JPH09304357A - Method for examining filling state of filler using ultrasonic wave - Google Patents
Method for examining filling state of filler using ultrasonic waveInfo
- Publication number
- JPH09304357A JPH09304357A JP8140805A JP14080596A JPH09304357A JP H09304357 A JPH09304357 A JP H09304357A JP 8140805 A JP8140805 A JP 8140805A JP 14080596 A JP14080596 A JP 14080596A JP H09304357 A JPH09304357 A JP H09304357A
- Authority
- JP
- Japan
- Prior art keywords
- filling
- wave
- mortar
- plate
- filling state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000000945 filler Substances 0.000 title abstract 3
- 239000004570 mortar (masonry) Substances 0.000 claims abstract description 42
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 38
- 239000010959 steel Substances 0.000 claims abstract description 38
- 239000000523 sample Substances 0.000 claims abstract description 26
- 238000007689 inspection Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 238000002592 echocardiography Methods 0.000 abstract description 5
- 238000013016 damping Methods 0.000 abstract 1
- 235000015250 liver sausages Nutrition 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009527 percussion Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/048—Transmission, i.e. analysed material between transmitter and receiver
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は構築物等の外側の鋼
板等の裏側のモルタル等の充填状態を外側から検査する
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for externally inspecting a filling state of mortar or the like on the back side of a steel plate or the like on the outside of a structure or the like.
【0002】[0002]
【従来の技術】高架道路や鉄道その他の構築物、建築物
の耐震性を補強するために橋脚柱等の柱の外側に鋼板を
巻き、鋼板と柱の間隙に樹脂モルタル等を充填する補強
方法が行われている。又水力発電用等の導水路の内面に
沿って鋼製の内張管を設け、導水路内面と内張管の間隙
に樹脂モルタル等を充填して補強する方法が行われてい
る。この際鋼板とその裏側の構造物の間隙に完全にモル
タルが充填されていないと、充分な強度が発揮できない
から、内部のモルタル等の充填状態を外側から検査する
必要がある。2. Description of the Related Art In order to reinforce the earthquake resistance of elevated roads, railways and other structures and buildings, a steel plate is wound on the outside of columns such as pier columns, and a reinforcement method of filling a resin mortar or the like in the gap between the steel plate and the column is known. Has been done. Further, there is a method in which a steel lining pipe is provided along the inner surface of a hydraulic conduit for hydroelectric power generation, and a resin mortar or the like is filled in the gap between the inner surface of the hydraulic conduit and the lining pipe for reinforcement. At this time, unless the mortar is completely filled in the gap between the steel plate and the structure on the back side, sufficient strength cannot be exhibited, so it is necessary to inspect the filled state of the mortar and the like from the outside.
【0003】従来このような検査の方法として、ハンマ
ー等による打撃音により調べる打診法、放射性同位元素
からの放射線の透過法等が知られている。Conventionally, as such an inspection method, a percussion method in which the sound of a hammer or the like is used for checking, and a method of transmitting radiation from a radioisotope are known.
【0004】一方試験体の探傷作業に超音波のクリーピ
ング波を用いる方法が知られている。クリーピング波は
超音波の縦波を試験体表面に対し縦波臨界角(第1臨界
角)の入射角で入射したときに発生し、試験体内をその
自由表面に沿う方向に伝播する縦波であっる。クリーピ
ング波はエネルギーの一部を連続的に横波にモード変換
して試験体内部に放射しつつ、減衰しながら伝播する。On the other hand, a method is known in which an ultrasonic creeping wave is used for flaw detection of a test body. A creeping wave is generated when an ultrasonic longitudinal wave is incident on the surface of a specimen at an incident angle of the longitudinal wave critical angle (first critical angle), and propagates in the specimen along the free surface. It is The creeping wave propagates while attenuating while radiating inside the test body by continuously mode-converting a part of energy into a transverse wave.
【0005】[0005]
【発明が解決しようとする課題】上記打撃音や放射線を
用いる従来の検査方法は、検査をする部分の全面にわた
る極めて多数の検査点について検査をする必要があり、
手数が掛かること、放射性物質を用いる場合は、線量の
大きさによっては特別な取扱い資格と防護設備を必要と
する等の問題がある。In the conventional inspection method using the hitting sound and the radiation, it is necessary to inspect an extremely large number of inspection points over the entire surface to be inspected.
There are problems that it is troublesome and that when radioactive materials are used, special handling qualifications and protective equipment are required depending on the dose size.
【0006】従って本発明は、鋼板等の裏側のモルタル
等の充填状態を表面から簡単に知ることができる検査方
法を提供することを目的とする。Therefore, it is an object of the present invention to provide an inspection method capable of easily knowing the filling state of mortar or the like on the back side of a steel plate or the like from the surface.
【0007】[0007]
【課題を解決するための手段】上記目的を達成すべく、
本発明者らは鋭意研究を重ねた結果、超音波のクリーピ
ング波を用いると、クリーピング波が横波にモード変換
して鋼板の裏面で反射する際に、鋼板の裏側の充填状態
により反射率が異なるので、反射波の強度を測定するこ
とにより、鋼板裏側の充填状態を知ることができるこ
と、クリーピング波は鋼板表面に沿って進みながら徐々
に横波にモード変換され、その横波が鋼板を横切り鋼板
裏側の異なる点で反射されるので、超音波の入射点と受
信点の離れた2点間の鋼板裏側全体の充填状態が一回の
測定で検査することができることを見出し、本発明を完
成するに至った。In order to achieve the above object,
As a result of earnest studies by the present inventors, when a creeping wave of ultrasonic waves is used, when the creeping wave is mode-converted into a transverse wave and reflected on the back surface of the steel sheet, the reflectivity depends on the filling state on the back side of the steel sheet. The filling state on the back side of the steel sheet can be known by measuring the intensity of the reflected wave.The creeping wave is mode-converted into a transverse wave gradually while advancing along the steel sheet surface, and the transverse wave traverses the steel sheet. Since it is reflected at different points on the back side of the steel sheet, it has been found that the filling state of the entire back side of the steel sheet between two points where the ultrasonic wave is incident and the receiving point can be inspected by one measurement, thus completing the present invention. Came to do.
【0008】即ち、本発明は金属板等の板の裏側のモル
タル等の充填物の充填状態の検査法において、板の表面
の一定距離を隔てた位置に超音波の送信探触子及び受信
探触子を配置して該表面に密着し、該送信探触子より縦
波の超音波パルスを該表面に対して縦波臨界角で入射
し、生じたクリーピング波の一部が横波にモード変換し
て、1回又は複数回該板の裏面及び表面で反射したエコ
ーを該受信探触子により検出し、該エコーの減衰率から
該板の裏面に接する充填物の充填状態を検査することを
特徴とする超音波による充填物の充填状態の検査法を要
旨とする。That is, the present invention is a method for inspecting the filling state of a filling material such as mortar on the back side of a plate such as a metal plate, wherein a transmitting probe and a receiving probe for ultrasonic waves are placed at positions separated by a certain distance on the surface of the plate. A probe is placed in close contact with the surface, an ultrasonic pulse of a longitudinal wave is made incident on the surface at a critical angle of a longitudinal wave from the transmitting probe, and a part of the generated creeping wave is changed to a transverse wave. Converting, echoes reflected on the back surface and front surface of the plate once or a plurality of times are detected by the reception probe, and the filling state of the filling material in contact with the back surface of the plate is inspected from the attenuation rate of the echo. The gist is a method of inspecting the filling state of the filling by ultrasonic waves, which is characterized by
【0009】板状の試験体表面に沿って進行する縦波で
あるクリーピング波は、そのエネルギーの一部を連続的
に横波にモード変換して試験体内部に放射しつつ、減衰
しながら伝播する。試験体内に放射された横波は試験体
の裏面に達すると、そのエネルギーの一部は試験体の裏
面を通過して試験体の裏面に接する媒体中に進入する。
試験体の裏面を通過しなかった残りのエネルギーの大部
分は試験体裏面で再びクリーピング波に変換され、試験
体の裏面に沿って伝播する。この裏面に沿うクリーピン
グ波は表面に沿うクリーピング波と同様に連続的に横波
にモード変換されつつ伝播し、モード変換された横波は
再び試験体表面に向かう。このように板状試験体に入射
された超音波のクリーピング波は、表面及び裏面に沿っ
て伝播する縦波のクリーピング波と表面と裏面の間を往
復する横波の間で交互にモード変換しつつ、試験体の両
面で反射を繰り返して試験体内を伝播し、反射の際エネ
ルギーの一部が外部に透過して急速に減衰してゆく。A creeping wave, which is a longitudinal wave traveling along the surface of a plate-shaped test body, propagates while attenuating while radiating inside the test body by continuously mode-converting a part of its energy into a transverse wave. To do. When the transverse wave radiated in the test body reaches the back surface of the test body, a part of the energy thereof passes through the back surface of the test body and enters the medium in contact with the back surface of the test body.
Most of the remaining energy that did not pass through the back surface of the test body is converted into creeping waves again on the back surface of the test body and propagates along the back surface of the test body. The creeping wave along the back surface propagates in the same manner as the creeping wave along the front surface while being mode-converted into transverse waves, and the mode-converted transverse waves head again to the surface of the test body. In this way, the creeping waves of the ultrasonic waves incident on the plate-shaped test body are alternately mode-converted between longitudinal wave creeping waves propagating along the front and back surfaces and transverse waves reciprocating between the front and back surfaces. On the other hand, reflection is repeated on both sides of the test body and propagates in the test body, and at the time of reflection, a part of the energy is transmitted to the outside and rapidly attenuated.
【0010】一般に超音波が媒質中を伝播して、異なる
媒質の境界面に達すると、反射と通過が起こるが、その
反射波と通過波のエネルギーの割合は、境界面の両側の
媒質の密度(ρ)と音速(c)の積であらわされる音響
インピーダンス(Z=ρC)により定まる。Generally, when an ultrasonic wave propagates through a medium and reaches an interface between different media, reflection and passage occur. The ratio of the energy of the reflected wave and the energy of the passed wave is the density of the medium on both sides of the interface. It is determined by the acoustic impedance (Z = ρC) represented by the product of (ρ) and the speed of sound (c).
【0011】即ち媒質1、2間の境界面の音圧反射率γ
は垂直入射の場合、媒質1の音響インピーダンスを
Z1 、媒質2の音響インピーダンスをZ2 とすると、 γ=|(Z2 −Z1 )/(Z2 +Z1 )| で表される。例えば鋼とモルタルの境界面では、鋼とモ
ルタルの音響インピーダンスZが、鋼が約23×106
kg/m2sec、モルタルが約4×106 kg/m2secであるか
ら、両者間の音圧反射率γは約0.7となる。That is, the sound pressure reflectance γ of the interface between the media 1 and 2
In the case of vertical incidence, when the acoustic impedance of the medium 1 is Z 1 and the acoustic impedance of the medium 2 is Z 2 , it is expressed by γ = | (Z 2 −Z 1 ) / (Z 2 + Z 1 ) |. For example, at the interface between steel and mortar, the acoustic impedance Z between steel and mortar is about 23 × 10 6 for steel.
Since kg / m 2 sec and mortar are about 4 × 10 6 kg / m 2 sec, the sound pressure reflectance γ between them is about 0.7.
【0012】鋼と空気の間ではγ≒1であり、略100
%が反射するのに対し、鋼とモルタル間では約70%が
反射し、30%が透過するから、鋼板とモルタルが密着
しておれば、鋼板に入射した超音波は鋼板とモルタルの
境界面で1回反射する毎に反射波は30%ずつ減衰し、
反射回数に応じてエコーの強度は急速に低下する。この
エコーの減衰を測定することにより、鋼板の裏面のモル
タルの充填状態を知ることができる。Between steel and air, γ≈1, which is approximately 100.
% Is reflected, while about 70% is reflected between steel and mortar, and 30% is transmitted. Therefore, if the steel plate and mortar are in close contact, the ultrasonic waves incident on the steel plate are The reflected wave is attenuated by 30% each time
The echo intensity decreases rapidly with the number of reflections. By measuring the attenuation of this echo, the filling state of the mortar on the back surface of the steel sheet can be known.
【0013】[0013]
【発明の実施の形態】次に本発明の超音波による鋼板裏
側のモルタル等の充填状態の検査法の実施の形態につい
て、図面により具体的に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the method for inspecting the filling state of mortar or the like on the back side of a steel sheet by ultrasonic waves according to the present invention will be specifically described with reference to the drawings.
【0014】図1に示すように、鋼板1とモルタル2が
接している場合、鋼板1の表面3に送信探触子4と受信
探触子5を一定距離隔てて密着する。送信探触子4より
超音波の縦波を縦波臨界角で鋼板1の表面3より入射す
ると、表面3に沿って伝播する縦波よりなるクリーピン
グ波6が発生する。このクリーピング波は鋼板1の表面
3に沿って伝播しつつ徐々に横波7にモード変換して、
生じた横波7は鋼板1の裏面8に達する。この裏面8に
モルタル2が密着している場合には、上記鋼とモルタル
2の間の反射率70%で反射し、残りの30%はモルタ
ル2中に透過する。この反射波は反射の際再び縦波に変
換され、裏面8に沿って伝播するクリーピング波6とな
る。この裏面に沿うクリーピング波6も表面に沿うクリ
ーピング波6と同様に、徐々に横波7にモード変換し
て、生じた横波7は鋼板1の表面3に向かう。鋼板1表
面3に到達した横波7は略100%反射され、その際再
び縦波のクリーピング波6にモード変換される。As shown in FIG. 1, when the steel plate 1 and the mortar 2 are in contact with each other, the transmitting probe 4 and the receiving probe 5 are closely contacted to the surface 3 of the steel plate 1 with a certain distance. When a longitudinal wave of ultrasonic waves is incident on the surface 3 of the steel sheet 1 from the transmitting probe 4 at a critical angle of the longitudinal wave, a creeping wave 6 consisting of the longitudinal wave propagating along the surface 3 is generated. This creeping wave propagates along the surface 3 of the steel plate 1 and gradually undergoes mode conversion into a transverse wave 7,
The generated transverse wave 7 reaches the back surface 8 of the steel plate 1. When the mortar 2 is in close contact with the back surface 8, the mortar 2 is reflected at a reflectance of 70% between the steel and the mortar 2, and the remaining 30% is transmitted through the mortar 2. When reflected, this reflected wave is converted into a longitudinal wave again and becomes a creeping wave 6 that propagates along the back surface 8. Similarly to the creeping wave 6 along the front surface, the creeping wave 6 along the back surface is gradually mode-converted into the transverse wave 7, and the generated transverse wave 7 is directed to the surface 3 of the steel plate 1. The transverse wave 7 reaching the surface 3 of the steel plate 1 is reflected by approximately 100%, and at that time, the mode is converted again into a longitudinal creeping wave 6.
【0015】このようにして、鋼板1の表面3と裏面8
の間でクリーピング波6と横波7に交互にモード変換さ
れながら、反射と一部透過を繰り返し、裏面8での反射
回数に従ってエネルギーが減衰してゆく。例えば受信探
触子5で受信されるエコーはそれまでに3回裏面8で反
射されたものは10dB低下し、5回の反射では15dB、
10回の反射で30dB低下する。In this way, the front surface 3 and the back surface 8 of the steel plate 1 are
While the mode is alternately converted into the creeping wave 6 and the transverse wave 7 between, the reflection and the partial transmission are repeated, and the energy is attenuated according to the number of reflections on the back surface 8. For example, the echo received by the receiving probe 5 is reduced by 10 dB if it is reflected on the back surface 8 three times by that time, and is 15 dB when it is reflected five times.
30 dB reduction after 10 reflections.
【0016】送信探触子4から縦波超音波パルスを入射
して、上記の様々な伝播経路を辿ってきた反射波を受信
探触子5で受信し、パルス発射からエコーの検出までの
時間と、エコーの強度をオシロスコープ等の表示装置上
に表示し、又は記録して読み取ると、エコーはその反射
回数に応じて、鋼板1の厚みを往復する時間だけ到達が
遅れるから、これらが重なって図2及び図3に示すよう
に複数の底面エコーが観測される。図2は裏面8に全く
充填物がなく空気に接している場合であり、図3は裏面
8全体にモルタル2が完全に充填されている場合であ
る。但し図2の測定感度は54dB、図3の測定感度は9
3dBであり、両図ともピーク高さがそれぞれ同じくフル
スケールの80%になるように測定感度を調節してある
ので、実際の図3のピーク高さは図2のピーク高さの−
39dB即ち約100分の1である。The time from the emission of the pulse to the detection of the echo is received by the receiving probe 5 after receiving the reflected wave which has been transmitted from the transmitting probe 4 by the longitudinal ultrasonic pulse and following the various propagation paths. When the intensity of the echo is displayed on a display device such as an oscilloscope or recorded and read, the arrival of the echo is delayed by the time it takes to reciprocate through the thickness of the steel plate 1 according to the number of reflections, so that these overlap. As shown in FIGS. 2 and 3, a plurality of bottom surface echoes are observed. FIG. 2 shows the case where the back surface 8 has no filling and is in contact with air, and FIG. 3 shows the case where the entire back surface 8 is completely filled with the mortar 2. However, the measurement sensitivity of FIG. 2 is 54 dB, and the measurement sensitivity of FIG. 3 is 9 dB.
Since the measurement sensitivity is adjusted so that the peak height is 3% and the peak height is 80% of full scale in both figures, the actual peak height in FIG. 3 is the same as the peak height in FIG.
It is 39 dB or about 1/100.
【0017】モルタル2が充填されている場合は、上記
の如く音圧反射率γが70%と小さく、減衰率が大きい
ため、反射回数を重ねるにつれて急速にエコーが減衰す
る。モルタル2の充填率に応じてエコーの減衰率が変化
し、エコーの減衰率からモルタル2の充填率を求めるこ
とができる。When the mortar 2 is filled, the sound pressure reflectance γ is as small as 70% and the attenuation rate is large as described above, so that the echo is rapidly attenuated as the number of reflections is increased. The attenuation rate of the echo changes according to the filling rate of the mortar 2, and the filling rate of the mortar 2 can be determined from the attenuation rate of the echo.
【0018】[0018]
〔実施例1〕図4に示す幅123mm、長さ1600mmの
コ字状形鋼よりなる試験体11を用い、図4cに示すよ
うに、試験体11の内側に試験体11の長手方向に沿っ
て、両側にモルタル充填部分9を、中央に空洞部分10
を設け、試験体11の幅の中央で且つ両端からそれぞれ
300mmの位置に互いに1000mm離して、局部水浸型
の送信探触子4及び受信探触子5を配置し、これを接触
媒質を介して試験体11の表面3に密着させる。送信探
触子4から2.25MHz の縦波の超音波パルスを鋼の縦
波臨界角、14.5°で入射して、受信探触子5で受信
したエコーを観測し、図2、図3に示すようなエコーを
観測した。観測される複数のエコーのうち、最大の底面
エコーについてそのピーク高さを測定した。[Example 1] A test piece 11 made of a U-shaped steel having a width of 123 mm and a length of 1600 mm shown in Fig. 4 was used, and as shown in Fig. 4c, inside the test piece 11 along the longitudinal direction of the test piece 11. The mortar filling part 9 on both sides and the hollow part 10 in the center.
And a local water immersion type transmission probe 4 and a reception probe 5 are arranged at the center of the width of the test body 11 and at positions of 300 mm from both ends, respectively, and are separated from each other by 1000 mm. The surface 3 of the test body 11 so as to be in close contact. An ultrasonic wave pulse of 2.25 MHz longitudinal wave was made incident from the transmitting probe 4 at the longitudinal wave critical angle of steel, 14.5 °, and the echo received by the receiving probe 5 was observed. An echo as shown in 3 was observed. Of the multiple echoes observed, the peak height of the largest bottom echo was measured.
【0019】空洞部分10の長さDを変えることにより
モルタル充填率を変えて測定を繰り返した。エコーのピ
ーク高さをオシロスコープ上で直接読み取る代わりに、
オシロスコープの感度を調節して、観測される最大の底
面エコーのピーク高さがオシロスコープ上で丁度フルス
ケールの80%となるように調節し、その時の感度目盛
りの値をdB値として読取り、その結果を表1に示す。The measurement was repeated by changing the length D of the hollow portion 10 to change the mortar filling rate. Instead of reading the echo peak height directly on the oscilloscope,
Adjust the sensitivity of the oscilloscope so that the peak height of the maximum observed bottom surface echo is exactly 80% of the full scale on the oscilloscope, read the value of the sensitivity scale at that time as a dB value, and the result Is shown in Table 1.
【表1】 [Table 1]
【0020】更にその結果を図5のグラフに示した。図
5のグラフはモルタル充填率(%)を横軸に、モルタル
充填率0の場合とある充填率でモルタルを充填した場合
のピーク高さの比を、ピーク高をそれぞれ80%に調節
したときの感度差(dB)で表わして縦軸に目盛る。The results are shown in the graph of FIG. In the graph of FIG. 5, when the mortar filling rate (%) is plotted on the abscissa and the mortar filling rate is 0 and the mortar is filled at a certain filling rate, the peak height ratio is adjusted to 80%. Expressed as the sensitivity difference (dB) of, and scaled on the vertical axis.
【0021】これらの結果から、対数で表示したエコー
のピーク高さの比(dB値)とモルタル充填率が正比例す
ることがわかる。From these results, it can be seen that the ratio (dB value) of the peak height of the echo displayed in logarithm is directly proportional to the mortar filling rate.
【0022】[0022]
【発明の効果】本発明の超音波による内部の充填状態の
検査法によれば、試験体11の表面3に一定距離を隔て
て配置した送信探触子4と受信探触子5の間の部分の試
験体11の裏側のモルタル等の充填状態を、その間の直
線部分の平均の充填率として定量的に把握することがで
き、観測した充填率が100%であれば、その間の各部
分の充填は完全であることが1回の測定で確認でき、極
めて能率よく検査を行うことができる。もし充填率が1
00でない場合、あるいは充填率が所定の限界よりも低
い場合には、打診法や超音波による垂直探傷法により、
モルタル充填不良個所を特定することができる。According to the method for inspecting the internal filling state by ultrasonic waves according to the present invention, between the transmitting probe 4 and the receiving probe 5 which are arranged on the surface 3 of the test body 11 at a certain distance. The filling state of the mortar or the like on the back side of the part of the test body 11 can be quantitatively grasped as the average filling rate of the straight line portion between them, and if the observed filling rate is 100%, each of the portions between them can be grasped. It can be confirmed that the filling is complete with one measurement, and the inspection can be performed extremely efficiently. If the filling rate is 1
If it is not 00, or if the filling rate is lower than the predetermined limit, by a percussion method or a vertical flaw detection method using ultrasonic waves,
It is possible to identify the defective part of mortar filling.
【図1】本発明の超音波による内部の充填状態の検査法
の説明図である。FIG. 1 is an explanatory diagram of an inspection method of an internal filling state by ultrasonic waves according to the present invention.
【図2】モルタル充填率0%の場合の底面エコーを示す
図であるFIG. 2 is a diagram showing a bottom surface echo when the mortar filling rate is 0%.
【図3】モルタル充填率100%の場合の底面エコーを
示す図であるFIG. 3 is a diagram showing a bottom surface echo when the mortar filling rate is 100%.
【図4】本発明の超音波による内部の充填状態の検査法
の実施例に用いた試験体の説明図である。FIG. 4 is an explanatory diagram of a test body used in an example of an inspection method for an internal filling state by ultrasonic waves according to the present invention.
【図5】本発明の超音波による内部の充填状態の検査法
の実施例の測定結果を示すグラフである。FIG. 5 is a graph showing the measurement results of an example of the method for inspecting the internal filling state by ultrasonic waves according to the present invention.
1 鋼板 2 モルタル 3 表面 4 送信探触子 5 受信探触子 6 クリーピング波 7 横波 8 裏面 9 モルタル充填部分 10 空洞部分 11 試験体 1 Steel plate 2 Mortar 3 Surface 4 Transmitting probe 5 Receiving probe 6 Creeping wave 7 Transverse wave 8 Backside 9 Mortar filling part 10 Cavity part 11 Specimen
Claims (2)
の充填状態の検査法において、板の表面の一定距離を隔
てた位置に超音波の送信探触子及び受信探触子を配置し
て該表面に密着し、該送信探触子より縦波の超音波パル
スを該表面に対して縦波臨界角で入射し、生じたクリー
ピング波の一部が横波にモード変換して、1回又は複数
回該板の裏面及び表面で反射したエコーを該受信探触子
により検出し、該エコーの減衰率から該板の裏面に接す
る充填物の充填状態を検査することを特徴とする超音波
による充填物の充填状態の検査法。1. A method of inspecting a filling state of a filling material such as mortar on the back side of a plate such as a metal plate, wherein an ultrasonic transmitting probe and an ultrasonic receiving probe are provided at positions separated by a certain distance on the surface of the plate. Arranged and in close contact with the surface, an ultrasonic pulse of a longitudinal wave is incident on the surface at a critical angle of the longitudinal wave from the transmitting probe, and a part of the generated creeping wave is converted into a transverse wave. An echo reflected on the back surface and the front surface of the plate once or a plurality of times is detected by the reception probe, and the filling state of the filling material in contact with the back surface of the plate is inspected from the attenuation rate of the echo. The inspection method of the filling state of the filling by ultrasonic waves.
該柱の周囲に鋼板等を巻付けて該鋼板と該柱の間隙に充
填した樹脂モルタル等のモルタル、又は導水路の内面に
沿って内張管を設けて該導水路内面と該内張管の間隙に
充填した樹脂モルタル等のモルタルよりなる充填物であ
る請求項1記載の超音波による充填物の充填状態の検査
法。2. The filling is for reinforcing columns such as pier columns,
A mortar such as a resin mortar filled with a steel plate or the like around the pillar to fill the gap between the steel plate and the pillar, or an inner pipe is provided along the inner surface of the water conduit to provide the inner surface of the water conduit and the inner lining pipe. The method for inspecting the filling state of a filling by ultrasonic waves according to claim 1, which is a filling made of mortar such as resin mortar filled in the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8140805A JPH09304357A (en) | 1996-05-11 | 1996-05-11 | Method for examining filling state of filler using ultrasonic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8140805A JPH09304357A (en) | 1996-05-11 | 1996-05-11 | Method for examining filling state of filler using ultrasonic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09304357A true JPH09304357A (en) | 1997-11-28 |
Family
ID=15277158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8140805A Pending JPH09304357A (en) | 1996-05-11 | 1996-05-11 | Method for examining filling state of filler using ultrasonic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09304357A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003014704A (en) * | 2001-07-02 | 2003-01-15 | Nkk Corp | Corrosion inspection method |
JP2009270824A (en) * | 2008-04-30 | 2009-11-19 | Kawasaki Heavy Ind Ltd | Ultrasonic flaw detecting method and ultrasonic flaw detector |
JP2011133415A (en) * | 2009-12-25 | 2011-07-07 | Shimizu Corp | Gaps inspection method in SC structure |
JP2013096065A (en) * | 2011-10-28 | 2013-05-20 | Hideyuki Abe | Reinforcement method for building structure |
-
1996
- 1996-05-11 JP JP8140805A patent/JPH09304357A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003014704A (en) * | 2001-07-02 | 2003-01-15 | Nkk Corp | Corrosion inspection method |
JP2009270824A (en) * | 2008-04-30 | 2009-11-19 | Kawasaki Heavy Ind Ltd | Ultrasonic flaw detecting method and ultrasonic flaw detector |
JP2011133415A (en) * | 2009-12-25 | 2011-07-07 | Shimizu Corp | Gaps inspection method in SC structure |
JP2013096065A (en) * | 2011-10-28 | 2013-05-20 | Hideyuki Abe | Reinforcement method for building structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6105431A (en) | Ultrasonic inspection | |
US4658649A (en) | Ultrasonic method and device for detecting and measuring defects in metal media | |
Cawley et al. | The use of Lamb waves for the long range inspection of large structures | |
US7926349B2 (en) | Detection of defects in welded structures | |
US4593568A (en) | Ultrasonic inspection of tube to tube plate welds | |
WO2008007460A1 (en) | Ultrasonic scanning device and method | |
Sargent | Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves | |
US8770027B2 (en) | Pulse-echo method by means of an array-type probe and temperature compensation | |
US8739630B2 (en) | Pulse-echo method for determining the damping block geometry | |
US4574637A (en) | Method for measuring surface and near surface properties of materials | |
US12209991B2 (en) | Method and device for non-destructive testing of a plate material | |
Hayashi et al. | Rapid thickness measurements using guided waves from a scanning laser source | |
JP4166222B2 (en) | Ultrasonic flaw detection method and apparatus | |
JPH0210261A (en) | Measurement of intercrystalline corrosion | |
JPH09304357A (en) | Method for examining filling state of filler using ultrasonic wave | |
US3592052A (en) | Ultrasonic crack depth measurement | |
JPH04323553A (en) | Ultrasonic resonance flaw detection method and equipment | |
Shannon et al. | Mode conversion and the path of acoustic energy in a partially water-filled aluminum tube | |
Hayashi et al. | Defect detection using quasi-scholte wave for plate loaded with water on single surface | |
KR101351315B1 (en) | Line-contact surface wave guide wedge apparatus | |
JP3729686B2 (en) | Defect detection method for piping | |
JPH1194806A (en) | Ultrasonic flaw detection method end surface or side face of steel material | |
JPH08271488A (en) | Method for evaluating quality of frpm pipe | |
US3218845A (en) | Ultrasonic inspection method for inaccessible pipe and tubing | |
JP6953953B2 (en) | A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method. |