JPH09304500A - Signal detection method - Google Patents
Signal detection methodInfo
- Publication number
- JPH09304500A JPH09304500A JP8117410A JP11741096A JPH09304500A JP H09304500 A JPH09304500 A JP H09304500A JP 8117410 A JP8117410 A JP 8117410A JP 11741096 A JP11741096 A JP 11741096A JP H09304500 A JPH09304500 A JP H09304500A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- noise
- variance
- azimuth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
(57)【要約】
【目的】 指向性受波器を有するソノブイを用いて水中
のナローバンド信号を検出し、その到来方位を求める信
号検出方式において、従来より微弱な信号を探知する。
【構成】 方位分散計算部13では、信号検出部10で
レベル判定によって信号であると1次判定された周波数
成分について、方位記憶部12で記憶された一定時間区
間の方位値の分散を計算する。信号判定部14において
は、その方位の分散値がスレッショルドと比較して大き
いか小さいかにより信号と雑音を2次判定する。雑音は
等方性のため分散は大となり、信号は方向性を有するた
め分散は小となる。
【効果】 低S/Nの信号でも誤警報率を悪化させるこ
となく検出できる。
(57) [Abstract] [Purpose] To detect weaker signals than before in a signal detection method that detects a narrowband signal in water using a sonobuoy having a directional receiver and obtains the direction of arrival. [Arrangement] An azimuth dispersion calculation unit 13 calculates a dispersion of azimuth values in a certain time interval stored in the azimuth storage unit 12 for a frequency component which is primarily determined to be a signal by the level detection in the signal detection unit 10. . The signal determination unit 14 secondarily determines the signal and noise depending on whether the dispersion value of the direction is larger or smaller than the threshold. Since noise is isotropic, the variance is large, and since the signal is directional, the variance is small. [Effect] A low S / N signal can be detected without deteriorating the false alarm rate.
Description
【0001】[0001]
【産業上の利用分野】本発明は、水中音の検出を行う信
号検出方式に関し、特に指向性受波器を有するソノブイ
による水中音のナローバンド信号の信号検出方式に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal detection method for detecting underwater sound, and more particularly to a signal detection method for a narrowband signal of underwater sound by a sonobuoy having a directional receiver.
【0002】[0002]
【従来の技術】従来の信号検出方式では、ナローバンド
信号を検出して、その周波数及び方位を求めるため、指
向性受波器を有するソノブイと、その信号処理を行う系
統から成っている。これを図を用いて説明する。2. Description of the Related Art A conventional signal detection method comprises a sonobuoy having a directional receiver and a system for performing signal processing thereof in order to detect a narrow band signal and obtain its frequency and direction. This will be described with reference to the drawings.
【0003】図2は従来の方式であり、送信側の指向性
ソノブイ1と受信側2とで構成される。ソノブイ1は無
指向性受波器11と、磁北に対して南北にダイポール指
向性を有する南北ダイポール指向性受波器12と、東西
にダイポール指向性を有する東西ダイポール指向性受波
器13と、それらの受波器で受波した水中音を電波で観
測機等に送信する送信部14とから成る。FIG. 2 shows a conventional system, which is composed of a directional sonobuoy 1 on the transmitting side and a receiving side 2. The sonobuoy 1 is an omnidirectional receiver 11, a north-south dipole directional receiver 12 having dipole directivity north and south with respect to magnetic north, and an east-west dipole directional receiver 13 having dipole directivity east and west. The transmitting unit 14 transmits the underwater sound received by those wave receivers to an observation device or the like by radio waves.
【0004】受信側2は観測機等であり、ソノブイから
の電波を受信する受信部3と、ソノブイの3個の受波器
の信号を周波数分析する周波数分析部4,5,6と、周
波数分析結果を周波数成分毎に、時間的に積分する積分
部7,8,9と、無指向性受波器で受波した水中音の積
分された周波数分析結果から信号を検出する信号検出部
10と、各々の受波器の受波レベルの関係から受波音の
到来方位を計算する方位計算部11とから成る。The receiving side 2 is an observing device and the like, and a receiving section 3 for receiving radio waves from the Sonobui, frequency analyzing sections 4, 5, 6 for frequency-analyzing the signals of the three Sonobui receivers, Integrators 7, 8 and 9 that temporally integrate the analysis result for each frequency component, and a signal detector 10 that detects a signal from the integrated frequency analysis result of the underwater sound received by the omnidirectional receiver. And an azimuth calculation unit 11 that calculates the arrival azimuth of the received sound from the relationship between the reception levels of the respective receivers.
【0005】次に動作について説明する。水中音源が放
射するナローバンド信号は指向性ソノブイ1において、
無指向性受波器11、南北ダイポール指向性受波器1
2、東西ダイポール指向性受波器13で受信される。そ
れぞれの受波音は送信部14に送られ、周波数多重化さ
れた後、無線周波数に変調して電力増幅後、アンテナを
介して送出される。一方、この電波は受信側2において
はアンテナを介して受信部3に送られ、復調処理されて
無指向性受波器11の受波音を周波数分析部4に南北ダ
イポール指向性受波器12の受波音を周波数分析部5
に、東西ダイポール指向性受波器13の受波音を周波数
分析部6にそれぞれ出力する。Next, the operation will be described. The narrowband signal emitted by the underwater source is directional sonobuoy 1,
Omnidirectional receiver 11, north-south dipole directional receiver 1
2. Received by the east-west dipole directional receiver 13. Each received sound is sent to the transmission unit 14, frequency-multiplexed, modulated to a radio frequency, amplified in power, and then sent out via the antenna. On the other hand, on the receiving side 2, this radio wave is sent to the receiving section 3 via the antenna and demodulated to receive the received sound of the omnidirectional receiver 11 to the frequency analyzing section 4 of the north-south dipole directional receiver 12. Frequency analysis unit 5
Then, the received sound of the east-west dipole directional receiver 13 is output to the frequency analysis unit 6, respectively.
【0006】周波数分析部4においては、無指向性受波
器11で受波された水中音を周波数分析して、周波数ス
ペクトラムが得られる。水中に、ナローバンド信号が存
在すると周波数スペクトラムに狭帯域のスペクトルとし
てあらわれる。水中音には一般に周囲雑音が多く含まれ
るため周波数スペクトラムにおいても雑音があらわれ観
測時刻ごとに雑音スペクトルが変動しナローバンド信号
が検出しにくいため、積分部7に送って、各周波数成分
毎にあらかじめ決められた時間長さの積分を行う。次
に、積分結果は信号検出部10へ送られる。信号検出部
10においては雑音スペクトルの平均値を基準としてス
レッショルドを設定し、そのスレッショルドを越えるス
ペクトルを信号成分として検出している。その方法は次
のとおりである。In the frequency analysis unit 4, the underwater sound received by the omnidirectional receiver 11 is subjected to frequency analysis to obtain a frequency spectrum. When a narrow band signal exists in water, it appears as a narrow band spectrum in the frequency spectrum. Underwater sound generally contains a lot of ambient noise, so noise appears in the frequency spectrum as well, and the noise spectrum fluctuates at each observation time, making it difficult to detect narrowband signals. Integrate for the given time length. Next, the integration result is sent to the signal detection unit 10. In the signal detection unit 10, a threshold is set with the average value of the noise spectrum as a reference, and a spectrum exceeding the threshold is detected as a signal component. The method is as follows.
【0007】まず、水中音の周波数成分データの雑音平
均値Mpを式1により求める。なお、Nセル個の周波数
成分があり、周波数セルは昇順に並んでいるとする。First, the noise average value Mp of the frequency component data of the underwater sound is obtained by the equation 1. It is assumed that there are N cell frequency components and the frequency cells are arranged in ascending order.
【0008】[0008]
【数1】 [Equation 1]
【0009】ただし、Xi:i番目のセルのレベル(i
=1〜N)、Mp:p番目のセルに対する雑音平均値
(p=1〜N)、W:雑音平均値計算に用いるセルの数 なお、p<=W/2または、p>=N−W/2の場合
は、それぞれ、p=W/2+1,p=N−W/2−1の
雑音平均値を用いる。また、雑音平均を計算するセルは
計算の対象からはずしている。However, Xi: the level of the i-th cell (i
= 1 to N), Mp: noise average value (p = 1 to N) for the p-th cell, W: number of cells used for noise average value calculation, p <= W / 2 or p> = N- In the case of W / 2, noise average values of p = W / 2 + 1 and p = N−W / 2−1 are used, respectively. Also, the cell for calculating the noise average is excluded from the calculation target.
【0010】次に、雑音平均値をもとにスレッショルド
Tiを式2より求める。Next, the threshold Ti is calculated from the equation 2 based on the noise average value.
【0011】Ti=K・Mi …式2 ただし、K:定数 そして、スレッショルドと周波数成分を比較して、スレ
ッショルドを越えるものを信号として検出する。Ti = K · Mi (2) where K: constant Then, the threshold is compared with the frequency component, and a signal exceeding the threshold is detected as a signal.
【0012】一方、南北ダイポール指向性受波器12の
受波音は、受信部3から周波数分析部5へ、更に東西ダ
イポール指向性受波器13の受波音は周波数分析部6へ
送られ、各々周波数分析された後、各々積分部8,9へ
送られて、周波数成分毎にあらかじめ決められた時間長
の積分を行う。積分部8,9の出力は方位計算部11へ
送られる。方位計算部11では以下に説明するように信
号の到来方位を求める。図3は各受波器で到来信号S
(t)を受波した様子を示している。南北ダイポール指
向性受波器の出力をNS、東西ダイポール指向性受波器
の出力をEWとすると、On the other hand, the received sound of the north-south dipole directional receiver 12 is sent from the receiving section 3 to the frequency analysis section 5, and the received sound of the east-west dipole directional receiver 13 is sent to the frequency analysis section 6. After frequency analysis, it is sent to each of the integrators 8 and 9 to perform integration of a predetermined time length for each frequency component. The outputs of the integrators 8 and 9 are sent to the azimuth calculator 11. The azimuth calculation unit 11 obtains the arrival azimuth of the signal as described below. FIG. 3 shows the incoming signal S at each receiver.
It shows how (t) is received. If the output of the north-south dipole directional receiver is NS and the output of the east-west dipole directional receiver is EW,
【0013】[0013]
【数2】 [Equation 2]
【0014】ここでKは音圧感度等の定数である。上式
においてHere, K is a constant such as sound pressure sensitivity. In the above formula
【0015】[0015]
【数3】 (Equation 3)
【0016】であるので、 EW/NS=sinα/cosα=tanα 従って、α=arctan(EW/NS) ところで、上式のみでは方位の象限が決まらないが、受
波器の出力特性として、南北ダイポール指向性受波器に
おいては北側から音が入射されると無指向性受波器の出
力と同相となり、南側からから音が入射されると無指向
性受波器の出力と逆相となるようにしており、同様に東
西ダイポール指向性受波器では、東から入ると同相、西
から入ると逆相となっており、各受波器の位相関係を図
4の表によって調べることにより、象限の決定を行う。
前記の方位計算は、周波数分析した周波数成分の各々に
ついて実行され方位が決められる。Therefore, EW / NS = sinα / cosα = tanα Therefore, α = arctan (EW / NS) By the way, although the quadrant of the azimuth cannot be determined only by the above equation, the north-south dipole is the output characteristic of the receiver. In the directional receiver, when the sound enters from the north side, it becomes in-phase with the output of the omnidirectional receiver, and when the sound enters from the south side, it becomes the opposite phase of the output of the omnidirectional receiver. Similarly, the east-west dipole directional receiver has the same phase when entering from the east, and the opposite phase when entering from the west. By examining the phase relationship of each receiver with the table in Fig. 4, the quadrant Make a decision.
The azimuth calculation is performed for each frequency component subjected to the frequency analysis to determine the azimuth.
【0017】以上説明したように従来方式ではレベルの
大小を基準としてスレッショルドによりナローバンド信
号か否かの判定を行っていた。As described above, in the conventional method, whether the signal is a narrow band signal or not is determined by the threshold based on the level magnitude.
【0018】[0018]
【発明が解決しようとする課題】この従来の信号検出方
式では、ナローバンド信号が存在するか否かはレベルの
大小によってのみ判断しているため、低S/Nのナロー
バンド信号を検出しようとするとスレッショルドを下げ
る必要がある。すると雑音成分も検出される確率が高ま
るので誤検出が多くなって実用に価しなくなってしまう
という問題があった。In this conventional signal detection method, whether or not a narrow band signal is present is determined only by the magnitude of the level. Therefore, when a low S / N narrow band signal is detected, the threshold value is detected. Need to lower. As a result, the probability of noise components being detected also increases, resulting in a large number of false detections, which is not practical.
【0019】[0019]
【課題を解決するための手段】本発明の信号検出方式
は、ソノブイの無指向性受波器、南北ダイポール指向性
受波器及び東西ダイポール指向性受波器の各々の受波音
を各々周波数分析する手段と、その結果を周波数成分毎
に時間積分する手段と、積分結果の周波数成分について
従来より低いレベルのスレッショルドを設けて信号と雑
音を1次判別する信号検出手段と、前記3種の受波音の
周波数成分の積分結果のレベル比及び位相判定から周波
数成分毎の方位を計算する手段と、これを時系列的に記
憶する手段と、信号検出手段で信号であると1次判別さ
れた周波数成分の時系列的な方位の分散を計算する手段
と、1次判別された周波数成分のうち、方位の分散値が
所定のスレッショルド以下のものを信号であると2次判
別する信号判定手段とを備えている。The signal detection system of the present invention frequency-analyzes the received sound of each of the Sonobuoy omnidirectional receiver, the north-south dipole directional receiver, and the east-west dipole directional receiver. Means, a means for time-integrating the result for each frequency component, a signal detecting means for making a primary discrimination between a signal and noise by providing a lower threshold level for the frequency component of the integration result, and the above three types of receiving means. Means for calculating the azimuth for each frequency component from the level ratio and phase determination of the integration result of the frequency components of the wave sound, means for storing this in time series, and frequency for which the signal is primarily discriminated by the signal detecting means. A means for calculating a time-series azimuth variance of components and a signal deciding means for secondarily deciding that, of the frequency components that have been primarily discriminated, those whose azimuth variance is below a predetermined threshold are signals. It is equipped with a.
【0020】[0020]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例である。使用する送信側の
ソノブイは従来通りのものであり、図2の指向性ソノブ
イ1と同様であり、図1では省略してある。The present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. The transmitting side sonobuoy used is conventional and is the same as the directional sonobuoy 1 in FIG. 2 and is omitted in FIG.
【0021】図1で、ソノブイから伝送された電波が受
信部3に送られて、無指向性、南北ダイポール指向性、
東西ダイポール指向性の各々の受波器の受波音に復調さ
れ、各々周波数分析部4,5,6において周波数分析さ
れた後、積分部7,8,9において周波数成分毎に時間
積分されるのも従来通りである。さらに、それら3種の
受波器の受波音の周波数成分の積分値のレベル比及び位
相判定から、周波数成分毎の方位を方位計算部11にお
いて計算するが、これも従来方式のとおりである。In FIG. 1, the radio waves transmitted from the sonobuoy are sent to the receiving unit 3 to cause omnidirectionality, north-south dipole directivity,
It is demodulated into the received sound of each receiver of the east-west dipole directivity, frequency-analyzed by the frequency analyzers 4, 5, 6 and then time-integrated for each frequency component by the integrators 7, 8, 9. Is also the same as before. Further, the azimuth calculation unit 11 calculates the azimuth for each frequency component from the level ratio of the integrated value of the frequency components of the received sound of these three types of wave receivers and the phase determination, which is also the same as the conventional method.
【0022】一方、信号検出部10においては従来方式
の式1,式2によってレベルのスレッショルドを設定す
るが、式2における定数Kとしては従来よりも小さい値
とする。ここで図5にレベルのスレッショルドについて
示す。信号成分は水中雑音に重畳されるため、レベル毎
の発生頻度をとると雑音成分の分布とそれよりもレベル
の高い所にピークをもつ信号成分の分布が得られる。同
図にあるようにレベルのスレッショルドTHで信号を判
別すると、黒い部分は雑音を信号と誤って検出する即
ち、誤警報となる。一般には、必要な検出率(図5の斜
線部)と誤警報で決まるレベルにスレッショルドを設定
する。本発明では従来方式よりもスレッショルドを下げ
る。これによって従来よりも低いS/Nの信号について
も検出できるようになる。ところがスレッショルドを下
げると誤警報が増加するが、本発明ではこれに対して
は、次に示すように方位の一貫性を2次判別として調べ
ることにより、雑音成分を除去している。On the other hand, in the signal detecting section 10, the level threshold is set by the conventional formulas 1 and 2, but the constant K in the formula 2 is set to a value smaller than the conventional one. FIG. 5 shows the level threshold. Since the signal component is superimposed on the underwater noise, the distribution of the noise component and the distribution of the signal component having a peak at a higher level than that can be obtained by taking the occurrence frequency for each level. As shown in the figure, when the signal is discriminated by the threshold TH of the level, the black portion erroneously detects noise as a signal, that is, an erroneous alarm. Generally, the threshold is set to a level determined by a necessary detection rate (hatched portion in FIG. 5) and a false alarm. In the present invention, the threshold is lowered as compared with the conventional method. As a result, it becomes possible to detect a signal having a lower S / N than the conventional one. However, when the threshold is lowered, false alarms increase, but in the present invention, the noise component is removed by checking the consistency of the azimuth as a secondary discrimination as described below.
【0023】図1にもどり、方位記憶部12は、方位計
算部11で計算された周波数成分毎の方位の値を時系列
的に記憶する。方位分散計算部13では、信号検出部1
0で、レベルをもとに信号であると1次判別された周波
数成分について、方位記憶部12から一定時間区間の方
位値を読み出しその分散を計算する。信号判定部14に
おいては、その方位の分散値がスレッショルドと比較し
て大きいか小さいかにより信号と雑音を2次判別する。
雑音は等方性とみなせるので分散は大となり、一方信号
は雑音が重畳しているため方位はバラつくものの、信号
自体は方向性を有するため、方位の分散は雑音のみの時
に比べて小さくなる。この点を利用して、1次判別の中
に誤って含まれている雑音成分を除去することができ
る。Returning to FIG. 1, the bearing storage unit 12 stores the bearing values for each frequency component calculated by the bearing calculation unit 11 in a time series. In the azimuth dispersion calculator 13, the signal detector 1
At 0, the azimuth value in the fixed time interval is read from the azimuth storage unit 12 for the frequency component that is primarily discriminated as a signal based on the level, and the variance thereof is calculated. The signal determination unit 14 secondarily determines the signal and the noise depending on whether the variance value of the direction is larger or smaller than the threshold.
Since noise can be regarded as isotropic, the variance is large. On the other hand, the direction of the signal varies because the noise is superimposed on the signal, but since the signal itself has directionality, the variance of the direction is smaller than when only noise is used. . By utilizing this point, the noise component erroneously included in the primary discrimination can be removed.
【0024】ここで分散の計算について説明する。ある
周波数に対して、周波数分析の周期毎に得られるN個の
方位値データをx1 ,x2 ,…,xN を考えると、分散
は次式で得られる。The calculation of the variance will be described here. Considering N 1 , azimuth value data obtained for each frequency analysis cycle for a certain frequency as x 1 , x 2 , ..., X N , the variance is obtained by the following equation.
【0025】[0025]
【数4】 (Equation 4)
【0026】また、得られた分散に対するスレッショル
ドレベルは、方位の値が0〜360°の間で一様に分布
していると仮定したときの偏差(分散の平方根)は約1
04であるから、これを1/K′倍した値を設定する。
K′の値は例えば実海面の種々の状況に対応して可変す
ればよい。The threshold level with respect to the obtained dispersion has a deviation (square root of dispersion) of about 1 when it is assumed that the azimuth values are uniformly distributed between 0 ° and 360 °.
Since it is 04, a value obtained by multiplying this by 1 / K 'is set.
The value of K'may be varied in response to various situations on the actual sea level, for example.
【0027】[0027]
【発明の効果】以上説明したように本発明によれば、検
出レベルのスレッショルドを下げて従来より低いS/N
の信号を処理でき、これによって増加する誤検出を方位
の分散の大小に着目して抑圧するので従来にくらべて、
S/Nの悪い音響信号に対しても、目的とする信号を検
出することができるという効果を有する。As described above, according to the present invention, the threshold of the detection level is lowered to lower the S / N ratio than the conventional one.
Signals can be processed, and false detections that increase due to this can be suppressed by focusing on the magnitude of the azimuth dispersion, so
This has an effect that a target signal can be detected even for an acoustic signal having a poor S / N.
【図1】本発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.
【図2】従来方式のブロック図。FIG. 2 is a block diagram of a conventional system.
【図3】指向性ソノブイの指向性パターンと受波の説明
図。FIG. 3 is an explanatory diagram of a directivity pattern and reception of a directivity sonobuoy.
【図4】検出信号の方位の象限の決定を示す表。FIG. 4 is a table showing the determination of the orientation quadrant of the detection signal.
【図5】信号と雑音のレベルの頻度分布とスレッショル
ド説明図。FIG. 5 is an explanatory diagram of frequency distributions of signal and noise levels and thresholds.
1 指向性ソノブイ 2 受信側 3 受信部 4〜6 周波数分析部 7〜9 積分部 10 信号検出部 11 方位計算部 12 方位記憶部 13 方位分散計算部 14 信号判定部 DESCRIPTION OF SYMBOLS 1 Directivity Sonobui 2 Reception side 3 Reception part 4-6 Frequency analysis part 7-9 Integration part 10 Signal detection part 11 Direction calculation part 12 Direction storage part 13 Direction dispersion calculation part 14 Signal determination part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 康 千葉県印旛郡白井町大山口2−4−16− 203 (72)発明者 山本 琢 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Sasaki 2-4-16-203 Oyamaguchi, Shirai-machi, Inba-gun, Chiba (72) Inventor Taku Yamamoto 5-7-1, Shiba, Minato-ku, Tokyo NEC Corporation Inside the company
Claims (3)
指向性受波器からの出力を第1のスレッショルドと比較
し信号か雑音かを1次判別する第1の判別手段と、指向
性受波器からの出力を受け前記第1の判別手段により信
号と判別されたとき受波信号の到来方向を求める方向検
出手段と、前記方向検出手段からの検出結果の時系列的
な分散を求める分散計算手段と、前記分散を第2のスレ
ッショルドと比較し信号か雑音かを2次判別する第2の
判別手段とを具備する信号検出方式。1. A first discrimination for firstly discriminating between a signal and noise by comparing an output from an omnidirectional receiver, a directional receiver, and an output from the omnidirectional receiver with a first threshold. Means, direction detecting means for receiving the output from the directional receiver and determining the arrival direction of the received signal when the signal is discriminated by the first discriminating means, and the time series of the detection result from the direction detecting means. Signal detection method comprising: a variance calculation unit that obtains a typical variance; and a second determination unit that compares the variance with a second threshold to make a secondary determination as to whether it is a signal or noise.
各周波数帯毎に信号か雑音かを判定する請求項1の信号
検出方式。2. The received signal is divided into a plurality of frequency bands,
The signal detection system according to claim 1, wherein it is determined whether the signal is a signal or noise for each frequency band.
ール指向性受波器及び東西ダイポール指向性受波器の各
々の受波音を各々、周波数分析する手段と、周波数分析
結果を周波数成分毎に時間積分する手段と、積分結果の
周波数成分について第1のスレッショルドを設けて信号
と雑音を1次判別する信号検出手段と、前記3種の受波
音の周波数成分の積分結果のレベル比及び位相判定から
周波数成分毎の方位を計算する手段と、信号であると1
次判別された周波数成分の時系列的な方位の分散を計算
する手段と、1次判別された周波数成分のうち、方位の
分散値が第2のスレッショルド以下のものを信号である
と2次判別する信号判定手段を備えている信号検出方
式。3. A means for frequency-analyzing the received sound of each of the Sonobui omnidirectional receiver, the north-south dipole directional receiver, and the east-west dipole directional receiver, and the frequency analysis result for each frequency component. Means for time-integrating, a signal detecting means for making a primary discrimination between a signal and noise by providing a first threshold for the frequency component of the integration result, and a level ratio and phase of the integration result of the frequency components of the three types of received sounds. Means for calculating the azimuth for each frequency component from the judgment, and 1 if it is a signal
A means for calculating the time-series azimuth variance of the next discriminated frequency component, and a quadratic discrimination that the signal whose azimuth variance is less than or equal to the second threshold among the first-discriminated frequency components is a signal. A signal detection method having a signal determination means for performing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11741096A JP2919350B2 (en) | 1996-05-13 | 1996-05-13 | Signal detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11741096A JP2919350B2 (en) | 1996-05-13 | 1996-05-13 | Signal detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09304500A true JPH09304500A (en) | 1997-11-28 |
JP2919350B2 JP2919350B2 (en) | 1999-07-12 |
Family
ID=14710967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11741096A Expired - Lifetime JP2919350B2 (en) | 1996-05-13 | 1996-05-13 | Signal detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2919350B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017309A (en) * | 2005-07-08 | 2007-01-25 | Hitachi Ltd | Target detection device |
JP2014032081A (en) * | 2012-08-02 | 2014-02-20 | Nec Corp | Passive sonar device, and transient signal processing method and signal processing program thereof |
JP2015087132A (en) * | 2013-10-28 | 2015-05-07 | 株式会社東芝 | Signal detection device and signal detection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53145669A (en) * | 1977-05-24 | 1978-12-19 | Nec Corp | Azimuth signal processing system |
JPS6287880A (en) * | 1985-10-14 | 1987-04-22 | Nec Corp | Transponder |
JPH0593772A (en) * | 1991-09-30 | 1993-04-16 | Nec Corp | Detecting device for underwater acoustic signal |
-
1996
- 1996-05-13 JP JP11741096A patent/JP2919350B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53145669A (en) * | 1977-05-24 | 1978-12-19 | Nec Corp | Azimuth signal processing system |
JPS6287880A (en) * | 1985-10-14 | 1987-04-22 | Nec Corp | Transponder |
JPH0593772A (en) * | 1991-09-30 | 1993-04-16 | Nec Corp | Detecting device for underwater acoustic signal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017309A (en) * | 2005-07-08 | 2007-01-25 | Hitachi Ltd | Target detection device |
JP2014032081A (en) * | 2012-08-02 | 2014-02-20 | Nec Corp | Passive sonar device, and transient signal processing method and signal processing program thereof |
JP2015087132A (en) * | 2013-10-28 | 2015-05-07 | 株式会社東芝 | Signal detection device and signal detection method |
Also Published As
Publication number | Publication date |
---|---|
JP2919350B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5432862A (en) | Frequency division, energy comparison, source detection signal processing system | |
RU2300118C1 (en) | Mode of detection noisy objects in the sea | |
CN112083446B (en) | Method and device for positioning deception jamming source | |
CN108088547A (en) | Passive weak target detection method based on small-aperture two-dimensional vector hydrophone array | |
CN112596078A (en) | Satellite navigation deception jamming detection method based on carrier-to-noise ratio statistics | |
CN115236701A (en) | GNSS deception jamming detection method based on combined SQM square | |
CN109725297B (en) | Active forwarding type interference identification method based on echo polarization degree | |
Smith et al. | Acoustic vector sensor analysis of the Monterey Bay region soundscape and the impact of COVID-19 | |
JP4784976B2 (en) | Radio wave arrival direction estimation device, radio wave arrival direction estimation program, and recording medium | |
KR102421093B1 (en) | Apparatus for Cancelling Interference Plot based on Signal Processing Gain, and Method thereof | |
JP2919350B2 (en) | Signal detection method | |
KR100902560B1 (en) | Apparatus and method for generating threat alert of tracking radar during search | |
RU2723145C1 (en) | Method and device for detecting noisy objects in the sea with onboard antenna | |
CN115980729B (en) | Adjustable detection method and system for extended target parameters under signal mismatch | |
CN109391812B (en) | A Combined Detection Method of Cyclostationary Detection and Correlation Detection Based on DVB-S Signal | |
CN111580077A (en) | Early warning equipment and method for detecting small target sonar | |
JP2009250925A (en) | Radar signal processing device | |
US5854601A (en) | Methods for estimating the number of emitters and their parameters | |
JP2865082B2 (en) | Radio wave receiver | |
US10480932B2 (en) | Automated computation of a dimension of a moving platform | |
CN114740501A (en) | Satellite navigation deception signal detection method based on frequency domain parameters | |
JP2964752B2 (en) | Radio wave detector | |
Sarjonen et al. | Elbow estimation-based source enumeration method for LPI/LPD signals | |
JP5425370B2 (en) | Radar apparatus signal processing method and radar apparatus | |
US20070244952A1 (en) | Signal analysis methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990330 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 15 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |