 (k), C 2 (k) in the equations (86) to (89) is obtained and given to the component separation unit 19J.
【0085】成分分離部19Jは式(87)中に示されるよ
うに、誤差信号e'm(k)をem(k) と相関のある成分とそれ
以外の成分に分離し、それぞれ重み係数付加部19K、
19Lに与えられ、重み係数w及びvが与えられる。こ
れらの重み係数が与えられた相関成分とそれ以外の成分
は加算器19Mで加算され、修正ベクトル計算部19A
に与えられる。修正ベクトル計算部19Aは与えられた
信号から連立方程式(37),(74),(84),(94)あるいは(95)
を解いて修正ベクトルΔh^(k) を求め、適応フィル
タ更新部19Fに与えると共に、重み係数評価及び制御
部19Gに与える。適応フィルタ更新部19Fは与えら
れた修正ベクトルに基づいて式(29),(30)により疑似反
響路ベクトルを計算し、出力する。[0085] As the component separating unit 19J shown in formula (87), the error signal e 'm (k) is separated into components and other components that are correlated with e m (k), respectively weighting factor Additional unit 19K,
19L and the weighting factors w and v. The correlation component to which these weighting factors are given and the other components are added by the adder 19M, and the correction vector calculation unit 19A
Given to. The correction vector calculation unit 19A calculates the simultaneous equations (37), (74), (84), (94) or (95) from the given signal.
To obtain the correction vector Δh ^ (k), which is applied to the adaptive filter updating unit 19F and the weighting coefficient evaluation and control unit 19G. The adaptive filter updating unit 19F calculates and outputs the pseudo echo path vector by the equations (29) and (30) based on the given correction vector.
【0086】図11は図9及び10で示した各反響路推
定部19において、反響路の対称性が良く、従って方法
(2-a) を使用する場合に、更に方法3のp次の射影アル
ゴリズムと方法4のESアルゴリズムを適用可能とする
修正ベクトル計算部19Aの機能ブロック構成を示す。
p次の射影アルゴリズムを実施するため、受話信号ベク
トルは信号蓄積部19A2に与えられ、過去(p-1) 個の受話
信号ベクトルが保持され、それらと現時点kの受話信号
ベクトルとの組である式(85)に示す受話信号行列X
(p) nが指数重み係数付加部19A1に与えられ、式(99),(10
0)で表される基本指数減衰行列A(r) により重み係数
が付加されて、連立方程式演算部19A3に与えられる。そ
れと共に図9、10の重み係数付加部19Bにより重み
付けされた受話信号ベクトルも連立方程式演算部19A3に
与えられる。FIG. 11 shows that in each echo path estimation unit 19 shown in FIGS. 9 and 10, the echo path has good symmetry, and therefore the method
When (2-a) is used, the functional block configuration of the correction vector calculation unit 19A which makes it possible to apply the p-th order projection algorithm of method 3 and the ES algorithm of method 4 is shown.
In order to implement the p-th order projection algorithm, the received signal vector is given to the signal storage unit 19A2, the past (p-1) received signal vectors are held, and they are a set of the received signal vector of k at the present time. Received signal matrix X shown in equation (85)
(p) n is given to the exponential weighting coefficient adding unit 19A1, and equations (99) and (10
The weighting coefficient is added by the basic exponential damping matrix A (r) represented by 0) and is given to the simultaneous equation calculation unit 19A3. At the same time, the reception signal vector weighted by the weighting factor addition unit 19B of FIGS. 9 and 10 is also given to the simultaneous equation calculation unit 19A3.
【0087】一方、γm で重み付けされた誤差信号e
1(k),…,eM(k)及びγ'm又はv,wで重み付けされた誤
差信号e1(k),…,eM(k)も同様に信号蓄積部19A4、19A5に
おいて過去(pm-1)時点の誤差信号の組がそれぞれ保持さ
れ、現時点の誤差信号と共に連立方程式演算部19A3に与
えられる。連立方程式演算部19A3はこれらの与えられた
信号から連立方程式(47)を解いて修正ベクトルΔh^
(k) を計算し、出力する。図10の場合は、過去(pm-1)
時点の実測誤差信号e1(k),…,eM(k)の組が信号蓄積部19
A4に保持され、現時点の実測誤差信号の組と共に連立方
程式演算部19A3に与えられ、加算器19Mからの成分分
離重み付き近似誤差信号の組が信号蓄積部19A5に与えら
れて過去(pm-1)時点の重み付き近似誤差信号の組が保持
される。これら(pm-1)組みの重み付き近似誤差信号と現
時点の誤差信号の組が連立方程式演算部19A3に与えられ
る。連立方程式演算部19A3はこれらの信号から例えば式
(74)を解いて修正ベクトルを得る。On the other hand, the error signal e weighted by γ m
Similarly, the error signals e 1 (k), ..., E M (k) weighted by 1 (k), ..., E M (k) and γ ′ m or v, w are also stored in the signal accumulating units 19A4 and 19A5 in the past. A pair of error signals at (p m -1) time points are respectively held and given to the simultaneous equation calculation unit 19A3 together with the error signal at the current time point. The simultaneous equation calculation unit 19A3 solves the simultaneous equations (47) from these given signals and corrects the correction vector Δh ^.
Calculate (k) and output. In the case of FIG. 10, the past (p m -1)
The set of the measured error signals e 1 (k), ..., e M (k) at the time point is the signal storage unit 19
It is held in A4 and given to the simultaneous equation calculation unit 19A3 together with the set of actual measurement error signals at the present time, and the set of component separation weighted approximate error signals from the adder 19M is given to the signal storage unit 19A5 and past (p m- 1) The set of weighted approximation error signals at the time point is retained. The (p m -1) sets of the weighted approximation error signals and the current error signal are given to the simultaneous equation calculation unit 19A3. The simultaneous equation calculation unit 19A3 uses, for example, an equation from these signals.
Solve (74) to get the correction vector.
【0088】図12は図9及び10で示した各反響路推
定部19において、反響路の対称性の悪さ(即ち類似誤
差)を考慮して方法(2-b) により修正ベクトルを求める
場合の修正ベクトル計算部19Aの機能ブロック構成を
示す。この場合も方法3のp次の射影アルゴリズムと方
法4のESアルゴリズムを実行可能とするように構成さ
れている。図11と異なる点は、連立方程式演算部19A3
が類似性誤差差分Δf^を含む連立方程式(69),(70),(7
3),(82),(84),(94),(95)のいずれかを解くことにより修
正ベクトルを求めることと、図9、10における重み係
数評価・制御部19Gによる類似性誤差差分ベクトルΔ
f^(k)の影響を調節する重み係数を与えた受話信号ベ
クトルに対しても、信号蓄積部19A6と指数重み係数付加
部19A7が更に設けられている点である。その他の構成は
図11と同様なので説明を省略する。FIG. 12 shows a case where a correction vector is obtained by the method (2-b) in the echo path estimation unit 19 shown in FIGS. 9 and 10 in consideration of the poor symmetry of the echo path (that is, similar error). The functional block configuration of the correction vector calculation unit 19A is shown. Also in this case, the p-th order projection algorithm of the method 3 and the ES algorithm of the method 4 can be executed. The difference from FIG. 11 is that the simultaneous equation calculation unit 19A3
Is a system of equations (69), (70), (7
3), (82), (84), (94), (95) to obtain a correction vector, and the weighting coefficient evaluation / control unit 19G in FIGS. Δ
The point is that a signal accumulating unit 19A6 and an exponential weighting coefficient adding unit 19A7 are further provided for the reception signal vector given a weighting coefficient for adjusting the influence of f ^ (k). Other configurations are the same as those in FIG. 11, and thus description thereof will be omitted.
【0089】[0089]
【発明の効果】この発明方法は、2地点間において、多
チャネルの伝送系と、多チャネルの集音・再生系を持つ
端末装置とを用いることにより、双方の音響空間情報の
伝達を可能とする臨場間の高い音声通信を実現する際に
反響を消去するために適用することができる。According to the method of the present invention, by using a multi-channel transmission system and a terminal device having a multi-channel sound collection / reproduction system between two points, it is possible to transmit both acoustic spatial information. It can be applied to eliminate echoes when realizing high-presence voice communication.
【0090】簡単のため、図4のような、2地点間を2
チャネルの伝送系で結び、2チャネルの集音・再生系を
持つ端末装置を用いて、ステレオ音声通信を行なう場合
を考える。例えば、A地点から複数の異なる話者が一人
づつそれぞれの席から発話した場合に、集音されるステ
レオ音声信号には、それぞれの発話者と2本のマイクロ
ホンの位置関係に依存した相互相関がある。それらの音
声信号がB地点側において再生されるとき、従来の反響
消去装置を用いた場合では、反響路推定をステレオ信号
の相互相関に依存して誤るため、話者の交替の度にA地
点側に大きな反響が戻ってしまう。ところが、この発明
の反響消去方法では、反響路推定におけるステレオ信号
の相互相関の影響を低減して反響路をより速く推定でき
るため、話者の交替の度に起きていた反響の増大を低減
できる。図13は、体や頭を固定して発話した音声をス
テレオ集音した信号を再生信号として用いた計算機シミ
ュレーション結果であり、(a)従来方法、(b)この発明
者による先の出願(特願平7-50002) による相互相関の
変動抽出による方法、及び(c)この発明方法とにおい
て、反響路推定部で生成された疑似反響路結合ベクトル
と真の反響路結合ベクトルとの誤差ベクトルの大きさを
反響路推定開始時刻を0として比較したものである。こ
こで、従来方法はNLMSアルゴリズムを使った場合、
先の出願による相互相関の変動抽出による方法では2次
の射影アルゴリズムを用いた場合である。この発明方法
では式(107) によって修正ベクトルを求めた場合であ
り、γ1,γ'1,γ2,γ'2は反響消去量に応じて時変、
κ1=κ2=κ3=κ4=1.0、p1=p' 1=p2=p'2=2、A
(1)=A(2)=A(3)=A(4)=A(5)=A(6)で
ともに4ブロックに分割して[1.0,0.5,0.25,0.125]
の重みを付けた。この結果から明らかなように、この発
明方法によれば他の方法より急速に反響路誤差ベクトル
が減少し、しかもその大きさも小さくなっている。従っ
て、が有効であるといえる。For simplification, as shown in FIG.
Connected by a channel transmission system, a two-channel sound collection / playback system
When performing stereo voice communication using your own terminal device
think of. For example, one person from different points from point A
If you speak from each seat,
Each speaker and two micros are included in the Leo audio signal.
There is a cross-correlation that depends on the positional relationship of the phones. Those sounds
When the voice signal is reproduced at the B point side, the conventional echo
In the case of using the canceller, the echo path estimation is performed on the stereo signal.
Because it depends on the cross correlation of the
A big echo returns to the point side. However, this invention
In the echo cancellation method, the stereo signal in the echo path estimation is
The echo path can be estimated faster by reducing the effect of cross-correlation of
Therefore, the increase in the reverberation that occurs every time the speaker is replaced is reduced.
it can. Fig. 13 shows the spoken voice with the body and head fixed.
Computer stain using the signal collected by tereo as a reproduction signal.
And (b) this invention.
Of cross-correlation due to previous application by the applicant (Japanese Patent Application No. 7-50002)
Method by variation extraction, and (c) method and odor of the present invention
, The pseudo echo path coupling vector generated by the echo path estimation unit.
And the magnitude of the error vector between the true echo path coupling vector and
This is a comparison when the echo path estimation start time is 0. This
Here, if the conventional method uses the NLMS algorithm,
In the method of extracting cross-correlation variation according to the previous application, the method
This is the case when the projection algorithm of is used. This invention method
Then, when the correction vector is obtained by Eq. (107),
, Γ1, Γ '1, ΓTwo, Γ 'TwoIs time-varying according to the amount of echo cancellation,
κ1= ΚTwo= ΚThree= ΚFour= 1.0, p1= P ' 1= PTwo= P 'Two= 2, A
(1)= A(2)= A(3)= A(Four)= A(Five)= A(6)so
Both are divided into 4 blocks [1.0, 0.5, 0.25, 0.125]
Weighted. As is clear from this result,
The light method causes the echo path error vector to occur more rapidly than other methods.
Has decreased, and its size has also decreased. Follow
Can be said to be effective.
【0091】式(70)を使ったこの発明の方法において、
γ1=γ2=1とし、γ'1,γ'2の影響を調べた結果を図
14に示す。図14で曲線(a)はγ'1=γ'2=1.0、曲
線(b)はγ'1=γ'2=0.5とした場合で、これらを比較
すると、フィルタ係数の収束状態に応じて適切なγ'1,
γ'2の値が異なることがわかる。そこで反響消去量によ
ってγ'1,γ'2の値を変化させ、つまり反響消去量大で
γ'1,γ'2を小とさせると、曲線(c)のように特性が改
善され、更にインパルス応答の指数減衰性に着目したE
Sアルゴリズムを組み込むと、曲線(d)を得た。これは
この発明の方法が式(55)、(57)に表わされる未知の入出
力関係を近似的に利用しているためインパルス応答の統
計的性質の利用によって、この近似精度が改善されたた
めと考えられる。In the method of the invention using equation (70),
FIG. 14 shows the results of examining the effects of γ ′ 1 and γ ′ 2 with γ 1 = γ 2 = 1. In FIG. 14, the curve (a) is γ ′ 1 = γ ′ 2 = 1.0, and the curve (b) is γ ′ 1 = γ ′ 2 = 0.5. By comparing these, depending on the convergence state of the filter coefficient, appropriate γ '1,
γ '2 of the value is found to be different. Therefore echo cancellation amount by γ '1, γ' to change the value of 2, i.e. the echo cancellation amount large in gamma '1, gamma' when is 2 small, characteristics are improved as shown by the curve (c), further E focusing on exponential decay of impulse response
Incorporation of the S algorithm gave curve (d). This is because the method of the present invention approximately utilizes the unknown input-output relationship expressed by the equations (55) and (57), and thus the approximation accuracy is improved by using the statistical property of the impulse response. Conceivable.
【0092】また、図15は、図14と同じ条件におい
て、この発明方法(3-b) を適用した例であり、式(84)に
おいて、以下のような係数を時不変として、反響路推定
の収束特性を描いたものであり、それぞれ曲線(a)はv1
=v2=0,w1=w2=1,p1=p'1=p2=p'2=1,μ1=μ2
=0.5、曲線(b)はv1=v2=1,w1=w2=1,p1=p'1=p2
=p'2=8,μ1=μ2=0.05、曲線(c)はv1=v2=0,w1
=w2=1,p1=p'1=p2=p'2=8,μ1=μ2=0.05、曲線
(d)はv1=v2=0,w1=w2=0,p1=p'1=p2=p'2=8,
μ1=μ2=0.05、曲線(e)はv1=v2=1,w1=w2=0,p1
=p'1=p2=p'2=8,μ1=μ2=0.05、の場合である。
この結果から分かるように、方法(3-b) では、方法(1-
b) の重み付け方法を採用しているため、図19中の曲
線(e)のように、近似入出力関係に関して得られた誤差
のうち、観測可能な入出力関係に関して得られた誤差と
冗長な成分を取り除いて評価することが可能となり、図
13、14のように重み係数を時間変化させなくとも、
良好な結果を得ることができる。応用例 ステレオ再生装置を有する端末において、前述のように
相手側で2チャネル集音されたステレオ信号を受信して
そのまま再生する方法の他に、多地点間通信等では、対
地毎の受話信号を受信側で任意に音像定位処理すること
により、受話環境を快適にする方法が考えられている。
この発明方法および装置は、このような多地点間通信用
端末にも適用可能である。図16は、4地点間通信の構
成を示したものである。各地点において、集音は1チャ
ネル(モノラル)である。いま、D地点を例にとって説
明する。D地点において、A、B、C地点からの受話信
号について、それぞれ、右、中央、左に定位するように
音像定位処理を施すことにより、新たな2チャネルステ
レオ再生信号を生成して2チャネルのステレオ再生を行
なうものとする。この場合、ある地点における2チャネ
ルの受話信号x1(k),x2(k)に対する応答y1(k)
は、Further, FIG. 15 is an example in which the method (3-b) of the present invention is applied under the same conditions as in FIG. 14, and in the equation (84), the following coefficients are time-invariant and the echo path estimation is performed. Are the convergence characteristics of, and the curve (a) is v 1
= V 2 = 0, w 1 = w 2 = 1, p 1 = p '1 = p 2 = p' 2 = 1, μ 1 = μ 2
= 0.5, the curve (b) has v 1 = v 2 = 1, w 1 = w 2 = 1 and p 1 = p ' 1 = p 2
= P ' 2 = 8, μ 1 = μ 2 = 0.05, the curve (c) is v 1 = v 2 = 0, w 1
= W 2 = 1, p 1 = p '1 = p 2 = p' 2 = 8, μ 1 = μ 2 = 0.05, curve
(d) is v 1 = v 2 = 0, w 1 = w 2 = 0, p 1 = p ' 1 = p 2 = p' 2 = 8,
μ 1 = μ 2 = 0.05, curve (e) shows v 1 = v 2 = 1, w 1 = w 2 = 0, p 1
= P ' 1 = p 2 = p' 2 = 8, μ 1 = μ 2 = 0.05.
As can be seen from this result, in the method (3-b), the method (1-
Since the weighting method of b) is adopted, as shown by the curve (e) in FIG. 19, among the errors obtained for the approximate input / output relationship, the error obtained for the observable input / output relationship is redundant. It becomes possible to evaluate by removing the component, and even if the weighting coefficient is not changed with time as shown in FIGS.
Good results can be obtained. Application Example In a terminal having a stereo reproduction device, as described above, in addition to the method of receiving the stereo signals collected by the other party on two channels and reproducing them as they are, in the multipoint communication etc., the reception signal for each ground is transmitted. A method of making the receiving environment comfortable by arbitrarily performing sound image localization processing on the receiving side has been considered.
The method and apparatus of the present invention can also be applied to such a multipoint communication terminal. FIG. 16 shows the configuration of communication between four points. At each point, the sound collection is one channel (monaural). Now, the point D will be described as an example. At the point D, the received image signals from the points A, B, and C are subjected to sound image localization processing so as to be localized to the right, center, and left, respectively, to generate a new 2-channel stereo reproduction signal to generate a 2-channel stereo reproduction signal. Stereo playback shall be performed. In this case, the response y 1 (k) to the two-channel received signals x 1 (k) and x 2 (k) at a certain point
Is
【0093】[0093]
【数58】 である。ここで、反響路類似誤差ベクトルf1(k)を
h11 T(k)とh21 T(k)との間に適用して、[Equation 58] It is. Here, applying the echo path similarity error vector f 1 (k) between h 11 T (k) and h 21 T (k),
【0094】[0094]
【数59】 とすると、受話信号x1(k),x2(k)の再生チャネル
を入れ替えた場合に得られる応答y'1(k)は、[Equation 59] Then, the response y ′ 1 (k) obtained when the reproduction channels of the received signals x 1 (k) and x 2 (k) are exchanged is
【0095】[0095]
【数60】 なる関係が得られる。これより、式(108)、(110)をもと
に連立方程式を立てることにより、この発明方法に基づ
いた疑似反響路ベクトルの修正式が得られる。一般に多
チャネル再生系と1チャネル以上の集音系で構成される
通信会議システムに、従来の反響消去方法を適用した場
合、各チャネルの受話信号間に相互相関が強い場合に、
反響路の推定が正しく行なわれないため、受話信号間の
相互相関が変動する度に反響が増大する問題が生じてい
た。この発明方法においては、一定な相互相関関係にあ
る多チャネル受話信号による入出力関係とは別に、これ
らとは異なる相互相関関係にある多チャネル信号の入出
力関係を近似的に用いる。つまり、多チャネル受話信号
間のいくつか、あるいは全てが入れ替わって、対応する
チャネルとは異なるチャネルから音響信号として再生さ
れた場合にそれぞれ対応する反響路を経て集音器で得ら
れるべき未知の出力を近似的に求める。これより、これ
らの入出力関係について連立方程式を解いて反響路推定
を行なうので、その解が不定とならず、上記のような問
題を改善する効果がある。[Equation 60] Is obtained. From this, a correction equation of the pseudo echo path vector based on the method of the present invention can be obtained by establishing a simultaneous equation based on the equations (108) and (110). When a conventional echo canceling method is applied to a communication conferencing system that is generally composed of a multi-channel reproduction system and a sound collection system of one or more channels, and when the cross-correlation between the received signals of each channel is strong,
Since the echo path is not correctly estimated, there is a problem that the echo increases every time the cross-correlation between the received signals changes. In the method of the present invention, apart from the input / output relationship of the multi-channel reception signals having a constant cross-correlation, the input / output relationship of the multi-channel signals having a different cross-correlation is used approximately. In other words, when some or all of the multi-channel received signals are exchanged and reproduced as an acoustic signal from a channel different from the corresponding channel, the unknown output that should be obtained by the sound collector via the corresponding echo paths Is approximately calculated. From this, since the simultaneous equations are solved for these input / output relationships to estimate the echo path, the solution does not become indefinite, and there is an effect of improving the above problems.
【図1】1チャネル反響消去装置を示すブロック図。FIG. 1 is a block diagram showing a one-channel echo canceller.
【図2】多チャネル反響消去装置システムを示すブロッ
ク図。FIG. 2 is a block diagram illustrating a multi-channel echo canceller system.
【図3】従来の多チャネル反響消去装置を示すブロック
図。FIG. 3 is a block diagram showing a conventional multi-channel echo canceller.
【図4】ステレオ音声通信系を示すブロック図。FIG. 4 is a block diagram showing a stereo voice communication system.
【図5】受話信号間に相互相関がある場合の反響路推定
動作を示す図。FIG. 5 is a diagram showing an echo path estimation operation in the case where there is cross-correlation between received signals.
【図6】ステレオ通信系においてマイクロホン、スピー
カの対称配置状態の例を示す図。FIG. 6 is a diagram showing an example of symmetrical arrangement of microphones and speakers in a stereo communication system.
【図7】この発明が適用された多チャネル反響消去装置
システムの例を示すブロック図。FIG. 7 is a block diagram showing an example of a multi-channel echo canceller system to which the present invention is applied.
【図8】この発明方法を適用した多チャネル反響消去装
置の構成例を示すブロック図。FIG. 8 is a block diagram showing a configuration example of a multi-channel echo canceller to which the method of the present invention is applied.
【図9】図8における反響路推定部の構成を示す機能ブ
ロック図。9 is a functional block diagram showing a configuration of an echo path estimation unit in FIG.
【図10】図8における反響推定部の他の構成を示す機
能ブロック図。10 is a functional block diagram showing another configuration of the echo estimation unit in FIG.
【図11】図9及び10における修正ベクトル計算部の
構成を示す機能ブロック図。FIG. 11 is a functional block diagram showing the configuration of a correction vector calculation unit in FIGS. 9 and 10.
【図12】図9及び10における修正ベクトル計算部の
他の構成を示す機能ブロック図。FIG. 12 is a functional block diagram showing another configuration of the correction vector calculation unit in FIGS. 9 and 10.
【図13】真の反響路の特性と疑似反響路特性との誤差
の収束特性を示す図。FIG. 13 is a diagram showing a convergence characteristic of an error between a true echo path characteristic and a pseudo echo path characteristic.
【図14】近似誤差信号に与える重み係数の、誤差信号
の収束特性に対する影響を示す図。FIG. 14 is a diagram showing an influence of a weighting factor given to an approximate error signal on a convergence characteristic of an error signal.
【図15】重み係数v1,v2,w1,w2、次数p1,p'1,p2,p'2、
ステップサイズμ1,μ2の反響路推定の収束特性への影
響を示す図。[15] the weighting coefficients v 1, v 2, w 1 , w 2, order p 1, p '1, p 2, p' 2,
The figure which shows the influence on the convergence characteristic of the echo path estimation of step size μ 1 and μ 2 .
【図16】4地点間通信における音像定位機能を持たせ
る音声通信会議システムを示すブロック図。FIG. 16 is a block diagram showing a voice communication conference system having a sound image localization function in communication between four points.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成8年10月8日[Submission date] October 8, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】追加[Correction method] Added
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
Claims (23)
であり、以下のステップを含む: (a) 複数のチャネルの受話信号をそれぞれ対応する複数
の再生器で音響信号として再生し、 (b) 上記複数の再生器からそれぞれの反響路を経て少な
くとも1つの集音器において加算され観測可能な反響信
号として得て、 (c) 上記複数のチャネルの上記受話信号をそれぞれ所定
時間蓄積し、チャネルごとに蓄積されている受話信号に
より受話信号ベクトルを生成し、 (d) 全てのチャネルについての上記受話信号ベクトルを
結合して観測可能な受話信号結合ベクトルを生成し、 (e) それぞれの上記反響路のインパルス応答が表す反響
路ベクトルの結合ベクトルを模擬する疑似反響路結合ベ
クトルを有する疑似反響路に上記受話信号結合ベクトル
を与えることによりその出力に上記観測可能な反響信号
を模擬する疑似反響信号を生成し、上記受話信号結合ベ
クトルとそれに対応する上記反響信号は上記複数の反響
路についての観測可能な入出力関係に対応しており、 (f) 上記反響信号から上記疑似反響信号を減算して残留
反響信号を得て、 (g) 上記複数のチャネルの少なくとも2つの受話信号を
入れ替えた場合の入れ替え受話信号結合ベクトルを上記
疑似反響路に与えた場合の近似疑似反響信号を求め、 (h) 上記受話信号を上記ステップ(g) と同様に入れ替え
た場合に上記複数の反響路を通って上記集音器より得ら
れるべき反響信号を近似により求め、これを近似反響信
号とし、 (i) 上記近似反響信号から上記近似疑似反響信号を減算
して近似残留反響信号を求め、 (j) 上記観測受話信号結合ベクトルとそれに対応する上
記観測可能な残留反響信号の関係を表す観測可能な入出
力関係と、上記入れ替えた受話信号結合ベクトルと上記
近似残留反響信号との関係を表す近似入出力関係を評価
し、その評価に基づいて上記修正ベクトルを求め、 (k) 上記修正ベクトルにより上記疑似反響路ベクトルを
修正する。1. A echo canceling method for a multi-channel voice communication conference, comprising the steps of: (a) reproducing received signals of a plurality of channels as sound signals by a plurality of corresponding reproducers, and (b). (C) The received signals of the plurality of channels are accumulated for a predetermined period of time, respectively, from the plurality of regenerators through the respective echo paths to be added as observable echo signals in at least one sound collector, The received signal vector is generated from the received signal stored in, and (d) the above received signal vectors for all channels are combined to generate an observable received signal combination vector, and (e) each echo path By adding the received signal coupling vector to the pseudo echo path having a pseudo echo path coupling vector that simulates the coupling vector of the echo path vectors represented by the impulse response of A pseudo echo signal that simulates the observable echo signal is generated at its output, and the received signal combination vector and the corresponding echo signal correspond to the observable input / output relationship for the multiple echo paths. , (F) subtracting the pseudo echo signal from the echo signal to obtain a residual echo signal, and (g) replacing the exchanged reception signal combination vector when at least two reception signals of the plurality of channels are exchanged with the pseudo echo. Obtain an approximate pseudo echo signal when given to the path, (h) the echo signal to be obtained from the sound collector through the echo paths when the received signal is replaced in the same manner as in step (g) above. Is calculated as an approximate echo signal, and (i) the approximate pseudo echo signal is subtracted from the approximate echo signal to obtain the approximate residual echo signal, and (j) the observed received signal combination vector and it Corresponding to the observable input / output relationship representing the relationship of the observable residual echo signal, and the approximate input / output relationship representing the relationship between the exchanged received signal combination vector and the approximate residual echo signal are evaluated, and evaluated. Based on the correction vector, (k) the correction vector is used to correct the pseudo echo path vector.
(j) の上記評価において、上記近似入出力関係と、上記
各チャネルの受話信号がそのまま再生された場合の観測
可能な入出力関係との少くとも一方に重みを付けて評価
するステップを含む。2. The method of claim 1, wherein the steps are
In the evaluation of (j), there is a step of weighting at least one of the approximate input / output relationship and the observable input / output relationship when the received signal of each channel is reproduced as it is.
は、上記近似入出力関係と上記観測可能な入出力関係と
の出力に相当するそれぞれの反響信号とそれらを模擬す
る疑似反響信号と各差である残留反響信号に、それぞれ
時不変あるいは時変の係数を乗じて行うステップを含
む。3. The method according to claim 2, wherein the weighting includes echo signals corresponding to outputs of the approximate input-output relationship and the observable input-output relationship, pseudo echo signals that simulate the echo signals, and difference between the echo signals. And the residual echo signal is multiplied by a time-invariant or time-variant coefficient.
は、上記近似残留反響信号を、上記観測可能な残留反響
信号と相関のある成分とそれ以外の成分に分離し、それ
ぞれの成分に時不変あるいは時変の係数を独立に乗じて
行うステップを含む。4. The method according to claim 2, wherein the weighting separates the approximate residual reverberation signal into a component correlated with the observable residual reverberation signal and a component other than the observable residual reverberation signal, and time-invariant to each component. Alternatively, it includes the step of independently multiplying the time-varying coefficient.
測される既知の入出力関係と、この入出力関係の評価に
用いられる上記観測可能な残留反響信号と、上記複数の
反響路間の類似性とを利用することにより上記近似入出
力関係を求め、かつ上記再生器、集音器間の距離、向き
などの物理的配置関係が類似した再生器、集音器間にお
ける反響路の類似性を仮定して、その類似性の違いを反
響路類似誤差ベクトルとして導入し、上記近似入出力関
係と、上記観測可能な入出力関係に加え、その過去の入
出力関係を射影アルゴリズムを用いて上記疑似反響路の
修正ベクトルを求めるステップを含む。5. The method according to claim 4, wherein the actually observed known input / output relationship, the observable residual echo signal used for evaluation of the input / output relationship, and the plurality of echo paths. Similarity of the echo paths between the sound collectors and the sound collectors is obtained by using the similarity and the approximate input / output relationship is obtained, and the physical arrangement relationships such as distance and direction between the sound collectors and sound collectors are similar. , And introduce the difference in similarity as an echopath similarity error vector. In addition to the approximate input-output relationship and the observable input-output relationship, the past input-output relationship is calculated using a projection algorithm. The step of obtaining a correction vector of the pseudo echo path is included.
似誤差ベクトルの影響を調節可能とする、重み係数を導
入するステップを含む。6. The method of claim 5, including the step of introducing a weighting factor that allows the effect of the echopath-like error vector to be adjusted.
演算時刻ごとに、上記反響信号と上記残留反響信号との
比、上記反響信号と上記残留反響信号との平均電力比、
上記残留反響信号の絶対値、上記残留反響信号の平均電
力、のうちの少なくとも一つを利用して、上記の重み付
け係数の値を決定するステップを含む。7. The method according to claim 2, 3 or 4, wherein the ratio of the echo signal to the residual echo signal, the average power ratio of the echo signal to the residual echo signal, and the average power ratio of the echo signal to the residual echo signal at each calculation time.
Determining a value of the weighting coefficient using at least one of an absolute value of the residual echo signal and an average power of the residual echo signal.
測される既知の入出力関係と、この入出力関係の評価に
用いられる残留誤差信号と、反響路の類似性とを利用す
ることにより上記近似入出力関係を求めるステップを含
む。8. The method according to claim 1, wherein the known actual input / output relationship observed, the residual error signal used for evaluation of the input / output relationship, and the echo path similarity are utilized. The method includes a step of obtaining the approximate input / output relationship.
測される既知の入出力関係と、この入出力関係の評価に
用いられる残留誤差信号と、反響路の類似性とを利用す
ることにより上記近似入出力関係を求めるステップを含
む。9. The method according to claim 2, wherein a known input / output relationship actually observed, a residual error signal used for evaluation of the input / output relationship, and echo path similarity are utilized. The method includes a step of obtaining the approximate input / output relationship.
号と上記残留反響信号との比、上記反響信号と上記残留
反響信号との平均電力比、上記残留反響信号の絶対値、
上記残留反響信号の平均電力、のうちの少なくとも一つ
を計算し、その値に基づいて上記残留反響信号の収束状
態を判定し、上記残留反響信号の収束状態が悪い場合
は、上記観測可能な残留反響信号と相関のある成分に対
する重み計数を0以外の所定値とし、残りの成分に対す
る重み計数を0とし、収束状態が良い場合は両成分を0
を含む所定値にそれぞれ重み付けするステップを含む。10. The method of claim 4, wherein the ratio of the reverberation signal to the residual reverberation signal, the average power ratio of the reverberation signal to the residual reverberation signal, the absolute value of the residual reverberation signal,
Calculate at least one of the average power of the residual echo signal, and determine the convergence state of the residual echo signal based on the value, if the convergence state of the residual echo signal is poor, the observable The weight coefficient for the component having a correlation with the residual echo signal is set to a predetermined value other than 0, the weight coefficient for the remaining components is set to 0, and both components are set to 0 when the convergence state is good.
And a step of weighting each of the predetermined values including.
出力関係と、上記観測可能な入出力関係に加えて、それ
らの過去の関係を利用して、上記疑似反響路の修正ベク
トルを求めるステップを含む。11. The method according to claim 8, wherein, in addition to the approximate input / output relationship and the observable input / output relationship, a past relationship between them is used to obtain the correction vector of the pseudo echo path. including.
の入出力関係を射影アルゴリズムを用いて利用するステ
ップを含む。12. The method according to claim 11, including the step of utilizing the past input / output relationship by using a projection algorithm.
て、上記反響路の類似性は再生器、集音器間の距離、向
きなどの物理的配置関係が類似した再生器、集音器間に
おける反響路は互いに等しいと仮定して利用するステッ
プを含む。13. The method according to claim 8, 9 or 11, wherein the similarity of the echo paths is between the regenerator and the sound collector having a similar physical arrangement relationship such as a distance between the regenerator and the sound collector and a direction. The echo paths in 1 are used assuming that they are equal to each other.
いて、上記再生器、集音器間の距離、向きなどの物理的
配置関係が類似した再生器、集音器間における反響路の
類似性を仮定して、その類似性の違いを反響路類似誤差
ベクトルとして導入して利用するステップを含む。14. The method according to claim 4, 8, 9 or 11, wherein the regenerators and sound collectors having similar physical arrangements such as distance and direction between the sound collectors and the echo paths between the sound collectors. Assuming similarity, the step of introducing and utilizing the difference in similarity as an echo path similarity error vector is included.
路類似誤差ベクトルの影響を調節可能とする、重み係数
を導入するステップを含む。15. The method of claim 14 including the step of introducing a weighting factor that allows the effect of the echopath-like error vector to be adjusted.
て、上記疑似反響路の修正ベクトルを求める際に、上記
反響路のインパルス応答の指数減衰性に基づいてタップ
毎に異なる修正重み係数を与えるESアルゴリズムを適
用するステップを含む。16. The method according to claim 8, 9 or 11, wherein when a correction vector of the pseudo echo path is obtained, a different correction weight coefficient is given to each tap based on exponential attenuation of impulse response of the echo path. Applying the ES algorithm.
置であり、以下を含む: 複数のチャネルの受話信号をそれぞれ音響信号に再生し
て出力する複数の再生器と、 少なくとも1つの送信用チャネルに接続された集音器
と、上記音響信号が上記複数の再生器から上記集音器に
至る音響路は反響路をそれぞれ形成し、上記集音器に集
音され、合成された上記音響信号は反響信号として上記
送話チャネルに入力され、 上記複数のチャネルの受話信号をそれぞれ一時的に保持
して各受話信号ベクトルを生成する受話信号ベクトル生
成部と、 上記複数のチャネルの受話信号ベクトルを結合して受話
信号結合ベクトルを生成するベクトル結合部と、 上記受話信号結合ベクトルが与えられ、上記複数の再生
器から上記集音器に至る上記反響路のインパルス応答を
表す反響路ベクトルを結合した反響路結合ベクトルを模
擬する疑似反響路結合ベクトルを有し、上記受話信号結
合ベクトルが入力されて、上記観測可能な反響信号を模
擬する疑似反響信号を出力する疑似反響信号生成部と、 上記集音器からの反響信号から上記疑似反響信号を減算
して、その差を観測可能な残留反響信号として出力する
減算器と、 上記複数チャネルの少なくとも2つの受話信号を入れ替
えて結合して得た並べ替え受話信号結合ベクトルを生成
するベクトル並べ替え結合部と、 少なくとも上記観測受話信号結合ベクトルと、それに対
応する上記観測可能な残留反響信号とが与えられ、上記
並べ替え受話信号結合ベクトルを上記疑似反響路に与え
た場合の近似疑似反響信号を求め、上記受話信号を入れ
替えた場合に上記集音器より得られるべき反響信号を近
似により近似反響信号として求め、上記近似反響信号か
ら上記近似疑似反響信号を減算して近似残留反響信号を
求め、上記受話信号結合ベクトルとそれに対応する上記
観測可能な残留反響信号との関係を表す観測可能な入出
力関係と、上記並べ替え受話信号結合ベクトルとそれに
対応する上記近似残留反響信号との関係を表す近似入出
力関係を評価し、その評価に基づいて上記修正ベクトル
を求め、上記修正ベクトルにより上記疑似反響路ベクト
ルを修正した疑似反響路ベクトルを生成し上記疑似反響
信号生成部に与える反響路推定部。17. An echo canceller for a multi-channel audio communication conference, comprising: a plurality of regenerators for reproducing and outputting received signals of a plurality of channels as acoustic signals, and at least one transmission channel. The connected sound collector and the acoustic path from the plurality of regenerators to the sound collector form a reverberant path, and the sound signals collected by the sound collector and synthesized are A reception signal vector generator, which is input to the transmission channel as an echo signal and temporarily holds the reception signals of the plurality of channels to generate each reception signal vector, and a reception signal vector of the plurality of channels are combined. And a vector combination unit for generating a reception signal combination vector, and the reception signal combination vector is given, and the impal of the echo path from the plurality of regenerators to the sound collector is given. It has a pseudo echo path coupling vector that simulates an echo path coupling vector that is a combination of echo path vectors that represent responses, and the received signal coupling vector is input to output a pseudo echo signal that simulates the observable echo signal. Pseudo echo signal generation unit, a subtracter that subtracts the pseudo echo signal from the echo signal from the sound collector, and outputs the difference as an observable residual echo signal, and at least two received signals of the plurality of channels A vector permutation combining unit that generates a permuted reception signal combination vector obtained by exchanging and combining, and at least the observed reception signal combination vector and the corresponding observable residual echo signal are given, and the arrangement When an approximate pseudo echo signal is obtained when a replacement reception signal combination vector is applied to the pseudo echo path, and when the reception signal is replaced, the above The echo signal that should be obtained from the sounding device is obtained as an approximate echo signal by approximation, the approximate pseudo echo signal is subtracted from the approximate echo signal to obtain the approximate residual echo signal, and the received signal combination vector and the corresponding observable signal The observable input / output relationship that represents the relationship with the residual echo signal and the approximate input / output relationship that represents the relationship between the rearranged received signal combination vector and the corresponding approximate residual echo signal are evaluated, and based on the evaluation An echo path estimating unit that obtains the correction vector by using the correction vector, generates the pseudo echo path vector by correcting the pseudo echo path vector by the correction vector, and gives the pseudo echo signal vector to the pseudo echo signal generating unit.
路推定部は、 上記観測可能な残留反響信号と上記近似残留反響信号と
に対し、相対的な重みを与える残留反響信号重み付加手
段と、 上記受話信号結合ベクトル及び上記並べ替え受話信号ベ
クトルと上記観測可能な残留反響信号及び近似残留反響
信号との関係から上記修正ベクトルを求める修正ベクト
ル計算部と、 上記修正ベクトルを使って上記疑似反響路ベクトルを修
正し、上記疑似反響信号生成部に与える適応フィルタ更
新部、とを含む。18. The apparatus according to claim 17, wherein the echo path estimation unit gives residual echo signal weight adding means for giving relative weight to the observable residual echo signal and the approximate residual echo signal. A correction vector calculation unit that obtains the correction vector from the relationship between the received signal combination vector and the rearranged reception signal vector and the observable residual echo signal and the approximate residual echo signal, and the pseudo echo path using the corrected vector. And an adaptive filter updating unit which corrects the vector and gives the pseudo echo signal generating unit.
路推定部は、 上記近似残留反響信号を、上記観測可能な残留反響信号
と相関のある相関成分とそれ以外の非相関成分とに分離
する成分分離部と、 上記相関成分と非相関成分に相対的な重みを与える成分
重み係数付加手段とを含む。19. The apparatus according to claim 17, wherein the echo path estimation unit separates the approximate residual echo signal into a correlation component correlated with the observable residual echo signal and a non-correlation component other than the correlation component. It includes a component separating section and a component weighting coefficient adding means for giving a relative weight to the correlated component and the non-correlated component.
路推定部は上記受話信号ベクトルに対する上記並び替え
受話信号ベクトルの相互相関を求める相互相関計算部を
含み、上記成分分離部は上記近似残留反響信号の、上記
観測可能な残留反響信号と相関のある成分として、上記
相互相関計算部で求めた上記相互相関と上記観測可能な
残留反響信号の積を計算する手段を含む。20. The apparatus according to claim 19, wherein the echo path estimation unit includes a cross-correlation calculation unit that obtains a cross-correlation of the rearranged reception signal vector with respect to the reception signal vector, and the component separation unit includes the approximate residual echo. It includes means for calculating a product of the cross-correlation obtained by the cross-correlation calculation unit and the observable residual echo signal as a component of the signal having a correlation with the observable residual echo signal.
上記反響路推定部は各演算時刻ごとに、上記反響信号と
上記残留反響信号との比、上記反響信号と上記残留反響
信号との平均電力比、上記残留反響信号の絶対値、上記
残留反響信号の平均電力、のうちの少なくとも1つを上
記観測可能な残留反響信号の収束状態を表す指標として
計算し、その値に基づいて上記重み係数を制御する重み
係数制御部を含む。21. The apparatus of claim 18 or 19,
The echo path estimation unit, for each calculation time, the ratio of the echo signal and the residual echo signal, the average power ratio of the echo signal and the residual echo signal, the absolute value of the residual echo signal, the residual echo signal At least one of the average powers of the above is calculated as an index representing the convergence state of the observable residual echo signal, and a weighting factor control unit that controls the weighting factor based on the value is included.
上記反響路推定部は互いに類似な反響路間の類似誤差ベ
クトルと、それらに対応する上記疑似反響路間の類似誤
差ベクトルとの差分である類似誤差差分ベクトルがもた
らす上記残留反響信号への影響を調整するための重み係
数を上記受話信号ベクトルに対し与える類似誤差重み係
数付加部を含む。22. The device of claim 18 or 19,
The reverberant path estimation unit determines the influence on the residual reverberant signal caused by the similar error difference vector that is the difference between the similar error vectors between mutually similar reverberant paths and the corresponding similar error vectors between the pseudo reverberant paths. A similar error weighting coefficient adding unit that gives a weighting coefficient for adjustment to the received signal vector is included.
上記修正ベクトル計算部は、上記受話信号ベクトルと、
上記並べ替え受話信号ベクトルと、上記残留反響信号を
現時点から過去の所定時点数遡って保持する信号蓄積部
と、これら現時点から過去の時点に渡るそれぞれの上記
受話信号ベクトル及び並べ替え受話信号ベクトルと、上
記残留反響信号と、上記修正ベクトルとの関係を使って
連立方程式を解くことにより上記修正ベクトルを得る連
立方程式演算部とを含む。24.クレーム22の装置に
おいて、上記修正ベクトル計算部は、上記受話信号ベク
トルと、上記並べ替え受話信号ベクトルと、上記残留反
響信号を現時点から過去の所定次点数遡って保持する信
号蓄積部と、これら現時点から過去の時点に渡るそれぞ
れの上記受話信号ベクトル及び並べ替え受話信号ベクト
ルと、上記残留反響信号と、上記修正ベクトル及び類似
誤差差分ベクトルとの関係を使って連立方程式を解くこ
とにより上記修正ベクトルを得る連立方程式演算部とを
含む。25.クレーム23又は24の装置において、上
記修正ベクトル計算部は、上記現時点から所定時点数過
去までの上記受話信号ベクトル及び上記並べ替え受話信
号ベクトルのそれぞれに対し、同じ要素数の指数減衰係
数ベクトルにより重み付けする指数重み係数付加手段を
含み、上記連立方程式演算部はESアルゴリズムを使っ
て上記修正ベクトルを求める。23. The apparatus of claim 18 or 19, wherein
The correction vector calculation unit, the received signal vector,
The rearranged reception signal vector, a signal storage unit for holding the residual echo signal retroactively a predetermined number of times in the past from the present time, and the respective reception signal vector and rearranged reception signal vector from the present time to the past time , A simultaneous equation calculation unit that obtains the correction vector by solving a simultaneous equation using the relationship between the residual echo signal and the correction vector. 24. In the apparatus of claim 22, the correction vector calculation unit includes the reception signal vector, the rearranged reception signal vector, a signal storage unit that holds the residual echo signal backward a predetermined number of points in the past from the present time, and these current times. From the past to each of the past reception signal vector and rearranged reception signal vector, the residual echo signal, the correction vector and the similar error difference vector by using the relationship between the correction vector by solving the simultaneous equations And a simultaneous equation calculation unit for obtaining the simultaneous equations. 25. In the device of claim 23 or 24, the correction vector calculation unit weights each of the reception signal vector and the rearranged reception signal vector from the present time point to the past a predetermined number of time points by an exponential attenuation coefficient vector having the same number of elements. The simultaneous equation calculating unit includes the exponential weighting coefficient adding means for calculating the correction vector by using the ES algorithm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25486896A JP3402427B2 (en) | 1995-09-26 | 1996-09-26 | Multi-channel echo cancellation method and apparatus |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24772495 | 1995-09-26 | ||
JP7-247724 | 1995-09-26 | ||
JP8-64708 | 1996-03-21 | ||
JP6470896 | 1996-03-21 | ||
JP25486896A JP3402427B2 (en) | 1995-09-26 | 1996-09-26 | Multi-channel echo cancellation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09312597A true JPH09312597A (en) | 1997-12-02 |
JP3402427B2 JP3402427B2 (en) | 2003-05-06 |
Family
ID=27298559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25486896A Expired - Lifetime JP3402427B2 (en) | 1995-09-26 | 1996-09-26 | Multi-channel echo cancellation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3402427B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6785391B1 (en) | 1998-05-22 | 2004-08-31 | Nippon Telegraph And Telephone Corporation | Apparatus and method for simultaneous estimation of transfer characteristics of multiple linear transmission paths |
JP2007096389A (en) * | 2005-09-27 | 2007-04-12 | Yamaha Corp | Recursive noise canceller |
JP2007511148A (en) * | 2003-11-06 | 2007-04-26 | ヘルベルト ビューヒナー | Apparatus and method for processing input signal processing |
JPWO2005091677A1 (en) * | 2004-03-22 | 2007-08-09 | ティーオーエー株式会社 | Multi-channel system identification device |
JP2007306553A (en) * | 2006-05-10 | 2007-11-22 | Harman Becker Automotive Systems Gmbh | Multi-channel echo compensation |
JP2008005293A (en) * | 2006-06-23 | 2008-01-10 | Matsushita Electric Ind Co Ltd | Echo suppression device |
JP2014511584A (en) * | 2011-12-29 | 2014-05-15 | ゴーアテック インコーポレイテッド | Multi-receiving end echo cancellation method and system |
CN114360570A (en) * | 2022-01-25 | 2022-04-15 | 随锐科技集团股份有限公司 | Method for eliminating echo and related product |
-
1996
- 1996-09-26 JP JP25486896A patent/JP3402427B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6785391B1 (en) | 1998-05-22 | 2004-08-31 | Nippon Telegraph And Telephone Corporation | Apparatus and method for simultaneous estimation of transfer characteristics of multiple linear transmission paths |
JP2007511148A (en) * | 2003-11-06 | 2007-04-26 | ヘルベルト ビューヒナー | Apparatus and method for processing input signal processing |
US8218774B2 (en) | 2003-11-06 | 2012-07-10 | Herbert Buchner | Apparatus and method for processing continuous wave fields propagated in a room |
JPWO2005091677A1 (en) * | 2004-03-22 | 2007-08-09 | ティーオーエー株式会社 | Multi-channel system identification device |
JP4663630B2 (en) * | 2004-03-22 | 2011-04-06 | ティーオーエー株式会社 | Multi-channel system identification device |
JP2007096389A (en) * | 2005-09-27 | 2007-04-12 | Yamaha Corp | Recursive noise canceller |
JP2007306553A (en) * | 2006-05-10 | 2007-11-22 | Harman Becker Automotive Systems Gmbh | Multi-channel echo compensation |
JP2008005293A (en) * | 2006-06-23 | 2008-01-10 | Matsushita Electric Ind Co Ltd | Echo suppression device |
JP2014511584A (en) * | 2011-12-29 | 2014-05-15 | ゴーアテック インコーポレイテッド | Multi-receiving end echo cancellation method and system |
CN114360570A (en) * | 2022-01-25 | 2022-04-15 | 随锐科技集团股份有限公司 | Method for eliminating echo and related product |
Also Published As
Publication number | Publication date |
---|---|
JP3402427B2 (en) | 2003-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0766446B1 (en) | Method and apparatus for multi-channel acoustic echo cancellation | |
JP3397269B2 (en) | Multi-channel echo cancellation method | |
JP3654470B2 (en) | Echo canceling method for subband multi-channel audio communication conference | |
US6553122B1 (en) | Method and apparatus for multi-channel acoustic echo cancellation and recording medium with the method recorded thereon | |
US5774562A (en) | Method and apparatus for dereverberation | |
US20140016794A1 (en) | Echo cancellation system and method with multiple microphones and multiple speakers | |
US20080118075A1 (en) | Multi-Channel Frequency-Domain Adaptive Filter Method and Apparatus | |
EP1180300B1 (en) | Acoustic echo cancellation | |
Gänsler et al. | Stereophonic acoustic echo cancellation and two‐channel adaptive filtering: an overview | |
JP3402427B2 (en) | Multi-channel echo cancellation method and apparatus | |
Chang et al. | Distributed Kalman filtering for speech dereverberation and noise reduction in acoustic sensor networks | |
JP3616341B2 (en) | Multi-channel echo cancellation method, apparatus thereof, program thereof, and recording medium | |
JP2002223182A (en) | Echo canceling method, its apparatus, its program and its recording medium | |
JP3628267B2 (en) | Multi-channel echo cancellation method, apparatus thereof, program thereof and recording medium thereof | |
JP3131202B2 (en) | Apparatus and method for separating and estimating transfer characteristics of multiple linear transfer paths and recording medium storing the method as a readable program | |
JP3073976B2 (en) | Multi-channel acoustic echo canceling method, apparatus thereof, and recording medium recording this method | |
JP3339612B2 (en) | Echo cancellation method for multi-channel audio communication conference | |
JP3707572B2 (en) | Subband echo cancellation method | |
JP2602750B2 (en) | Echo canceller | |
Klunk | Spatial Evaluation of Cross-Talk Cancellation Performance Utilizing In-Situ Recorded BRTFs | |
JP2000308176A (en) | Multi-channel loudspeaker communication echo canceling method and apparatus, and program recording medium | |
JP4663630B2 (en) | Multi-channel system identification device | |
Romoli et al. | An interactive optimization procedure for stereophonic acoustic echo cancellation systems | |
JP3724726B2 (en) | Echo canceling apparatus, echo canceling method, and echo canceling program | |
Rao | Multichannel acoustic signal processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 10 |