JPH09306268A - Contact material for vacuum valve - Google Patents
Contact material for vacuum valveInfo
- Publication number
- JPH09306268A JPH09306268A JP11734196A JP11734196A JPH09306268A JP H09306268 A JPH09306268 A JP H09306268A JP 11734196 A JP11734196 A JP 11734196A JP 11734196 A JP11734196 A JP 11734196A JP H09306268 A JPH09306268 A JP H09306268A
- Authority
- JP
- Japan
- Prior art keywords
- composition
- conductive component
- contact
- contact material
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Contacts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、遮断性能を向上さ
せた真空バルブ用接点材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve contact material having improved breaking performance.
【0002】[0002]
【従来の技術】真空バルブ用接点材料に要求される特性
としては、耐溶着・耐電圧・遮断に対する各性能で示さ
れる基本三要件と、この他に温度上昇・接触抵抗が低く
安定していることが重要な要件となっている。しかしな
がら、これらの要件のなかには相反するものがある関係
上、単一の金属種によって全ての要件を満足させること
は不可能である。このため、実用化されている多くの接
点材料においては、不足する性能を相互に補えるような
2種以上の元素を組合せ、かつ大電流用または高電圧用
等のように特定の用途に合った接点材料の開発が行わ
れ、それなりに優れた特性を有するものが開発されてき
た。2. Description of the Related Art The characteristics required for a contact material for a vacuum valve include three basic requirements as shown in the performances of welding resistance, withstand voltage, and breaking, and in addition, the temperature rise and the contact resistance are low and stable. Is an important requirement. However, it is impossible to satisfy all the requirements with a single metal species because some of these requirements conflict with each other. For this reason, in many practically used contact materials, two or more kinds of elements that complement each other in insufficient performance are combined and suitable for a specific application such as for large current or high voltage. Contact materials have been developed, and materials having excellent properties have been developed.
【0003】ところで、近年の価格競争に端を発する真
空バルブの小型化に対して接点材料特性向上の要求は高
く、それは遮断電流密度の向上に集約される。即ち、C
uを主成分とし、溶着防止成分であるBi・Te等を添
加した当初から(例えば、特公昭61−41091)、
Cr等の遮断性能を向上させた耐孤成分を含有した接点
(例えば、特公昭61−41091)が使用されるよう
になってきた。しかしながら、これらのCuBi・Cu
Cr系の接点材料に於ては、遮断不能を生ずることがあ
り、その要因の一つとして、遮断電流の増加に伴って陽
極表面上にアークが集中することがあげられている。By the way, there is a strong demand for improving the characteristics of contact materials for the miniaturization of vacuum valves, which is caused by the recent price competition, and this is concentrated on the improvement of the breaking current density. That is, C
From the beginning with the main component of u and the addition of Bi, Te, etc. which are anti-welding components (for example, Japanese Patent Publication No. 61-41091),
A contact (for example, Japanese Examined Patent Publication No. 61-41091) containing an arc-proof component with improved breaking performance such as Cr has come to be used. However, these CuBi · Cu
In a Cr-based contact material, there is a case where interruption is impossible, and one of the causes is that the arc is concentrated on the anode surface as the interruption current increases.
【0004】それを防止する方法として、接点或は電極
表面の径方向に段階的に蒸気圧・熱物性などを変化させ
た接点材料・電極材料が考案されている(例えば、特開
昭63−266720)。As a method for preventing this, contact materials and electrode materials have been devised in which the vapor pressure, thermophysical properties, etc. are changed stepwise in the radial direction of the contact or electrode surface (for example, JP-A-63-63). 266720).
【0005】しかし、このように径方向に同心円上に組
成を変化させた場合、アーク集中はある程度抑制される
が、遮断試験後の接点表面を観察すると、アークの集中
を抑制はしているものの、アークが均一に分散している
わけではない。従って、よりアークの集中を抑制できる
ように、接点・電極の組成分布状態には改良の余地が残
されている。However, when the composition is changed concentrically in the radial direction as described above, the arc concentration is suppressed to some extent, but when the contact surface after the interruption test is observed, the arc concentration is suppressed. , The arc is not evenly distributed. Therefore, there is still room for improvement in the composition distribution state of the contacts / electrodes so that the concentration of the arc can be further suppressed.
【0006】[0006]
【発明が解決しようとする課題】アークの集中を抑制す
る手段として、接点材料を工夫する以外に電極構造を工
夫する場合もある。例えば、特許1140613に開示
されているように、遮断時の電極間に発生したアーク軸
に平行な軸方向磁界を印加させるようにコイル電極を設
け、更に上述したような接点材料を併用するものがあ
る。As means for suppressing the concentration of arcs, there are cases where the electrode structure is devised in addition to devising the contact material. For example, as disclosed in Japanese Patent No. 1140613, one in which a coil electrode is provided so as to apply an axial magnetic field parallel to the arc axis generated between the electrodes at the time of interruption, and the contact material as described above is also used in combination. is there.
【0007】しかしながら、このような場合でも電極間
のアークを均一に分散させることができるとは必ずしも
言えず、確実に大電流を遮断できるものではなかった。
本発明の目的は、遮断時の電極間に発生し得るアークを
適切に拡げ、遮断性能を向上させた真空バルブ用接点材
料を提供することにある。However, even in such a case, it cannot always be said that the arc between the electrodes can be uniformly dispersed, and a large current cannot be reliably cut off.
An object of the present invention is to provide a contact material for a vacuum valve, in which an arc that may occur between electrodes at the time of interruption is appropriately spread and the interruption performance is improved.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明は、Ag及びCuのうちの少なくとも1種から
成る導電成分と、Cr,Ti,Zr,V,Nb,Ta,
W及びMoのうちの少なくとも1種から成る耐孤成分と
を有し、径方向に成分比が異なる複数の組成領域が存在
すると共に、互いに隣接する組成領域における導電成分
の含有量の差が5〜50体積%にしたことを要旨とす
る。In order to achieve the above object, the present invention provides a conductive component containing at least one of Ag and Cu, Cr, Ti, Zr, V, Nb, Ta,
There is a plurality of composition regions having an arc resistance component made of at least one of W and Mo and having different component ratios in the radial direction, and the difference in the content of the conductive component in the composition regions adjacent to each other is 5 The gist is to set the volume to 50% by volume.
【0009】同一組成の接点を使用した場合、遮断電流
の増加について、陽極表面でアーク集中が発生する傾向
にあった。その原因として考えられている一つは、仮
に、接点表面上のアーク電流密度が一定ならば、外周部
分からのアーク柱の冷却と、アーク自身ピンチ力によっ
て、徐々に、中心部分のアーク電流密度が増加するとい
うものである。When the contacts having the same composition were used, there was a tendency for arc concentration to occur on the anode surface as the breaking current increased. One of the possible causes is that if the arc current density on the contact surface is constant, the arc current density in the central part gradually increases due to the cooling of the arc column from the outer peripheral part and the pinch force of the arc itself. Is to increase.
【0010】従って、予め中心部分よりも外周部分のア
ーク電流密度が大きくなるような組成分布を形成させる
ために、例えば同一遮断電流値に対してアーク電圧が低
くなるような材料組成を同心円状の外周部分に配するこ
とによってアークの集中を緩和できる。しかしながら、
組成分布によってアークの拡がりは微妙に影響され、単
純に、組成を分布させるだけでは良好な遮断試験結果を
得られなかった。Therefore, in order to previously form a composition distribution in which the arc current density in the outer peripheral portion is larger than that in the central portion, for example, a material composition in which the arc voltage is low for the same breaking current value is concentric. By arranging in the outer peripheral part, the concentration of the arc can be relieved. However,
The arc spread is delicately affected by the composition distribution, and a good breaking test result could not be obtained simply by distributing the composition.
【0011】そこで、本発明者らは、種々の試料の製作
と遮断試験を繰り返すことにより、遮断性能向上に寄与
する組成分布の領域を見出した。その結果、接点中心部
分から外周部分に至るまでの組成の段階的な変化が、遮
断性能と密接な関係があることが判明した。即ち、複数
の組成領域から構成された接点表面に於いて、互いに隣
接した組成領域の成分差が大きすぎると、アークの拡が
りがスムーズにいかないことが判明した。また、逆に成
分差が小さいと、アークを移行するだけのアーク電圧差
を有しないためか十分な拡がりを果たせなかった。この
ように、接点内の組成分布を最適化する事によって遮断
電流値を増加させることができる。Therefore, the inventors of the present invention found a region of composition distribution that contributes to the improvement of the breaking performance by repeating the production of various samples and the breaking test. As a result, it was found that the gradual change in the composition from the central portion of the contact to the outer peripheral portion is closely related to the breaking performance. That is, on the contact surface composed of a plurality of composition regions, it has been found that if the component difference between the composition regions adjacent to each other is too large, the spread of the arc cannot be performed smoothly. On the other hand, if the component difference is small, it is impossible to achieve a sufficient spread, probably because there is no arc voltage difference enough to transfer the arc. In this way, the breaking current value can be increased by optimizing the composition distribution in the contact.
【0012】[0012]
【発明の実施の形態】以下、本発明の一実施例を図面を
参照して説明する。まず、本発明の真空バルブ用接点材
料が適用される真空バルブの一例として、図1を参照し
て説明する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. First, an example of a vacuum valve to which the vacuum valve contact material of the present invention is applied will be described with reference to FIG.
【0013】図1に示す様に、絶縁円筒1の両端開口部
に端板2,3を気密封着して真空容器4を構成し、この
真空容器4の内部に一対の接点電極5,6を接離自在に
設けると共に、接点電極5の固定通電軸7を端板2に気
密に取付け、接点電極6の可動通電軸8をベローズ9を
介して端板3に可動自在に且つ気密に取付ける。また、
接点電極5,6の周りをアークシールド10で囲み、更
にベローズ9のベローズカバー11を可動通電軸8に取
付けるように構成したものである。As shown in FIG. 1, a vacuum container 4 is constructed by hermetically sealing end plates 2 and 3 to openings of both ends of an insulating cylinder 1, and a pair of contact electrodes 5 and 6 are provided inside the vacuum container 4. And the fixed energizing shaft 7 of the contact electrode 5 is airtightly attached to the end plate 2, and the movable energizing shaft 8 of the contact electrode 6 is movably and airtightly attached to the end plate 3 via the bellows 9. . Also,
The contact electrodes 5, 6 are surrounded by an arc shield 10, and a bellows cover 11 of a bellows 9 is attached to the movable energizing shaft 8.
【0014】このような真空バルブは、図示しない操作
機構により、可動通電軸8が引き外し方向に操作され、
接点電極5,6が開離れると、これら接点電極5,6の
間に発生するアークは電流ゼロ点を抑えたところで、真
空中に拡散され、遮断されるようになる。In such a vacuum valve, the movable energizing shaft 8 is operated in the pulling-out direction by an operating mechanism (not shown),
When the contact electrodes 5 and 6 are separated from each other, the arc generated between the contact electrodes 5 and 6 is diffused into the vacuum and cut off when the current zero point is suppressed.
【0015】また、接点電極5,6の対向側において、
接点部は電極部に例えばロウ付で固着されており、これ
ら接点部の双方または何れか一方に本発明に係る接点材
料を適用する。On the opposite side of the contact electrodes 5 and 6,
The contact portion is fixed to the electrode portion by brazing, for example, and the contact material according to the present invention is applied to both or either of these contact portions.
【0016】次に、各接点の評価方法を述べる。 (1)遮断性能 各接点について、φ45mmに加工した一対の接点を所
定の真空バルブに組み込んだ後、回復電圧を7.2kV
一定として、遮断電流を8kAから1〜1.5kAずつ
増加させて遮断の可否を判断した。なお、特性は、組成
分布を有しない単一組成の50vol%CrCu接点の
遮断性能を1.0としたときの相対値で示した。この評
価結果を表1に示し、表1を参照しながら各実施例及び
比較例について考察する。Next, a method of evaluating each contact will be described. (1) Breaking performance For each contact, after incorporating a pair of contacts processed to φ45 mm into a predetermined vacuum valve, the recovery voltage was 7.2 kV
Assuming a constant value, the interruption current was increased from 8 kA in increments of 1 to 1.5 kA, and the possibility of interruption was determined. The characteristics are shown as relative values when the breaking performance of a single composition 50 vol% CrCu contact having no composition distribution is set to 1.0. The evaluation results are shown in Table 1, and with reference to Table 1, each Example and Comparative Example will be considered.
【0017】[0017]
【表1】 (比較例1)平均粒径100μmのCr粉末と平均粒径
45μmのCu粉末を原料粉末とした。所定の組成(5
0CrCu)になるように配合・混合したのち、直径6
0mmのカーボン坩堝に混合粉末を充填した。10-3P
aのオーダーの真空雰囲気にて、1223Kx2Hr.
の条件で焼結した。カーボン坩堝から取り出した後、7
Ton/cm2 の成形圧力にて成形し、再度、同一の焼
結条件にて焼結を行った。更に、同一条件での成形・焼
結を実施して50CrCuの接点を得た。[Table 1] Comparative Example 1 Cr powder having an average particle size of 100 μm and Cu powder having an average particle size of 45 μm were used as raw material powders. Predetermined composition (5
0CrCu), mixed and mixed, then diameter 6
A 0 mm carbon crucible was filled with the mixed powder. 10-3P
a in a vacuum atmosphere of the order of a, 1223Kx2Hr.
Sintered under the conditions of. After removing from the carbon crucible, 7
It was molded under a molding pressure of Ton / cm @ 2 and again sintered under the same sintering conditions. Further, molding and sintering were carried out under the same conditions to obtain contacts of 50CrCu.
【0018】遮断試験を実施するために、直径45mm
の所定形状に加工した後、真空バルブに組み込み、遮断
試験を実施した。 (比較例2、実施例1,2,3)平均粒径100μmの
Cr粉末と平均粒径45μmのCu粉末を原料粉末とし
た。所定の組成(50CrCu,47CrCu,45C
rCu)になるように配合・混合したのち、直径60m
mのカーボン坩堝に予め製作しておいた直径15mmと
30mmの仕切り円筒を同心円状に配置し、外周部分か
ら、50CrCu,38CrCu,25CrCuの混合
粉末を充填した。仕切り円筒を取り除いた後、10-3P
aのオーダーの真空雰囲気にて、1223Kx2Hr.
の条件で焼結した。カーボン坩堝から取り出した後、7
Ton/cm2 の成形圧力にて成形し、再度、同一の焼
結条件にて焼結を行った。更に、同一条件での成形・焼
結を実施して同心円状の接点を得た。45 mm diameter for carrying out the breaking test
After being processed into a predetermined shape of No. 3, it was incorporated into a vacuum valve and a breaking test was performed. (Comparative Example 2, Examples 1, 2, 3) Cr powder having an average particle diameter of 100 μm and Cu powder having an average particle diameter of 45 μm were used as raw material powders. Predetermined composition (50CrCu, 47CrCu, 45C
rCu) is mixed and mixed to have a diameter of 60 m
Partition cylinders having diameters of 15 mm and 30 mm, which were manufactured in advance, were arranged concentrically in a carbon crucible of m, and a mixed powder of 50CrCu, 38CrCu, 25CrCu was filled from the outer peripheral portion. After removing the partition cylinder, 10-3P
a in a vacuum atmosphere of the order of a, 1223Kx2Hr.
Sintered under the conditions of. After removing from the carbon crucible, 7
It was molded under a molding pressure of Ton / cm @ 2 and again sintered under the same sintering conditions. Further, molding and sintering were performed under the same conditions to obtain concentric contact points.
【0019】遮断試験を実施するために、直径45mm
の所定形状に加工した後、真空バルブに組み込み、遮断
試験を実施した。(比較例2) 同様に、外周部分から、50CrCu/45CrCu/
40CrCuとして、実施例1を作成し、50CrCu
/38CrCu/25CrCuとして実施例2を作成し
た。また、同様に、50CrCu/25CrCu/純C
uとして、実施例3を作成した。45 mm diameter for carrying out the breaking test
After being processed into a predetermined shape of No. 3, it was incorporated into a vacuum valve and a breaking test was performed. (Comparative Example 2) Similarly, from the outer peripheral portion, 50CrCu / 45CrCu /
Example 40 was prepared as 40CrCu, and 50CrCu
Example 2 was prepared as / 38CrCu / 25CrCu. Similarly, 50CrCu / 25CrCu / pure C
Example 3 was prepared as u.
【0020】各組成領域の導電成分量差が5体積%以上
ある実施例1,2,3は比較例に対して、1.1〜1.
2の遮断性能を示したが、導電成分量差が、2//3と
小さい比較例2は、比較対象となる破格例1と同等の遮
断性能しか示さなかった。 (実施例4,5)比較例2と同様な製法にて、外周部分
から50CrCu/25CrCu/22CrCuとした
実施例4と、外周部分から50CrCu/47CrCu
/25CrCuとした実施例5も2つある組成境界部分
の内、一方は導電成分量差が少ないものの、他方は導電
成分量差が大きいため、アークの拡がりがスムーズに行
き渡り、比較例1の1.1倍の遮断性能を示した。 (実施例6,7,8)平均粒径100μmのCr粉末と
平均粒径45μmのCu粉末を原料粉末とした。所定の
組成(50CrCu,25CrCu)になるように配合
・混合したのち、直径60mmのカーボン坩堝に予め製
作しておいた直径35mmの仕切り円筒を同心円状に配
置し、外周部分から、50CrCu,25CrCuの混
合粉末を充填した。仕切り円筒を取り除いた後、10-3
Paのオーダーの真空雰囲気にて、1223Kx2H
r.の条件で焼結した。カーボン坩堝から取り出した
後、7Ton/cm2 の成形圧力にて成形し、再度、同
一の焼結条件にて焼結を行った。更に、同一条件での成
形・焼結を実施して同心円状の接点を得た。Examples 1, 2, and 3 in which the difference in the amount of the conductive component in each composition region was 5% by volume or more were 1.1 to 1.
Although the barrier performance of No. 2 was shown, Comparative Example 2 in which the difference in the amount of conductive components was as small as 2/3, showed only the same barrier performance as that of the exceptional case 1 to be compared. (Examples 4 and 5) Example 4 in which 50CrCu / 25CrCu / 22CrCu was formed from the outer peripheral portion and 50CrCu / 47CrCu from the outer peripheral portion by the same manufacturing method as in Comparative Example 2.
In Example 5 with 2 / 25CrCu, one of the two composition boundary portions has a small difference in the amount of the conductive component, but the other has a large difference in the amount of the conductive component, so that the spread of the arc spreads smoothly. The blocking performance was 1 times. (Examples 6, 7, and 8) Cr powder having an average particle size of 100 μm and Cu powder having an average particle size of 45 μm were used as raw material powders. After mixing and mixing so as to have a predetermined composition (50CrCu, 25CrCu), a prefabricated partition cylinder with a diameter of 35 mm is concentrically arranged in a carbon crucible with a diameter of 60 mm, and 50 CrCu and 25 CrCu The mixed powder was filled. 10-3 after removing the partition cylinder
1223Kx2H in a vacuum atmosphere of the order of Pa
r. Sintered under the conditions of. After taking out from the carbon crucible, it was molded under a molding pressure of 7 Ton / cm @ 2 and again sintered under the same sintering conditions. Further, molding and sintering were performed under the same conditions to obtain concentric contact points.
【0021】遮断試験を実施するために、直径45mm
の所定形状に加工した後、真空バルブに組み込み、遮断
試験を実施した(実施例6)。実施例6と同様の製法・
組成とし、カーボン坩堝内に配置する仕切円筒を、それ
ぞれ25mm,15mmとして試験片を製作した(実施
例7,8)。45 mm diameter for carrying out the breaking test
After being processed into a predetermined shape of No. 3, it was incorporated into a vacuum valve and a breaking test was performed (Example 6). Manufacturing method similar to that of Example 6
Test pieces were prepared with the composition as the partition cylinders placed in the carbon crucible and having 25 mm and 15 mm, respectively (Examples 7 and 8).
【0022】遮断試験を実施したところ、何れも比較例
1の1.1倍の遮断性能を示し、良好な結果を得た。 (実施例9,10,11、比較例3)実施例6と同様の
原料・製法・寸法にて、中心部分が純Cuであり、外周
部分が50CrCuである接点を製作した。また、比較
例1で製作した50CrCuの中心部分に直径35mm
の穴をあけ実施例10の試料を製作した。また、実施例
6と同様の原料・製法・寸法にて、中心部分が25Cr
Cu、外周部分が60CrCuである実施例11と、中
心部分が純Cuで、外周部分が70CrCuである比較
例3を製作した。When the breaking test was carried out, the breaking performance was 1.1 times that of Comparative Example 1, and good results were obtained. (Examples 9, 10, 11 and Comparative Example 3) Using the same raw material, manufacturing method, and dimensions as in Example 6, contact points were produced in which the central portion was pure Cu and the outer peripheral portion was 50CrCu. In addition, the diameter of 35 mm at the center of the 50CrCu manufactured in Comparative Example 1.
The sample of Example 10 was manufactured by making holes. The same raw material, manufacturing method, and dimensions as in Example 6 were used, but the central portion was 25 Cr.
Example 11 having Cu and an outer peripheral portion of 60CrCu and Comparative Example 3 having a central portion of pure Cu and an outer peripheral portion of 70CrCu were manufactured.
【0023】実施例9,10,11は比較例1に対して
1.1倍の遮断性能を示したものの、導電成分差が大き
い比較例3は、アークの移行がスムーズに行われずに、
従来接点と同等の遮断性能しか得られなかった。 (比較例4)他の組成系について検討する。平均粒径3
μmのW粉末を成形圧力1.5ton/cm2 にて成形
し、水素雰囲気中にて、1200℃x1Hr.の焼結条
件にてWスケルトンを製造した。Wスケルトンの上方に
無酸素銅を積載した後、1150℃x0.5Hr.の条
件にて、溶浸し、50WCu接点を得、その後、評価す
るために、直径45mmに加工した(比較例4)。Although Examples 9, 10 and 11 showed a breaking performance of 1.1 times that of Comparative Example 1, Comparative Example 3 having a large difference in conductive component did not smoothly transfer the arc,
Only the same breaking performance as the conventional contact was obtained. (Comparative Example 4) Another composition system will be examined. Average particle size 3
.mu.m W powder was molded at a molding pressure of 1.5 ton / cm @ 2, and the temperature was 1200 DEG C..times.1 Hr. The W skeleton was manufactured under the sintering conditions of. After loading oxygen-free copper above the W skeleton, 1150 ° C. × 0.5 Hr. Under the conditions described above, it was infiltrated to obtain a 50 W Cu contact, and then processed into a diameter of 45 mm for evaluation (Comparative Example 4).
【0024】以降の実施例の評価は、この接点の遮断試
験に対する相対値である。 (実施例12,13,14)比較例4にて製作した50
WCu接点から、直径50mm50WCuを製作した。
また、予め、平均粒径3μのW粉末と平均粒径10μm
のCu粉末を25WCuの比率にて配合混合した粉末
を、50mmの金型に充填後成形圧力7Ton/cm2
にて成形し、水素雰囲気にて、1273Kにて1Hr.
焼結し25WCuを得た。機械加工にて、外径45mm
内径30mmに加工した後、前述50WCuと組み合わ
せ、外周部分が25WCu、内部が50WCuの接点を
得た(実施例12)。Evaluations of the following examples are relative values to the breaking test of this contact. (Examples 12, 13, 14) 50 manufactured in Comparative Example 4
A 50 mm diameter 50 WCu was made from the WCu contacts.
Also, in advance, W powder having an average particle size of 3 μ and an average particle size of 10 μm
Cu powder was mixed and mixed at a ratio of 25 WCu, and the powder was filled in a 50 mm mold, and the molding pressure was 7 Ton / cm2.
Molded at 1273K in a hydrogen atmosphere at 1273K.
Sintered to obtain 25WCu. 45mm outside diameter by machining
After processing to an inner diameter of 30 mm, it was combined with the above 50 WCu to obtain a contact having an outer peripheral portion of 25 WCu and an inner portion of 50 WCu (Example 12).
【0025】平均粒径3μのW粉末と平均粒径10μm
のCu粉末と平均粒径44μmのBi粉末を50W0.
1BiCuの比率にて配合混合した粉末を、50mmの
金型型に充填後成形圧力7Ton/cm2 にて成形し、
水素粉末にて1273Kにて1Hr.焼結し50W0.
1BiCuを得た。機械加工にて、直径30mmに加工
した。また、平均粒径3μのW粉末と平均粒径10μm
のCu粉末と平均粒径44μmのTe粉末を25W0.
1TeCuの比率にて配合混合した粉末を、50mmの
金型に充填後成形圧力7Ton/cm2 にて成形し、水
素粉末にて1273Kにて1Hr.焼結し25W0.1
TeCuを得た。機械加工にて、外径45mm内径30
mm加工した。これらの接点を組み合わせて、外周部分
25W0.1TeCu、内部が50W0.1BiCuで
ある接点を製作した(実施例13)。W powder having an average particle size of 3 μ and an average particle size of 10 μm
Cu powder and Bi powder having an average particle size of 44 μm were mixed at 50 W0.
The powder mixed and mixed at a ratio of 1 BiCu was filled in a mold of 50 mm and molded at a molding pressure of 7 Ton / cm2,
Hydrogen powder at 1273K for 1 hr. Sintered 50W0.
1BiCu was obtained. It was machined to a diameter of 30 mm. Also, W powder having an average particle size of 3 μ and an average particle size of 10 μm
Cu powder and Te powder having an average particle size of 44 μm were added at 25 W0.
The powder mixed and mixed at a ratio of 1 TeCu was filled in a mold of 50 mm and molded at a molding pressure of 7 Ton / cm 2, and hydrogen powder at 1273 K for 1 hr. Sintered 25W 0.1
TeCu was obtained. Machined, outer diameter 45 mm, inner diameter 30
mm processed. By combining these contacts, a contact having an outer peripheral portion of 25W0.1TeCu and an inside of 50W0.1BiCu was manufactured (Example 13).
【0026】平均粒径3μのW粉末と平均粒径10μm
のCu粉末と平均粒径44μmのBi粉末を25W0.
3BiCuの比率にて配合混合した粉末を、50mmの
金型に充填後成形圧力7Ton/cm2 にて成形し、水
素粉末にて1273Kにて1Hr.焼結し25W0.3
BiCuを得た。機械加工にて、直径30mmに加工し
た。また、平均粒径3μのW粉末と平均粒径10μmの
Cu粉末と平均粒径44μmのSb粉末を50W0.1
SbCuの比率にて配合混合した粉末を、50mmの金
型に充填後成形圧力7Ton/cm2 にて成形し、水素
粉末にて1273Kにて1Hr.焼結し25W0.1T
eCuを得た。機械加工にて、外径45mm内径30m
m加工した。これらの接点を組み合わせて、外周部分2
5W0.1SbCu、内部が50W0.3BiCuであ
る接点を製作した(実施例14)。W powder having an average particle size of 3 μ and an average particle size of 10 μm
Cu powder and Bi powder having an average particle size of 44 μm were mixed with 25 W0.
The powder mixed and mixed in the ratio of 3BiCu was filled in a mold of 50 mm and then molded at a molding pressure of 7 Ton / cm 2, and hydrogen powder at 1273 K for 1 hr. Sintered 25W 0.3
BiCu was obtained. It was machined to a diameter of 30 mm. Further, W powder having an average particle diameter of 3 μ, Cu powder having an average particle diameter of 10 μm, and Sb powder having an average particle diameter of 44 μm are mixed with 50 W0.1.
The powder mixed and mixed in the ratio of SbCu was filled in a mold of 50 mm and then molded at a molding pressure of 7 Ton / cm 2, and hydrogen powder at 1273 K for 1 hr. Sintered 25W 0.1T
eCu was obtained. Machined, outer diameter 45 mm, inner diameter 30 m
m processed. By combining these contacts, the outer peripheral portion 2
A contact having 5W0.1SbCu and 50W0.3BiCu inside was manufactured (Example 14).
【0027】これら実施例12,13,14を遮断試験
したところ、比較例4の1.1倍の遮断性能を示した。
以上のように、複数の組成から形成される接点材料にお
いて、組成境界部分の導電成分量の変化量を5〜50体
積%に制限することによって、従来の均一組成接点より
も良好な遮断性能を得られることは明白である。When the breaking tests of these Examples 12, 13 and 14 were carried out, the breaking performance was 1.1 times that of Comparative Example 4.
As described above, in the contact material formed of a plurality of compositions, by limiting the amount of change in the amount of the conductive component at the composition boundary portion to 5 to 50% by volume, a better breaking performance than that of the conventional uniform composition contact is obtained. It is clear that it will be obtained.
【0028】また、本実施例に記載されていない他の耐
孤材料を使用しても同様に遮断性能が向上することも明
白である。更に、本材料を電極材料として使用しても同
様な結果を得られることは明白である。It is also clear that the use of other arc resistant materials not described in this example will also improve the barrier performance. Furthermore, it is clear that similar results can be obtained using this material as an electrode material.
【0029】[0029]
【発明の効果】以上のように本発明によれば、Ag及び
Cuのうちの少なくとも1種から成る導電成分と、C
r,Ti,Zr,V,Nb,Ta,W及びMoのうちの
少なくとも1種から成る耐孤成分とを有し、径方向に成
分比が異なる複数の組成領域が存在すると共に、互いに
隣接する組成領域における導電成分の含有量の差が5〜
50体積%にしたので、適切にアークを拡げることが可
能となり、遮断性能を向上させることができる。As described above, according to the present invention, a conductive component composed of at least one of Ag and Cu and C
r, Ti, Zr, V, Nb, Ta, W, and Mo, and an arc resistance component, and a plurality of composition regions having different component ratios in the radial direction are present and are adjacent to each other. The difference in the content of the conductive component in the composition region is 5 to
Since it is set to 50% by volume, the arc can be appropriately expanded and the breaking performance can be improved.
【図1】本発明の真空バルブ用接点材料が適用される真
空バルブの一例を示す断面図。FIG. 1 is a sectional view showing an example of a vacuum valve to which a contact material for a vacuum valve of the present invention is applied.
4…真空容器、5,6…接点電極、7…固定通電軸、8
…可動通電軸4 ... Vacuum container, 5, 6 ... Contact electrode, 7 ... Fixed energizing shaft, 8
... Movable energizing shaft
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant Co., Ltd.
Claims (6)
ら成る導電成分と、Cr,Ti,Zr,V,Nb,T
a,W及びMoのうちの少なくとも1種から成る耐孤成
分とを有し、径方向に成分比が異なる複数の組成領域が
存在すると共に、互いに隣接する組成領域における前記
導電成分の含有量の差が5〜50体積%にしたことを特
徴とする真空バルブ用接点材料。1. A conductive component composed of at least one of Ag and Cu, and Cr, Ti, Zr, V, Nb, and T.
a, W and Mo, and a plurality of composition regions having different composition ratios in the radial direction, and having a content of the conductive component in the composition regions adjacent to each other. A contact material for a vacuum valve, wherein the difference is 5 to 50% by volume.
ら成る導電成分と、Cr,Ti,Zr,V,Nb,T
a,W及びMoのうちの少なくとも1種から成る耐孤成
分とを有し、径方向に成分比が異なる複数の組成領域が
存在し、最内の組成領域を純Cuにすると共に、互いに
隣接する組成領域における前記導電成分の含有量の差が
5〜50体積%にしたことを特徴とする真空バルブ用接
点材料。2. A conductive component made of at least one of Ag and Cu, and Cr, Ti, Zr, V, Nb, and T.
a, W and Mo, and a plurality of composition regions having different composition ratios in the radial direction are present, and the innermost composition region is made of pure Cu and adjacent to each other. The contact material for a vacuum valve, wherein the difference in the content of the conductive component in the composition region is 5 to 50% by volume.
おける導電成分量は、外周部の組成領域に向かって減少
させるようにしたことを特徴とする請求項1又は請求項
2に記載の真空バルブ用接点材料。3. The vacuum according to claim 1, wherein the conductive component amount in the plurality of composition regions existing in the radial direction is reduced toward the composition region of the outer peripheral portion. Contact material for valves.
上であって、最外の組成領域は前記耐孤成分が60体積
%以下で残部が実質的に前記導電成分であることを特徴
とする請求項1〜請求項3のいずれかに記載の真空バル
ブ用接点材料。4. The amount of the conductive component in each composition region is 25% by volume or more, and the outermost composition region has the arc resistance component of 60% by volume or less and the balance substantially the conductive component. The contact material for a vacuum valve according to any one of claims 1 to 3.
ら成る導電成分と、Cr,Ti,Zr,V,Nb,T
a,W及びMoのうちの少なくとも1種から成る耐孤成
分とを有し、径方向に成分比が異なる複数の組成領域が
存在し、最内の組成領域部分を空洞にすると共に、互い
に隣接する組成領域における前記導電成分の含有量の差
が5〜50体積%にしたことを特徴とする真空バルブ用
接点材料。5. A conductive component composed of at least one of Ag and Cu, and Cr, Ti, Zr, V, Nb, and T.
a, W and Mo, and a plurality of composition regions having different composition ratios in the radial direction are present, and the innermost composition region portion is hollow and adjacent to each other. The contact material for a vacuum valve, wherein the difference in the content of the conductive component in the composition region is 5 to 50% by volume.
1体積%以下のBi,Te及びSbのうちの少なくとも
1種を含有したことを特徴とする請求項1〜請求項5の
いずれかに記載の真空バルブ用接点材料。6. Each of the composition regions contains at least one of Bi, Te and Sb in an amount of 1% by volume or less with respect to the conductive component. The contact material for a vacuum valve according to Crab.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11734196A JPH09306268A (en) | 1996-05-13 | 1996-05-13 | Contact material for vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11734196A JPH09306268A (en) | 1996-05-13 | 1996-05-13 | Contact material for vacuum valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09306268A true JPH09306268A (en) | 1997-11-28 |
Family
ID=14709317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11734196A Pending JPH09306268A (en) | 1996-05-13 | 1996-05-13 | Contact material for vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09306268A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024228A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社日立製作所 | Electric contact point for vacuum valve, and vacuum interrupter and vacuum switchgear using the electric contact point |
-
1996
- 1996-05-13 JP JP11734196A patent/JPH09306268A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024228A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社日立製作所 | Electric contact point for vacuum valve, and vacuum interrupter and vacuum switchgear using the electric contact point |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103038376B (en) | Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker | |
EP0153635B2 (en) | Contact electrode material for vacuum interrupter and method of manufacturing the same | |
US4743718A (en) | Electrical contacts for vacuum interrupter devices | |
EP0101024B1 (en) | Contact material of vacuum interrupter and manufacturing process therefor | |
EP1742238B1 (en) | Electrical contacts for vacuum circuit breakers and methods of manufacturing the same | |
JP2006140073A (en) | Electrode and electrical contact and its manufacturing method | |
EP0181149B1 (en) | Contact material for vacuum circuit breaker | |
JP2766441B2 (en) | Contact material for vacuum valve | |
US4546222A (en) | Vacuum switch and method of manufacturing the same | |
US4659885A (en) | Vacuum interrupter | |
US5698008A (en) | Contact material for vacuum valve and method of manufacturing the same | |
JP3441331B2 (en) | Manufacturing method of contact material for vacuum valve | |
US6027821A (en) | Contact material for vacuum interrupter and method for producing the same | |
JPH06228704A (en) | Contact material for vacuum bulb and its production | |
JPH09306268A (en) | Contact material for vacuum valve | |
JP2003147407A (en) | Electric contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same | |
JPH1083745A (en) | Contact material for vacuum valve and electrode material | |
JPH0510782B2 (en) | ||
JP2003077375A (en) | Contact material for vacuum valve and vacuum valve | |
JPS6141091B2 (en) | ||
JPH059888B2 (en) | ||
JPH11203994A (en) | Manufacture of vacuum valve contact material | |
JPH1139973A (en) | Contact material for vacuum bulb | |
JPH09115371A (en) | Contact material for vacuum valve | |
JPH0347931A (en) | Contact material for vacuum valve |