JPH09304289A - Method and apparatus for inspecting surface of wafer - Google Patents
Method and apparatus for inspecting surface of waferInfo
- Publication number
- JPH09304289A JPH09304289A JP11207396A JP11207396A JPH09304289A JP H09304289 A JPH09304289 A JP H09304289A JP 11207396 A JP11207396 A JP 11207396A JP 11207396 A JP11207396 A JP 11207396A JP H09304289 A JPH09304289 A JP H09304289A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- light receiving
- wafer
- receiving system
- foreign matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、ウエハ表面検査
方法および検査装置に関し、詳しくは、シリコンウエハ
の表面に付着した異物と、表面に存在する結晶欠陥とを
分離して検出することができる検査方法および検査装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer surface inspecting method and an inspecting apparatus, and more particularly to an inspecting method capable of separating and detecting foreign substances adhering to the surface of a silicon wafer and crystal defects existing on the surface. A method and an inspection device.
【0002】[0002]
【従来の技術】半導体ICの素材となるシリコンウエハ
は、高純度の多結晶シリコンから造られる。それは、引
き上げ法などにより単結晶シリコンのインゴットを作
り、これをスライスして薄板とし、その表面を研磨して
鏡面に仕上げ、さらに、表面に付着した異物を入念に洗
浄して製作される。この洗浄にもかかわらず、いくらか
の付着異物が残留する。これが多く残留するとICの品
質を阻害するので、表面検査装置により付着異物の有無
や程度が検査されている。2. Description of the Related Art A silicon wafer as a material for a semiconductor IC is made of high-purity polycrystalline silicon. It is manufactured by making an ingot of single crystal silicon by a pulling method or the like, slicing this into a thin plate, polishing the surface of the ingot to finish it to a mirror surface, and further carefully cleaning foreign substances adhering to the surface. Despite this cleaning, some adherent foreign matter remains. If a large amount of this remains, it impairs the quality of the IC, so the presence or absence and the degree of foreign matter attached are inspected by a surface inspection device.
【0003】図10により、従来から使用されているウ
エハ表面検査装置の構成を示す。表面検査装置は、図1
0(a)に示すように、回転・移動テーブル2と、検査光
学系3、データ処理部4などよりなる。検査対象となる
シリコンウエハ(以下単にウエハ)1は、回転・移動テ
ーブル2に載置される。このウエハ1の上部に配置され
た検査光学系3は、レーザ発振管を備えたレーザ光源3
1を有している。これの出力するレーザビームLTは、
コリメータレンズ32により平行にされ、振動ミラー3
3によりX方向に掃引される。そして、それが集束レン
ズ34によりレーザスポットSp(以下スポットSp)と
して集束されてウエハ1の表面に対して垂直に投射され
て、ウエハ1の移動に応じてウエハを走査する。FIG. 10 shows the structure of a conventionally used wafer surface inspection apparatus. The surface inspection device is shown in Fig. 1.
As shown in 0 (a), it comprises a rotation / movement table 2, an inspection optical system 3, a data processing unit 4, and the like. A silicon wafer (hereinafter simply referred to as a wafer) 1 to be inspected is placed on a rotary / movable table 2. The inspection optical system 3 arranged above the wafer 1 is a laser light source 3 having a laser oscillation tube.
One. The laser beam LT that it outputs is
The vibrating mirror 3 is made parallel by the collimator lens 32.
3 sweeps in the X direction. Then, it is focused as a laser spot Sp (hereinafter referred to as spot Sp) by the focusing lens 34 and projected perpendicularly to the surface of the wafer 1, and the wafer is scanned according to the movement of the wafer 1.
【0004】ウエハ1は、回転・移動テーブル2により
回転させられるととも半径方向(X方向)に移動する。
これにより、スポットSpは、ウエハ1の表面をスパイ
ラル状に走査し、その結果、ウエハ1の全面が走査され
る。なお、回転・移動テーブル2の駆動は、後述するデ
ータ処理部4により制御される。ウエハ1の表面に異物
eが存在すると、図(b)に示すように、スポットSpは異
物eによりランダムな方向に散乱光Seを発生する。そ
の一部は、光軸が45°をなす集光レンズ35により集
光されて光電変換器である光電子増倍管(PMT)36
に受光される。PMT36に入射した光はここで電気信
号に変換され、変換された受光信号は、異物検出回路4
1に入力される。異物検出回路41は、片側増幅の差動
増幅器により所定の閾値VTHと受光信号とを比較して、
閾値VTHを越えた成分を増幅する。これによりノイズ成
分が除去された検出信号(アナログ信号)がデータ処理
部4に入力される。The wafer 1 moves in the radial direction (X direction) while being rotated by the rotating / moving table 2.
As a result, the spot Sp scans the surface of the wafer 1 in a spiral manner, and as a result, the entire surface of the wafer 1 is scanned. The drive of the rotary / movable table 2 is controlled by the data processing unit 4 described later. When the foreign matter e is present on the surface of the wafer 1, the spot Sp generates scattered light Se in a random direction due to the foreign matter e, as shown in FIG. A part of the light is condensed by a condenser lens 35 having an optical axis of 45 °, and a photomultiplier tube (PMT) 36 which is a photoelectric converter.
Received. The light incident on the PMT 36 is converted into an electric signal here, and the converted received light signal is the foreign substance detection circuit 4
Input to 1. The foreign matter detection circuit 41 compares the predetermined threshold value VTH with the received light signal by a one-sided differential amplifier,
Amplifies components that exceed the threshold VTH. As a result, the detection signal (analog signal) from which the noise component has been removed is input to the data processing unit 4.
【0005】検出信号は、データ処理装置42に設けら
れたA/D変換回路(A/D)42bによりデジタル値
に変換されてMPU42aによりメモリ42cに一旦記
憶され、MPU42aが所定のプログラムを実行するこ
とにより検出データがその走査位置(検出位置)のデー
タとともにデータ処理される。その結果、検出値に応じ
て異物eの大きさが判定される。さらに異物の個数がカ
ウントされる。さらに、MPU42aが所定のプログラ
ムを実行することで異物eの個数と大きさ、その位置を
示す異物データが生成され、プリンタ43あるいはディ
スプレイ(図示せず)等に出力されて異物の状態がマッ
プ表示される。なお、A/D42bは、データ処理装置
42の外部に設けられていてもよい。前記のスポットS
pは、その径が数μmで非常に強い光であり、集光レン
ズ35の直径は、大きく集光角度の広いものを使用して
いる。また、PMT36は大きい増幅率と低ノイズの特
性を有するものである。これにより0.1μm径程度の
異物あるいは欠陥まで検出することが可能である。な
お、スポットSpのウエハ1に対する走査は、上記の回
転走査方式のほか、XY走査方式によることもできる。The detection signal is converted into a digital value by an A / D conversion circuit (A / D) 42b provided in the data processing device 42 and temporarily stored in the memory 42c by the MPU 42a, and the MPU 42a executes a predetermined program. As a result, the detection data is processed with the data of the scanning position (detection position). As a result, the size of the foreign matter e is determined according to the detected value. Further, the number of foreign matters is counted. Further, the MPU 42a executes a predetermined program to generate foreign substance data indicating the number, size, and position of the foreign substance e, which is output to the printer 43 or a display (not shown) or the like to display the state of the foreign substance on a map. To be done. The A / D 42b may be provided outside the data processing device 42. The spot S
p is a very strong light having a diameter of several μm, and the condensing lens 35 has a large diameter and a wide condensing angle. Further, the PMT 36 has characteristics of large amplification factor and low noise. As a result, it is possible to detect foreign matters or defects having a diameter of about 0.1 μm. The scanning of the spot Sp on the wafer 1 may be performed by the XY scanning method in addition to the rotary scanning method described above.
【0006】[0006]
【発明が解決しようとする課題】さて、最近におけるI
Cの集積密度の向上とこれに伴う配線の細線化によっ
て、検出する異物は、大きさの許容限界がさらに微小に
なってきている。そのため、ウエハ1のシリコン原子の
欠損による欠陥までが問題となってきている。これを図
11と図12により説明する。ウエハは、無数のシリコ
ン原子Siが互いに格子状に結合された単結晶で構成さ
れている。図11において示すように、シリコン原子S
iが酸化されて微小な酸化物が表面に形成され、それが
洗浄により欠落することで欠損することがある。これが
結晶欠陥となる。この結晶欠陥は、関係者によりCri
stal−Originated−Particle
(COP)とよばれているので、以下これをもって説明
する。[Problems to be Solved by the Invention]
Due to the improvement of the integration density of C and the thinning of wiring accompanying this, the allowable limit of the size of the foreign matter to be detected has become even smaller. Therefore, even defects due to the loss of silicon atoms in the wafer 1 have become a problem. This will be described with reference to FIGS. 11 and 12. The wafer is composed of a single crystal in which innumerable silicon atoms Si are bonded to each other in a lattice shape. As shown in FIG. 11, silicon atoms S
There is a case where i is oxidized to form a minute oxide on the surface, and the minute oxide is missing due to cleaning, resulting in a defect. This becomes a crystal defect. This crystal defect is caused by Cri.
stall-Originated-Particle
Since it is called (COP), this will be described below.
【0007】図11では、連続した複数個(図では3
個)のシリコン原子Siが欠損している。これが多数の
場合を顕微鏡で観察すると、その断面は、図12に示す
ような凹面をなしている。その直径φと深さδzはもち
ろんさまざまであるが、直径φに比べて深さδzが小さ
いという特徴がある。例えば、直径φが1〜2μmのと
き、深さδzは20分の1程度の0.05〜0.1μm
程度である。ICに対して欠陥となるCOPの大きさ
は、直径φが2μmのときは、16MビットのICメモ
リ(配線幅0.7μm)では問題とならないが、64M
ビット以上のICメモリに対して有害になる。COPの
個数は、単結晶シリコンのインゴットを作るときの引き
上げ速度や洗浄回数に依存して変化する。一方、付着異
物eの個数も洗浄により減少するので、引き上げ速度と
洗浄回数を適切に決めることが必要になる。そのために
は、COPと付着異物eの個数および大きさを個別に計
測することが必要になる。In FIG. 11, a plurality of consecutive (3 in FIG.
Silicon atoms Si are missing. When a large number of these are observed with a microscope, the cross section has a concave surface as shown in FIG. The diameter φ and the depth δz are of course varied, but the feature is that the depth δz is smaller than the diameter φ. For example, when the diameter φ is 1 to 2 μm, the depth δz is about 1/20 of 0.05 to 0.1 μm.
It is a degree. The size of the COP, which is a defect for the IC, is not a problem for a 16 Mbit IC memory (wiring width 0.7 μm) when the diameter φ is 2 μm.
It becomes harmful to IC memory of more than a bit. The number of COPs changes depending on the pulling rate and the number of times of cleaning when producing an ingot of single crystal silicon. On the other hand, the number of adhering foreign matters e is also reduced by cleaning, so it is necessary to appropriately determine the pulling rate and the number of times of cleaning. For that purpose, it is necessary to individually measure the number and size of the COP and the adhering foreign matter e.
【0008】そこで、ウエハ表面検査装置によりCOP
を計測して評価データを得たいという要請がある。しか
し、前記の検査光学系3は、COPとともに付着異物e
が検出されるので、両者の個数あるいは両者の個数とそ
の大きさを別個に計測することはできない。なお、異物
検出装置に関しては、高角度,低角度の2つの投光系を
持つ、本出願人による「ガラスの異物検査装置」の発明
がUSP5,245,403号としてある。この発明
は、付着異物とCOPとを検出することができるウエハ
表面検査方法を提供することを目的とする。この発明
は、付着異物とCOPとを検出することができるウエハ
表面検査装置を提供することを目的とする。Therefore, the COP is measured by the wafer surface inspection device.
There is a request to measure and obtain evaluation data. However, the inspection optical system 3 described above does not adhere to the foreign matter e
Since it is detected, the number of both, or the number of both and their sizes cannot be measured separately. Regarding the foreign matter detection device, US Pat. No. 5,245,403 discloses an invention of “glass foreign matter inspection device” by the present applicant, which has two light projection systems of high angle and low angle. It is an object of the present invention to provide a wafer surface inspection method capable of detecting adhered foreign matter and COP. An object of the present invention is to provide a wafer surface inspection device capable of detecting adhered foreign matter and COP.
【0009】[0009]
【課題を解決するための手段】このような目的を達成す
るためのこの発明のウエハ表面検査方法および検査装置
の特徴は、ウエハの表面を基準とした仰角が30°以下
の角度をなす低角度受光系と、これよりも大きな仰角の
高角度受光系とを有し、ウエハをレーザ光により走査し
て、低角度受光系と高角度受光がレーザ光の散乱光を受
光して走査に対応して異物検出を行い、同じ走査位置に
おいて高角度受光系でのみ検出されたものをウエハの欠
陥の検出とし、低角度受光系で検出されたものを付着異
物の検出とするものである。また、前記の付着異物につ
いては、前記低角度受光系と前記高角度受光でともに検
出されたものを付着異物の検出としてもよい。さらに、
必要に応じて付着異物あるいは欠陥の大きさを判定する
が、それは、高角度受光系で検出された異物の検出値に
おいて行われる。検査装置としては、前記の低角度受光
系に第1の光電変換器を設け、前記の高角度受光系に第
2の光電変換器を設け、第1の光電変換器かから第1の
検出信号を受け、前記第2の光電変換器から第2の検出
信号を受けて所定値以上の前記第1の検出信号を受けた
とき、あるいは所定値以上の前記第1の検出信号と所定
値以上の第2の検出信号とをともに受けたときに付着異
物検出とし、前記所定値以上の前記第2の検出信号のみ
受けたときに欠陥検出とするデータ処理装置とを備えて
いる。The features of the wafer surface inspecting method and the inspecting apparatus of the present invention for attaining the above-mentioned object are that the angle of elevation with respect to the surface of the wafer is 30 ° or less. It has a light receiving system and a high angle light receiving system with an elevation angle larger than this.The wafer is scanned with laser light, and the low angle light receiving system and the high angle light receiving device receive scattered light of the laser light and correspond to scanning. Foreign matter is detected by using the high angle light receiving system at the same scanning position to detect a wafer defect, and the foreign matter detected by the low angle light receiving system is detected as an adhering foreign matter. Further, regarding the adhering foreign matter, what is detected by both the low-angle light receiving system and the high-angle light receiving may be detected as the adhering foreign matter. further,
If necessary, the size of the adhering foreign matter or defect is determined, which is performed by the detected value of the foreign matter detected by the high-angle light receiving system. As the inspection device, a first photoelectric converter is provided in the low-angle light receiving system, a second photoelectric converter is provided in the high-angle light receiving system, and a first detection signal is output from the first photoelectric converter. When a second detection signal is received from the second photoelectric converter and the first detection signal having a predetermined value or more is received, or the first detection signal having a predetermined value or more and the first detection signal having a predetermined value or more are received. And a data processing device that detects the adhering foreign matter when both the second detection signal and the second detection signal are received, and detects the defect when only the second detection signal having the predetermined value or more is received.
【0010】[0010]
【発明の実施の形態】さて、この発明の発明者によりな
された付着異物と結晶欠陥の散乱光の指向特性に関する
実験について述べると、付着異物の散乱光はほぼ無指向
性であるが、通常の結晶欠陥は深さが直径に比べて非常
に浅いので、散乱光は表面に対して約30°以上という
指向性を持つ。これ以下となる方向にはほとんど散乱さ
れない。このような指向特性のため、ウエハの面を基準
とした仰角が35°〜60°の角度方向に設けた高角度
受光系により付着異物と結晶欠陥の散乱光をともに受光
して、これらを検出する。これに対して仰角が30°以
下の角度方向に設けた低角度受光系では、結晶欠陥の散
乱光がほとんど入射しないので、これにより付着異物の
散乱光のみを受光して検出する。なお、従来技術の説明
でも理解できるように、結晶欠陥や付着異物等の散乱光
が強く受光できる角度としては従来から35°〜60°
程度の範囲が選択されている。そして、特に、これの適
正な受光範囲としては、40°〜50°の範囲である。BEST MODE FOR CARRYING OUT THE INVENTION Now, an experiment conducted by the inventor of the present invention on directivity characteristics of scattered light of adhering foreign matters and crystal defects will be described. Although scattered light of adhering foreign matters is almost omnidirectional, Since the crystal defects are very shallow in depth compared to the diameter, the scattered light has a directivity of about 30 ° or more with respect to the surface. Almost no scattering occurs in the direction below this. Due to such directional characteristics, the scattered light of the adhering foreign matter and the crystal defects are both received by the high-angle light receiving system provided in the angle direction of the elevation angle of 35 ° to 60 ° with respect to the wafer surface, and these are detected. To do. On the other hand, in a low-angle light receiving system provided in an angle direction with an elevation angle of 30 ° or less, almost no scattered light of crystal defects is incident, so that only scattered light of adhering foreign matter is received and detected. As can be understood from the description of the prior art, the angle at which scattered light such as crystal defects and adhering foreign matter can be strongly received is conventionally 35 ° to 60 °.
A range of degrees has been selected. And, in particular, the proper light receiving range is 40 ° to 50 °.
【0011】前記の仰角30°以下の低角度受光は、図
7に示す実験結果による。すなわち、図7(a)に仰角
が40°〜50°の範囲の高角度で受光したときのCZOC
HRALSKI法により製造されたウエハについての異物検出
データについてのマップを、(b)には、仰角が5°〜
20°の低角度で受光したとき同じウエハについての異
物検出データについてのマップ°をそれぞれ一例として
示す。これらのマップを比較すると分かるように、図
(a)では、異物の検出量が多く、これには付着異物と
結晶欠陥とが含まれている。一方、図(b)では、異物
検出量が少なく、ほぼ付着異物のみが検出されている。
ウエハから付着異物を完全に除去して検査することは難
しいので、このことを検証するために、COP欠陥がほ
とんど発生しないFLOATING ZONE法により製造したウエ
ハについて異物検出を行った。仰角が40°〜50°の
範囲の高角度で受光したときのそれの検出データを
(c)に、仰角が5°〜20°の低角度で受光したとき
のそれの検出データを(d)にそれぞれ示す。このマッ
プ(c),(d)では、先のマップ(a),(b)と相
違して、低角度受光で検出した異物も高角度受光で検出
した異物もほぼ同じような状態で検出されている。これ
らマップは、代表的な例であって、多少前記の角度を前
後させても相違は少ない。しかし、低角度受光系の光軸
が30°以上になると、(b)の状態が(a)の状態に
近づく。The low-angle light reception with the elevation angle of 30 ° or less is based on the experimental result shown in FIG. That is, in FIG. 7A, the CZOC when light is received at a high angle of elevation of 40 ° to 50 °
A map of foreign matter detection data for wafers manufactured by the HRALSKI method is shown in (b) with an elevation angle of 5 ° to
As an example, map degrees of foreign matter detection data for the same wafer when light is received at a low angle of 20 ° are shown. As can be seen by comparing these maps, the amount of foreign matter detected is large in FIG. 5A, which includes adhered foreign matter and crystal defects. On the other hand, in FIG. 6B, the foreign matter detection amount is small, and almost only the adhered foreign matter is detected.
Since it is difficult to completely remove the adhered foreign matter from the wafer for inspection, in order to verify this, foreign matter detection was performed on the wafer manufactured by the FLOATING ZONE method in which almost no COP defects occur. (C) shows the detected data when the light is received at a high angle of elevation of 40 ° to 50 °, and (d) shows the detected data when received at a low angle of 5 ° to 20 °. Are shown respectively. In the maps (c) and (d), unlike the previous maps (a) and (b), the foreign matter detected by the low-angle light reception and the foreign matter detected by the high-angle light reception are detected in substantially the same state. ing. These maps are typical examples, and there is little difference even if the above angles are moved back and forth. However, when the optical axis of the low-angle light receiving system is 30 ° or more, the state of (b) approaches the state of (a).
【0012】ところで、最近、図8に示すように、CO
Pがウエハの内部にも存在することが分かってきた。ま
た、表面には、さらに、酸化物層(OSF;OxidationI
nducedStackingFolt)があって、これらは付着異物と同
様にスポットを当てた場合に散乱光を発生させる。これ
らからの散乱光は、PMT(光電子増倍管)の増幅率を
上げた場合にノイズとして作用する。このノイズは、検
出レベルが比較的低い低角度受光系での付着異物の検出
において問題となる。そこで、発明者等は、P偏光成分
の反射率がほぼゼロになるブリュースター角θBに着目
した。このブリュースター角θBを低角度受光系に適用
することでCOPとOSFからの散乱光により発生する
ノイズ成分を低減し、より正確に付着異物を検出するこ
とができる。ウエハ1のブリュースター角θBは、シリ
コンの屈折率nより算出することができる。ただし、一
般的にシリコンやガラスなどの屈折率nは波長λに依存
して変化する。例えば、波長3μmに対するシリコンの
屈折率nとしては、値3.43であることが光学ハンド
ブック等で公表されている。しかし、検出光学系にこれ
をそのまま適用することはできない。By the way, recently, as shown in FIG.
It has been found that P also exists inside the wafer. Further, an oxide layer (OSF; OxidationI) is further formed on the surface.
nducedStackingFolt), which produces scattered light when spotted, like adhering foreign matter. The scattered light from these acts as noise when the amplification factor of the PMT (photomultiplier tube) is increased. This noise becomes a problem in the detection of adhering foreign matter in a low-angle light receiving system whose detection level is relatively low. Therefore, the inventors paid attention to the Brewster angle θB at which the reflectance of the P-polarized component becomes almost zero. By applying this Brewster angle θB to the low-angle light receiving system, the noise component generated by the scattered light from the COP and the OSF can be reduced and the adhering foreign matter can be detected more accurately. The Brewster angle θB of the wafer 1 can be calculated from the refractive index n of silicon. However, in general, the refractive index n of silicon or glass changes depending on the wavelength λ. For example, the refractive index n of silicon with respect to a wavelength of 3 μm is disclosed as a value of 3.43 in an optical handbook or the like. However, this cannot be directly applied to the detection optical system.
【0013】図9は、ブリュースター角についての実験
データを示す曲線図で、横軸は入射角θ1、縦軸は反射
率rと透過率tとを%で示している。レーザ光源として
アルゴンレーザ管を使用し、これが発振する488nm
波長の直線偏光波の角度を変えて、P偏光波とS偏光波
を作り、それぞれをウエハ1の表面に投射し、入射角θ
1に対する反射率r[P](ただし[P]はP偏光成分),
透過率t[P]と、反射率r[S](ただし[S]はS偏光成
分),透過率t[S]とをそれぞれ測定した。その結果、
図に×で示す実測値が得られた。反射率r[P]は、入射
角をθ1とすると、θ1=76°で極小値を示すので、こ
れが一応ブリュースター角θBになる。したがって、屈
折角をθ2とすると、θ2は14°であり、前記の5°〜
20°の範囲に入る。FIG. 9 is a curve diagram showing experimental data on Brewster's angle, where the horizontal axis represents the incident angle θ1 and the vertical axis represents the reflectance r and the transmittance t in%. Argon laser tube is used as a laser light source, and it oscillates 488 nm
The angle of the linearly polarized wave of the wavelength is changed to generate the P polarized wave and the S polarized wave, which are projected on the surface of the wafer 1 and the incident angle θ
The reflectance r [P] for 1 (where [P] is the P-polarized component),
The transmittance t [P], the reflectance r [S] (where [S] is an S-polarized component), and the transmittance t [S] were measured. as a result,
The measured value indicated by x in the figure was obtained. The reflectance r [P] has a minimum value at θ1 = 76 °, where θ1 is the incident angle, and this is the Brewster angle θB. Therefore, when the refraction angle is θ2, θ2 is 14 °, which is 5 ° to
Enters the range of 20 °.
【0014】ここで、屈折率n1=1の空気側から、屈
折率n2の誘電体の表面に対して、P偏光波とS偏光波
の光束を、それぞれ適当な入射角θ1で投射するとすれ
ば、n1sinθ1=n2sinθ2が成立する。この論理式から
θ1=76°,θ2=14°を代入してn2を求めると、
実際のシリコンウエハの屈折率n=4.0が得られる。
そこで、これに基づいてr[P],t[P],r[S],t
[S]について理論値を算出すると、「・」で図示する計
算値が得られた。r[P]とt[P]の実測値は、ブリュー
スター角θB(76°)の近傍で1%程度の差異がある
が、これ以外の測定範囲に関しては、計算値とほぼ正確
に一致している。ただし、r[S]とt[S]の実測値は計
算値と一致していない。これにより、前記の低角度受光
系の角度を14°前後として、さらに、この角度と等し
い照射角のP偏光の光源を持つ投光系を設ける。低角度
受光系にはS偏光フィルタを設け、これを介して散乱光
を受光する。これによりより正確に付着異物のみを検出
することができる。P偏光の光を付着異物が受けて散乱
させた場合には、P成分とS成分の散乱光が発生する
が、COPやOSFの面での反射光は、P成分のみが主
体となるからである。これをS偏光フィルタによりカッ
トして付着異物を検出する。これによりCOPやOSF
からの散乱光を受光しなくて済み、S/N比が向上し、特
に、PMTの感度(増幅率)を少し抑えてノイズに影響
を抑制して正確に付着異物を検出をすることが可能にな
る。Here, if the P-polarized wave and the S-polarized wave are projected from the air side having the refractive index n1 = 1 onto the surface of the dielectric having the refractive index n2 at appropriate incident angles θ1, respectively. , N 1 sin θ 1 = n 2 sin θ 2 holds. Substituting θ1 = 76 ° and θ2 = 14 ° from this logical equation to obtain n2,
The refractive index n = 4.0 of the actual silicon wafer is obtained.
Therefore, based on this, r [P], t [P], r [S], t
When the theoretical value was calculated for [S], the calculated value indicated by "•" was obtained. The measured values of r [P] and t [P] have a difference of about 1% in the vicinity of Brewster's angle θB (76 °), but for the other measurement ranges, they almost agree with the calculated values. ing. However, the measured values of r [S] and t [S] do not match the calculated values. As a result, the angle of the low-angle light receiving system is set to around 14 °, and a light projecting system having a P-polarized light source having an irradiation angle equal to this angle is provided. The low-angle light receiving system is provided with an S polarization filter, and the scattered light is received through this. This makes it possible to more accurately detect only the adhered foreign matter. When the adhering foreign matter receives and scatters the P-polarized light, scattered light of the P component and the S component is generated, but the reflected light on the surface of the COP or OSF is mainly the P component. is there. This is cut by an S polarization filter to detect the adhering foreign matter. This allows COP and OSF
Since it is not necessary to receive scattered light from the S / N ratio, the sensitivity (amplification factor) of the PMT can be suppressed a little to suppress the influence on noise and accurately detect the adhered foreign matter. become.
【0015】[0015]
【実施例】図1は、この発明における検査光学系であっ
て、図8と同一の構成要素は同一の符号で示す。図1に
示すウエハ表面検査装置200の検査光学系3aは、前
記した図8の検査光学系3とほぼ同一同様な構成である
が、これが高低2つの受光系を左右に配置している点で
図8のものとは相違している。その第1の受光系は、ウ
エハ1の表面を基準としてその仰角が40°〜50°の
角度をなす高角度受光系37であり、第2の受光系は、
仰角が5°〜20°の角度をなす低角度受光系38であ
る。回転・移動テーブル2は、回転テーブル21とこれ
を直線移動させる直線以降機構22とからなり、後述す
るデータ処理装置53により駆動制御回路55を介して
その位置と回転とが制御される。なお、レーザ走査系と
しては、図8と同様に回転走査方式のものであるが、こ
れをXY走査方式に換えても差し支えはない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an inspection optical system according to the present invention, and the same components as those in FIG. 8 are designated by the same reference numerals. The inspection optical system 3a of the wafer surface inspection apparatus 200 shown in FIG. 1 has substantially the same structure as the inspection optical system 3 of FIG. 8 described above, but this is that two high and low light receiving systems are arranged on the left and right. It differs from that of FIG. The first light receiving system is a high-angle light receiving system 37 whose elevation angle is 40 ° to 50 ° with respect to the surface of the wafer 1, and the second light receiving system is
The low-angle light receiving system 38 has an elevation angle of 5 ° to 20 °. The rotary / movable table 2 includes a rotary table 21 and a linear mechanism 22 for linearly moving the rotary table 21, and the position and rotation of the rotary table 21 are controlled by a data processing device 53 described later via a drive control circuit 55. The laser scanning system is a rotary scanning system as in FIG. 8, but it may be replaced with an XY scanning system.
【0016】高角度受光系37は、左右の両側に対称的
に設けた集束レンズ371,PMT373と、集束レン
ズ372,PMT374よりなる。ウエハ1の表面を基
準としたその光軸の仰角θRHは40〜50°の範囲内に
設定してある。低角度受光系38は、同様に左右対称に
設けた集束レンズ381,PMT383と、集束レンズ
382,PMT384とよりなる。その光軸は仰角θRL
を15〜25°の範囲内に設定してある。図2は、ウエ
ハ表面検査装置200の検査光学系3aを除いた構成を
示す。図8の異物検出回路41に対応するものとしてそ
れぞれの受光系に対応して異物・欠陥検出回路51と付
着異物検出回路52とが設けられている。異物・欠陥検
出回路51は、高角度受光のPMT373,374の検
出信号を加算する加算回路51aと、加算された検出信
号を増幅して出力するアンプ51b、このアンプ51b
の出力を受けて所定の閾値VTH1と比較して閾値を越え
た信号部分を増幅する片側増幅の差動アンプ51c、ピ
ークホールド回路51d、そしてA/D変換回路(A/
D)51eとからなる。付着異物検出回路52は、低角
度受光のPMT383,384の検出信号を加算する加
算回路52aと、加算された検出信号を増幅して出力す
るアンプ52b、このアンプ52bの出力を受けて所定
の閾値VTH2と比較して閾値を越えた信号部分を増幅す
る片側増幅の差動アンプ52c、ピークホールド回路5
1d、そしてA/D変換回路(A/D)52eとからな
る。なお、前記の閾値VTH1,VTH2は、調整可能であっ
て、それぞれの受光系の検出信号の状態に応じてそれぞ
れ適正な値に設定される。The high-angle light receiving system 37 comprises focusing lenses 371 and PMT373, which are symmetrically provided on the left and right sides, and focusing lenses 372 and PMT374. The elevation angle θRH of the optical axis with respect to the surface of the wafer 1 is set within the range of 40 to 50 °. The low-angle light receiving system 38 includes focusing lenses 381, PMT383, and focusing lenses 382, PMT384, which are similarly provided symmetrically. The optical axis is the elevation angle θRL
Is set within the range of 15 to 25 °. FIG. 2 shows the structure of the wafer surface inspection apparatus 200 excluding the inspection optical system 3a. A foreign matter / defect detection circuit 51 and an adhering foreign matter detection circuit 52 are provided corresponding to the respective light receiving systems as corresponding to the foreign matter detection circuit 41 of FIG. The foreign matter / defect detection circuit 51 includes an adder circuit 51a for adding detection signals from the PMTs 373 and 374 for high-angle light reception, an amplifier 51b for amplifying and outputting the added detection signal, and this amplifier 51b.
Of the differential amplifier 51c for one-sided amplification for amplifying the signal portion exceeding the threshold value by comparing with the predetermined threshold value VTH1, the peak hold circuit 51d, and the A / D conversion circuit (A /
D) 51e. The adhering foreign matter detection circuit 52 adds a detection signal of the PMTs 383 and 384 for low-angle light reception, an amplifier 52b that amplifies and outputs the added detection signal, and a predetermined threshold value when receiving the output of the amplifier 52b. One-sided differential amplifier 52c that amplifies the signal portion exceeding the threshold value as compared with VTH2, and the peak hold circuit 5
1d, and an A / D conversion circuit (A / D) 52e. The thresholds VTH1 and VTH2 are adjustable and set to appropriate values according to the state of the detection signal of each light receiving system.
【0017】その結果、ウエハのらせん走査に応じて検
出された付着異物と欠陥をと含む異物の検出信号がピー
クホールド回路51dによりホールドされ、同時に付着
異物の検出信号がピークホールド回路52dによりホー
ルドされる。それぞれのホールド値は、データ処理装置
53の制御信号に応じてA/D51e,52eによりデ
ジタル値に変換され、データ処理装置53に取り込まれ
る。ピークホールド回路51d,52dのホールド値
は、A/D51e,52eからの信号によりそれぞれリ
セットされて次の検出信号のピーク値がこれらによりそ
れぞれホールドされる。As a result, the detection signal of the foreign matter including the foreign matter and the defect detected in accordance with the spiral scan of the wafer is held by the peak hold circuit 51d, and at the same time, the detection signal of the foreign matter is held by the peak hold circuit 52d. It Each hold value is converted into a digital value by the A / Ds 51e and 52e according to the control signal of the data processing device 53, and is taken into the data processing device 53. The hold values of the peak hold circuits 51d and 52d are reset by the signals from the A / Ds 51e and 52e, respectively, and the peak values of the next detection signals are held by these, respectively.
【0018】データ処理装置53は、マイクロプロセッ
サ(MPU)53aとメモリ53b、ディスプレイ53
c、プリンタ53d,インタフェース53e等から構成
されて、これらがバス53fを介して相互に接続されて
いる。そして、メモリ53bには、異物検出プログラム
54aと異物・欠陥区分けプログラム54b、異物の大
きさ判定プログラム54c、検出値カウントプログラム
54d、テーブル位置制御プログラム54e等が設けら
れ、さらに、異物データ領域54f,欠陥データ領域5
4gとが設けられている。MPU53aは、テーブル位
置制御プログラム54eを実行することで、インタフェ
ース53eを介して回転・移動テーブル2を制御して走
査を開始する。そして、その制御量は、走査位置情報と
してメモリ53bの所定の領域に記憶される。The data processing unit 53 includes a microprocessor (MPU) 53a, a memory 53b, and a display 53.
c, a printer 53d, an interface 53e, etc., which are mutually connected via a bus 53f. Further, the memory 53b is provided with a foreign matter detection program 54a, a foreign matter / defect classification program 54b, a foreign matter size determination program 54c, a detected value counting program 54d, a table position control program 54e, and the like, and a foreign matter data area 54f, Defect data area 5
4g is provided. The MPU 53a executes the table position control program 54e to control the rotary / movable table 2 via the interface 53e to start scanning. Then, the control amount is stored in a predetermined area of the memory 53b as scanning position information.
【0019】異物検出プログラム54aは、A/D51
e,52eのデータを所定のタイミングでインタフェー
ス53eを介して取り込み、メモリ53bに走査位置デ
ータとともに記憶する処理をする。異物・欠陥区分けプ
ログラム54bは、採取された検出値のデータから同じ
検出位置において、A/D51e,52eから得たデー
タがそれぞれに設定された所定値以上のデータ値である
ときに、それを付着異物の検出データとして抽出して異
物データ領域54fに記憶し、A/D52eから得たデ
ータがこれに対して設定された所定値以下でであり、か
つ、A/D51eから得たデータがこれに対して設定さ
れた所定値以上であるときに、それを欠陥データとして
抽出して欠陥データ領域54gに記憶する。なお、所定
値以上の検出データを対象とするのは、ノイズデータを
除去するためである。The foreign matter detection program 54a uses the A / D 51
The data of e and 52e are fetched through the interface 53e at a predetermined timing and stored in the memory 53b together with the scanning position data. The particle / defect classification program 54b attaches the data obtained from the A / Ds 51e and 52e at the same detection position from the collected detection value data when the data values are equal to or more than the predetermined values set respectively. The data obtained from the A / D 52e is extracted as foreign matter detection data and stored in the foreign matter data area 54f, and the data obtained from the A / D 52e is less than or equal to a predetermined value. When it is equal to or larger than a predetermined value set for the defect data, it is extracted as defect data and stored in the defect data area 54g. It should be noted that the purpose of detecting data having a predetermined value or more is to remove noise data.
【0020】異物の大きさ判定プログラム54cは、異
物データ領域54fのデータを読出してその値に応じて
大きさのランク付けをし、各データに大きさの情報(大
きさを示すデータ)を付加して異物データ領域54fの
元の記憶位置に記憶する処理をする。さらに、欠陥デー
タ領域54gのデータを読出してその値に応じて同様に
大きさのランク付けをし、各データに大きさの情報(大
きさを示すデータ)を付加して欠陥データ領域54gの
元の記憶位置に記憶する処理をする。検出値カウントプ
ログラム54dは、異物データ領域54fを参照して大
きさに応じて付着異物の数をそれぞれカウントし、か
つ、付着異物の総計を算出する。さらに、欠陥データ領
域54gを参照して前記と同様にその大きさに応じてそ
れぞれの数と欠陥の総数とをカウントして算出する。な
お、上記の異物検出プログラム54aは、計測器一般の
データを採取するプログラムであり、異物・欠陥区分け
プログラム54bは、データ値を参照して区分けするだ
けのプログラムであり、付着異物の大きさ判定プログラ
ム54cも所定の範囲を基準にランク分けする一般的な
プログラムである。また、検出値カウントプログラム5
4dも特定のデータだけを単にカウントするプログラム
である。これらは、特別なプログラムではないのでその
詳細は割愛する。The foreign matter size determination program 54c reads the data in the foreign matter data area 54f, ranks the sizes according to the values, and adds size information (data indicating the size) to each data. Then, a process of storing the foreign matter data area 54f in the original storage position is performed. Further, the data in the defective data area 54g is read, and the sizes are similarly ranked according to the value, and the size information (data indicating the size) is added to each data to add the original data of the defective data area 54g. Is stored in the memory location. The detection value counting program 54d counts the number of adhered foreign matters according to the size by referring to the foreign matter data area 54f, and calculates the total amount of the adhered foreign matters. Further, referring to the defect data area 54g, each number and the total number of defects are counted and calculated in the same manner as described above according to the size. The foreign matter detection program 54a is a program that collects general measuring instrument data, and the foreign matter / defect classification program 54b is a program that simply refers to data values to determine the size of adhering foreign matter. The program 54c is also a general program that ranks a predetermined range. In addition, the detection value counting program 5
4d is also a program that simply counts only specific data. These are not special programs, so I will omit the details.
【0021】付着異物と欠陥の検出処理について図3に
従って説明すると、まず、初期値を設定して(ステップ
100)、走査を開始する(ステップ101)。これに
よりウエハ1の表面に対して垂直にスポットSpを投射
して走査が開始されると、付着異物eの散乱光とCOP
の散乱光は、高角度受光系37の左右の集光レンズ37
1,372によりそれぞれ集光されて、対応するPMT
373,374に受光される。一方、低角度受光系38の
集光レンズ381,382には、付着異物eの散乱光の
みがそれぞれ入射して集光され、対応するPMT38
3,384に受光される。PMT373,374の受光信号
は、異物・欠陥検出回路51に入力され、これに設定さ
れた閾値VTH1と比較されてノイズが除去され、付着異
物eとCOPとがともに検出されて、それぞれの検出信
号がA/D51eによりデジタル値に変換され、インタ
フェース53eに出力される。また、PMT383,3
84の受光信号は、付着異物検出回路52に入力して同
様にノイズが除去され、付着異物eのみが検出され、検
出信号がA/D52eによりデジタル値に変換され、イ
ンタフェース53eに出力される。The process for detecting adhered foreign matters and defects will be described with reference to FIG. 3. First, an initial value is set (step 100) and scanning is started (step 101). As a result, when the spot Sp is projected perpendicularly to the surface of the wafer 1 to start scanning, the scattered light of the adhering foreign matter e and COP
The scattered light of
Collected by 1,372 respectively, and corresponding PMT
The light is received by 373 and 374. On the other hand, only the scattered light of the adhering foreign matter e is made incident and condensed on the condenser lenses 381 and 382 of the low-angle light receiving system 38, respectively, and the corresponding PMT 38.
The light is received at 3,384. The received light signals of the PMTs 373 and 374 are input to the foreign matter / defect detection circuit 51, compared with a threshold value VTH1 set therein to remove noise, and both the adhering foreign matter e and COP are detected, and the respective detection signals are detected. Is converted into a digital value by the A / D 51e and output to the interface 53e. In addition, PMT383,3
The received light signal 84 is input to the adhered foreign matter detection circuit 52, noise is similarly removed, only the adhered foreign matter e is detected, and the detection signal is converted into a digital value by the A / D 52e and output to the interface 53e.
【0022】MPU53aは、異物検出プログラム54
aを実行して低角度受光と高角度受光の検出データをイ
ンタフェース53eから採取して(ステップ102)、
異物・欠陥区分けプログラム54bを実行して異物・欠
陥区分け処理を行う(ステップ103)。次に、MPU
53aは、異物の大きさ判定プログラム54cを実行し
て付着異物の大きさ判定をして(ステップ104)、次
に検出値カウントプログラム54dを実行して大きさに
応じて付着異物の数をカウントとし、付着異物の総計の
算出処理をし、さらに欠陥についも大きさに応じて欠陥
の数をカウントと欠陥の総計の算出処理をし、大きさと
その総計の算出処理をして(ステップ105)、ディス
プレイに欠陥あるいは、付着異物をそれぞれに、あるい
はこれらの両者をともに、例えば色分けしてマップとし
て出力する処理をする(ステップ106)。もちろん、
色分けせずに両者をマップ表示してもよい。その結果、
図7で示されるような異物マップが出力される。The MPU 53a has a foreign matter detection program 54.
a is executed to collect detection data of low-angle light reception and high-angle light reception from the interface 53e (step 102),
The foreign matter / defect classification program 54b is executed to perform foreign matter / defect classification processing (step 103). Next, MPU
53a executes the foreign matter size determination program 54c to determine the size of the attached foreign matter (step 104), and then executes the detection value counting program 54d to count the number of the attached foreign matter according to the size. Then, the total amount of adhered foreign matters is calculated, the number of defects is also counted according to the size of the defect, the total amount of defects is calculated, and the size and the total amount are calculated (step 105). A process for outputting a defect or an adhering foreign substance to the display, or both of them, for example, by color coding and outputting as a map (step 106). of course,
Both may be displayed in a map without color coding. as a result,
A foreign matter map as shown in FIG. 7 is output.
【0023】図4は、検査光学系3bとして図1におけ
る低角度受光系38のうち図面右側の受光系の集束レン
ズ382,PMT384の間にS偏光フィルタ385を
設けて、これらの光軸のウエハ1を基準とした仰角が約
14°(俯角は約76°)のブリュースター角に設定
し、図面左側の集束レンズ381,PMT383を削除
した受光系38aを設け、さらにこの削除した受光系に
換えて、ブリュースター角でP偏光のレーザスポットを
照射する投光光軸の仰角が約14°の投光系330を設
けたものである。そして、この検査光学系3bは、光学
系切換機構39により検査光学系3aと切換えられてウ
エハ1の上部に配置される。この切換えは、検査光学系
3aによる高角度の受光系での検査の後にデータ処理装
置53により駆動制御回路55を介して行われる。d図
4は、この切換られた後の状態を示している。なお、検
査光学系3aと検査光学系3bとが共にウエハ1の上部
に配置できれば、光学系切換機構39を設けて光学系の
切換えを行う必要はない。FIG. 4 shows an inspection optical system 3b in which the S-polarization filter 385 is provided between the focusing lens 382 and the PMT 384 of the low-angle light receiving system 38 in FIG. The elevation angle is set to about 14 ° (the depression angle is about 76 °) based on 1, and a light receiving system 38a is provided by removing the focusing lenses 381 and PMT383 on the left side of the drawing. In addition, a light projecting system 330 for irradiating a P-polarized laser spot at a Brewster's angle and having an elevation angle of a light projecting optical axis of about 14 ° is provided. Then, the inspection optical system 3b is switched to the inspection optical system 3a by the optical system switching mechanism 39 and arranged on the wafer 1. This switching is performed by the data processing device 53 via the drive control circuit 55 after the inspection of the high-angle light receiving system by the inspection optical system 3a. d FIG. 4 shows the state after this switching. If both the inspection optical system 3a and the inspection optical system 3b can be arranged above the wafer 1, it is not necessary to provide the optical system switching mechanism 39 to switch the optical system.
【0024】検査光学系3bの投光系330は、P偏光
の光を照射するアルゴン(Ar)レーザ光源331を設
け、これにコリメータレンズ332と2個のミラー33
3,334、さらに集束レンズ335を図示の位置に付
加したものである。付着異物検出回路52のアンプ52
bの閾値は、ここでは、検出光のレベルとノイズとの関
係に合わせてVTH3になっている。データ処理装置53
の構成は前記と同じである。その処理としては、データ
処理装置53の検査データの採取が高角度受光系37の
異物・欠陥検出がウエハ1の全面走査により行われて検
査位置データのとともに検査データが先ず採取され、そ
の後に、検査光学系3bに切換えられて、ウエハ1の全
面走査により行われてここで採取された検査位置データ
が先に採取されたデータの検査位置と対応させて同じ検
査位置に記憶される。この点で図3の前記のステップ1
01,102の一度にデータを採取する処理とは相違す
る。その後の処理は、図3のフローチャートのステップ
103以降の処理と同じである。The light projecting system 330 of the inspection optical system 3b is provided with an argon (Ar) laser light source 331 for irradiating P-polarized light, and a collimator lens 332 and two mirrors 33 are provided on this.
3, 334 and a focusing lens 335 are added to the positions shown in the figure. Amplifier 52 of foreign matter detection circuit 52
Here, the threshold value of b is VTH3 according to the relationship between the level of detected light and noise. Data processing device 53
Is the same as above. As the processing, the inspection data of the data processing device 53 is sampled by detecting the foreign matters and defects of the high-angle light receiving system 37 by scanning the entire surface of the wafer 1, and the inspection data is first sampled together with the inspection position data. The inspection optical system 3b is switched to, and the inspection position data sampled here by scanning the entire surface of the wafer 1 is stored at the same inspection position corresponding to the inspection position of the previously sampled data. In this regard, step 1 of FIG.
This is different from the process of collecting data at once in 01 and 102. The subsequent processing is the same as the processing after step 103 in the flowchart of FIG.
【0025】これにより、図5の(a)に示すように、
ウエハ1の表面にある付着異物eのランダム偏光の散乱
光は、受光系38aの集光レンズ382により集光され
て、S偏光フィルタ385によりS偏光成分が抽出され
る。一方、表面および内部に存在するCOPとOSF
は、透過光T[P]を散乱し、このランダム偏光の散乱光
Sc は、その一部分が集光レンズ382により集光さ
れ、S偏光フィルタ385によりS偏光成分が抽出され
る。これが付着異物の散乱光Se のS偏光成分より弱い
ので、付着異物eの散乱光Se は S/N比がほとんど低下
せずにPMT383に受光される。PMT383が出力
する異物検出信号は、付着異物検出回路52に入力され
て、閾値VTH3と比較されてノイズが除去され、0.1
μm以下までの付着異物eと、そのそれぞれの大きさと
が検出される。なお、図では、データ処理の説明の都合
上、PMT383の出力を付着異物検出回路52に入力
しているが、本来は、切換処理によりPMT383の出
力を異物・欠陥検出回路51に入力してもよい。この場
合には、差動アンプ51cの閾値をVTH1からTVH3に切
り替える。このようにすれば付着異物検出回路52が不
要になる。As a result, as shown in FIG.
The randomly polarized scattered light of the adhering foreign matter e on the surface of the wafer 1 is condensed by the condenser lens 382 of the light receiving system 38a, and the S polarized component is extracted by the S polarizing filter 385. On the other hand, COP and OSF existing on the surface and inside
Scatters the transmitted light T [P], and a part of this randomly polarized scattered light Sc is condensed by the condenser lens 382, and the S polarized component is extracted by the S polarizing filter 385. Since this is weaker than the S-polarized component of the scattered light Se of the adhered foreign matter, the scattered light Se of the adhered foreign matter e is received by the PMT 383 with almost no decrease in the S / N ratio. The foreign matter detection signal output from the PMT 383 is input to the adhered foreign matter detection circuit 52 and compared with the threshold value VTH3 to remove noise.
The adhering foreign matter e up to μm or less and their respective sizes are detected. In the figure, the output of the PMT 383 is input to the adhered foreign matter detection circuit 52 for convenience of explanation of the data processing, but originally, even if the output of the PMT 383 is input to the foreign matter / defect detection circuit 51 by the switching processing. Good. In this case, the threshold of the differential amplifier 51c is switched from VTH1 to TVH3. In this way, the adhered foreign matter detection circuit 52 becomes unnecessary.
【0026】図6に上記により計測された付着異物eと
COPの個数データの一例を示す。図6においては、横
軸を洗浄回数n、縦軸を個数Nとし、それぞれ2μm以
上の付着異物eの個数NeとCOPの個数Ncについての
曲線を示す。付着異物eの個数Neは、当然ながら洗浄
回数nにほぼ反比例して減少する。これに対してCOP
の個数NCは、洗浄回数nが増す伴ってかなりの増加率
で増加している。ただし、個数Ncは、インゴットの引
き上げ速度が大きいほど大きい。ウエハ製造メーカにお
いては、このような計測データを参考として、最適な洗
浄回数nなどを決定することができる。なお、この発明
は、ブランクウエハに限定されるものではなく、例え
ば、ウエハにアルミニユームAl等のデポジション膜が
形成された場合に、その膜厚が0.数μm程度のもので
あれば、欠陥と付着異物との検出可能であることが確認
されている。また、前記のデータ処理装置における付着
異物と結晶欠陥とのデータの区分け処理としては、例え
ば、高角度受光系により受光したスポットからの散乱光
の検出データに対して同時に低角度受光系により受光さ
れた場合にそのデータにフラグを立てることにより行う
こともできる。FIG. 6 shows an example of the number data of the adhering foreign matter e and COP measured as described above. In FIG. 6, the horizontal axis represents the number of cleaning times n, and the vertical axis represents the number N, showing curves for the number Ne of adhering foreign matter e of 2 μm or more and the number Nc of COPs. The number Ne of the adhering foreign matter e naturally decreases in inverse proportion to the number of times of cleaning n. On the other hand, COP
The number NC of Nos. Increases with a considerable increase rate as the number of cleaning times n increases. However, the number Nc increases as the pulling speed of the ingot increases. The wafer manufacturer can determine the optimum cleaning number n and the like with reference to such measurement data. The present invention is not limited to blank wafers. For example, when a deposition film of aluminum Al or the like is formed on a wafer, the film thickness of the deposition film is 0. It has been confirmed that a defect and an adhering foreign matter can be detected if the thickness is about several μm. Further, as the processing for separating the data of the adhered foreign matter and the crystal defect in the data processing device, for example, the detection data of the scattered light from the spot received by the high angle light receiving system is simultaneously received by the low angle light receiving system. In that case, it can be done by setting a flag in the data.
【0027】[0027]
【発明の効果】以上説明してきたように、この発明にあ
っては、ウエハの表面を基準とした仰角が30°以下の
低角度受光系を設けてウエハをレーザ光により走査して
この走査に応じて付着異物を検出し、これよりも大きな
仰角の高角度受光を設けて前記の走査に応じて付着異物
と欠陥とを検出して、同じ走査位置において高角度受光
系でのみ検出されたものをウエハの欠陥の検出とし、低
角度受光系と高角度受光でともに検出されたものを付着
異物の検出とするので、付着異物と結晶等の欠陥を区別
して検出することができる。As described above, according to the present invention, a low-angle light receiving system having an elevation angle of 30 ° or less with respect to the surface of the wafer is provided, and the wafer is scanned with laser light to perform this scanning. According to the above-mentioned scanning, the adhered foreign matter is detected, and the high-angle light receiving with an elevation angle larger than this is provided to detect the adhered foreign matter and the defect in accordance with the above-mentioned scanning, and it is detected only by the high-angle light receiving system at the same scanning position. Is detected as a wafer defect, and the foreign matter detected by both the low-angle light receiving system and the high-angle light reception is detected as the adhering foreign matter, so that the adhering foreign matter and defects such as crystals can be distinguished and detected.
【図1】図1は、この発明のウエハ表面検査装置の検査
光学系の説明図である。FIG. 1 is an explanatory diagram of an inspection optical system of a wafer surface inspection apparatus of the present invention.
【図2】図2は、そのデータ処理部の説明図である。FIG. 2 is an explanatory diagram of a data processing unit thereof.
【図3】図3は、その付着異物と欠陥の検出処理のフロ
ーチャートである。FIG. 3 is a flowchart of a detection process of the adhering foreign matter and the defect.
【図4】図4は、図1における光学系の異物検出系にさ
らにブリュースター角を適用した実施例の説明図であ
る。FIG. 4 is an explanatory diagram of an embodiment in which a Brewster angle is further applied to the foreign matter detection system of the optical system in FIG.
【図5】図5は、付着異物とCOPの散乱光状態の説明
図であって、(a)は、付着異物の場合であり、(b)
は、ウエハ表面にCOPがある場合、そして(c)は、
ウエハ内部にCOPがある場合である。FIG. 5 is an explanatory diagram of a scattered light state of an adhering foreign substance and COP, (a) is a case of the adhering foreign substance, and (b) is a diagram.
If there is a COP on the wafer surface, and (c)
This is the case where there is a COP inside the wafer.
【図6】図6は、計測データの一例を示す付着異物の個
数と洗浄回数との相関関係の説明図である。FIG. 6 is an explanatory diagram of a correlation between the number of adhered foreign matters and the number of times of cleaning, showing an example of measurement data.
【図7】図7は、この発明の基礎となる付着異物とCO
Pの散乱光の指向特性の説明図であって、(a)は、CZ
OCHRALSKI法により製造されたウエハについての仰角が
40°〜50°の範囲の高角度で受光したときの異物検
出データのマップ図であり、(b)は、前記のウエハに
ついて5°〜20°の低角度で受光したとき同じマップ
図である。また、(c)は、FLOATING ZONE法により製
造されたウエハについての仰角が40°〜50°の範囲
の高角度で受光したときの異物検出データのマップ図で
あり、(d)は、前記のウエハについて5°〜20°の
低角度で受光したとき同じマップ図である。FIG. 7 is a diagram showing an adhering foreign substance and CO which are the basis of the present invention.
It is explanatory drawing of the directivity characteristic of the scattered light of P, (a) is CZ
It is a map figure of the foreign material detection data when the elevation angle about the wafer manufactured by the OCHRALSKI method is received at a high angle in the range of 40 ° to 50 °, and FIG. It is the same map figure when light is received at a low angle. Further, (c) is a map diagram of foreign matter detection data when a wafer manufactured by the FLOATING ZONE method is received at a high angle of elevation of 40 ° to 50 °, and (d) is the map above. It is the same map figure when light is received about the wafer at a low angle of 5 ° to 20 °.
【図8】図8は、ウエハの内部にある結晶欠陥(CO
P)と表面にある酸化物層(OSF)の説明図である。FIG. 8 is a diagram showing crystal defects (CO
It is an explanatory view of P) and an oxide layer (OSF) on the surface.
【図9】図9は、ブリュースター角についての実験デー
タと論理値との関係を示すグラフ図である。FIG. 9 is a graph showing a relationship between experimental data and a logical value for Brewster's angle.
【図10】図10は、従来のウエハ表面検査装置であっ
て、(a)は、その構成図、(b)は、その異物につい
ての照射光の散乱状態の説明図である。10A and 10B show a conventional wafer surface inspection apparatus, wherein FIG. 10A is a configuration diagram thereof, and FIG. 10B is an explanatory diagram of a scattered state of irradiation light for the foreign matter.
【図11】図11は、結晶欠陥(COP)の説明図であ
る。FIG. 11 is an explanatory diagram of crystal defects (COP).
【図12】図12は、COの形状の説明図である。FIG. 12 is an explanatory diagram of the shape of CO.
1…ウエハ、2…回転・移動テーブル、3,3a,3b
…検査光学系、4…データ処理部、37…高角度受光
系、38…低角度受光系、373,374,383,3
84…光電子増倍管(PMT)、51…異物・欠陥検出
回路、51a,52a…加算回路、51b,52b…ア
ンプ、51c,52c差動アンプ、51d,52d…ピ
ークホールド回路、51e,52e…A/D変換回路
(A/D)、52…付着異物検出回路、53…データ処
理装置、53a…マイクロプロセッサ(MPU)、53
b…メモリ、53c…ディスプレイ、53d…プリン
タ、54a…異物検出プログラム、54b…異物・欠陥
区分けプログラム、54c…異物の大きさ判定プログラ
ム、54d…検出値カウントプログラム、54e…テー
ブル位置制御プログラム、54f…異物データ領域、5
4g…欠陥データ領域、55…駆動制御回路。1 ... Wafer, 2 ... Rotating / moving table, 3, 3a, 3b
... inspection optical system, 4 ... data processing unit, 37 ... high-angle light receiving system, 38 ... low-angle light receiving system, 373, 374, 383, 3
84 ... Photomultiplier tube (PMT), 51 ... Foreign matter / defect detection circuit, 51a, 52a ... Addition circuit, 51b, 52b ... Amplifier, 51c, 52c Differential amplifier, 51d, 52d ... Peak hold circuit, 51e, 52e ... A / D conversion circuit (A / D), 52 ... Adhesion foreign matter detection circuit, 53 ... Data processing device, 53a ... Microprocessor (MPU), 53
b ... memory, 53c ... display, 53d ... printer, 54a ... foreign matter detection program, 54b ... foreign matter / defect classification program, 54c ... foreign matter size determination program, 54d ... detection value counting program, 54e ... table position control program, 54f … Foreign matter data area, 5
4g ... Defect data area, 55 ... Drive control circuit.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 繁晴 東京都渋谷区東3丁目16番3号 日立電子 エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeharu Iizuka 3-16-3 Higashi, Shibuya-ku, Tokyo Inside Hitachi Electronics Engineering Co., Ltd.
Claims (5)
下の角度をなす低角度受光系と、これよりも大きな仰角
の高角度受光系とを有し、前記ウエハをレーザ光により
走査して、前記低角度受光系と前記高角度受光が前記レ
ーザ光の散乱光を受光して前記走査に対応して異物検出
を行い、同じ走査位置において前記高角度受光系でのみ
検出されたものを前記ウエハの欠陥の検出とし、前記低
角度受光系で検出されたものを付着異物の検出とするウ
エハ表面検査方法。1. A low-angle light receiving system having an elevation angle of 30 ° or less with respect to a surface of a wafer and a high-angle light receiving system having an elevation angle larger than this, and the wafer is scanned with laser light. Then, the low-angle light receiving system and the high-angle light receiving device receive scattered light of the laser light to detect foreign matter corresponding to the scanning, and those detected only by the high-angle light receiving system at the same scanning position. A method for inspecting a wafer surface, which comprises detecting defects in the wafer and detecting foreign matter adhering to the wafer detected by the low-angle light receiving system.
下の角度をなす低角度受光系と、これよりも大きな仰角
の高角度受光系とを有し、前記ウエハをレーザ光により
走査して、前記低角度受光系と前記高角度受光が前記レ
ーザ光の散乱光を受光して前記走査に対応して異物検出
を行い、同じ走査位置において前記低角度受光系で検出
されずに前記高角度受光系でのみ検出されたものを前記
ウエハの欠陥の検出とし、前記低角度受光系と前記高角
度受光でともに検出されたものを付着異物の検出とする
ウエハ表面検査方法。2. A low-angle light receiving system having an elevation angle of 30 ° or less with respect to the surface of the wafer and a high-angle light receiving system having an elevation angle larger than this, and the wafer is scanned with laser light. Then, the low-angle light receiving system and the high-angle light receiving device receive scattered light of the laser light to detect foreign matter corresponding to the scanning, and the high-angle light receiving system does not detect the foreign matter at the same scanning position. A wafer surface inspection method in which defects detected on only the angle light receiving system are detected as defects of the wafer, and those detected by both the low angle light receiving system and the high angle light receiving are detected as adhering foreign matters.
前記レーザ光のスポットを照射する投光光学系を有し、
前記低角度受光系の角度は、5°〜20°の範囲にあっ
て、前記高角度受光系の角度は、35°〜60°の範囲
にある請求項1記載のウエハ表面検査方法。3. A projection optical system for irradiating a spot of the laser light in a vertical direction from above the wafer,
The wafer surface inspection method according to claim 1, wherein the angle of the low-angle light receiving system is in the range of 5 ° to 20 °, and the angle of the high-angle light receiving system is in the range of 35 ° to 60 °.
角度で斜め方向からP偏光の前記レーザスポットを照射
する投光光学系を有し、前記低角度受光系の角度が前記
ブリュースター角に対応する角度に選択され、かつ、S
偏光の散乱光を受光するものであり、前記高角度受光系
の角度は、40°〜50°の範囲にある請求項2記載の
ウエハ表面検査方法。4. A projection optical system for irradiating the P-polarized laser spot from an oblique direction at an angle corresponding to the Brewster angle of the wafer, and the angle of the low-angle light receiving system corresponds to the Brewster angle. Is selected as the angle to
The wafer surface inspection method according to claim 2, wherein the scattered light of polarized light is received, and the angle of the high-angle light receiving system is in the range of 40 ° to 50 °.
準とした仰角が30°以下の角度をなす低角度受光系
と、第2の光電変換器を有し前記低角度受光系よりも大
きな仰角の高角度受光系と、前記ウエハをレーザ光によ
り走査する走査機構と、前記第1の光電変換器から第1
の検出信号を受け、前記第2の光電変換器から第2の検
出信号を受けて所定値以上の前記第1の検出信号を受け
たときあるいは所定以上の前記第1の検出信号と所定値
以上の前記第2の検出信号を受けたときに付着異物検出
とし、所定以上の前記第1の検出信号を受けておらず、
前記所定値以上の前記第2の検出信号のみを受けたとき
に欠陥検出とするデータ処理装置とを備えるウエハ表面
検査装置。5. A low-angle light receiving system having a first photoelectric converter and having an elevation angle of 30 ° or less with respect to a surface of a wafer, and a low-angle light receiving system having a second photoelectric converter. A high-angle light receiving system having a larger elevation angle, a scanning mechanism for scanning the wafer with a laser beam, and a first photoelectric converter to a first
When the second detection signal is received from the second photoelectric converter and the first detection signal having a predetermined value or more is received, or when the first detection signal having a predetermined value or more and the predetermined value or more is received. Foreign matter is detected when the second detection signal is received, and the first detection signal of a predetermined value or more is not received,
A wafer surface inspection apparatus comprising: a data processing apparatus which detects a defect when it receives only the second detection signal equal to or more than the predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11207396A JP3686160B2 (en) | 1995-04-10 | 1996-04-09 | Wafer surface inspection method and inspection apparatus |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-108961 | 1995-04-10 | ||
JP10896195 | 1995-04-10 | ||
JP8461996 | 1996-03-13 | ||
JP8-84619 | 1996-03-13 | ||
JP11207396A JP3686160B2 (en) | 1995-04-10 | 1996-04-09 | Wafer surface inspection method and inspection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09304289A true JPH09304289A (en) | 1997-11-28 |
JP3686160B2 JP3686160B2 (en) | 2005-08-24 |
Family
ID=27304604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11207396A Expired - Lifetime JP3686160B2 (en) | 1995-04-10 | 1996-04-09 | Wafer surface inspection method and inspection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3686160B2 (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003234A1 (en) * | 1998-07-08 | 2000-01-20 | Applied Materials, Inc. | Automatic defect classification with invariant core classes |
KR100327340B1 (en) * | 1999-09-30 | 2002-03-06 | 윤종용 | Inspection method of wafer surface |
JP2002098645A (en) * | 2000-09-26 | 2002-04-05 | Hitachi Electronics Eng Co Ltd | Surface inspecting apparatus and method for substrate |
JP2003194710A (en) * | 2001-12-21 | 2003-07-09 | Shiseido Co Ltd | Method and apparatus for measuring refractive index of light scattering body |
US6731384B2 (en) * | 2000-10-10 | 2004-05-04 | Hitachi, Ltd. | Apparatus for detecting foreign particle and defect and the same method |
JP2006098154A (en) * | 2004-09-29 | 2006-04-13 | Hitachi High-Technologies Corp | Defect inspection method and apparatus |
US7187438B2 (en) * | 2001-03-01 | 2007-03-06 | Hitachi, Ltd. | Apparatus and method for inspecting defects |
JP2007132949A (en) * | 2006-12-28 | 2007-05-31 | Sumco Techxiv株式会社 | Method of detecting defect in semiconductor wafer |
US7242016B2 (en) | 2000-03-08 | 2007-07-10 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
JP2007212479A (en) * | 2007-05-07 | 2007-08-23 | Hitachi Ltd | Defect inspection apparatus and method |
JP2007333476A (en) * | 2006-06-13 | 2007-12-27 | Fujitsu Ltd | Defect inspection method and defect inspection apparatus |
JP2008014848A (en) * | 2006-07-07 | 2008-01-24 | Hitachi High-Technologies Corp | Surface inspection method and surface inspection apparatus |
JP2008020374A (en) * | 2006-07-14 | 2008-01-31 | Hitachi High-Technologies Corp | Defect inspection method and apparatus |
JP2008516233A (en) * | 2004-10-04 | 2008-05-15 | ケーエルエー−テンカー テクノロジィース コーポレイション | Enhanced surface inspection system |
JP2008170222A (en) * | 2007-01-10 | 2008-07-24 | Fujitsu Ltd | Inspection method, inspection system, and inspection apparatus |
JP2008241570A (en) * | 2007-03-28 | 2008-10-09 | Hitachi High-Technologies Corp | Defect inspection apparatus and defect inspection method |
JP2008268141A (en) * | 2007-04-25 | 2008-11-06 | Hitachi High-Technologies Corp | Defect inspection apparatus and method |
JP2009031251A (en) * | 2007-06-28 | 2009-02-12 | Hitachi High-Technologies Corp | Optical inspection method and optical inspection apparatus |
US7557911B2 (en) | 2006-07-31 | 2009-07-07 | Hitachi High-Technologies Corporation | Appearance inspection apparatus |
JP2009257972A (en) * | 2008-04-17 | 2009-11-05 | Canon Inc | Foreign matter inspection apparatus, exposure apparatus, and method of manufacturing device |
US7675613B2 (en) | 2008-02-01 | 2010-03-09 | Hitachi High-Technologies Corporation | Defect inspection method |
US7710557B2 (en) | 2007-04-25 | 2010-05-04 | Hitachi High-Technologies Corporation | Surface defect inspection method and apparatus |
US7719673B2 (en) | 2006-12-20 | 2010-05-18 | Hitachi High-Technologies Corporation | Defect inspecting device for sample surface and defect detection method therefor |
WO2010106596A1 (en) * | 2009-03-19 | 2010-09-23 | 株式会社 日立ハイテクノロジーズ | Examination method and examination device |
US7869024B2 (en) | 2008-03-31 | 2011-01-11 | Hitachi High-Technologies Corporation | Method and its apparatus for inspecting defects |
US8120766B2 (en) | 2008-09-10 | 2012-02-21 | Hitachi High-Technologies Corporation | Inspection apparatus |
JP2012068270A (en) * | 2012-01-13 | 2012-04-05 | Hitachi High-Technologies Corp | Defect inspection method and device therefor |
US8189185B2 (en) | 2007-06-28 | 2012-05-29 | Hitachi High-Technologies Corporation | Optical inspection method and optical inspection system |
US8427634B2 (en) | 2006-07-14 | 2013-04-23 | Hitachi High-Technologies Corporation | Defect inspection method and apparatus |
US8477302B2 (en) | 2008-03-28 | 2013-07-02 | Hitachi High-Technologies Corporation | Defect inspection apparatus |
JP2013174599A (en) * | 2013-04-01 | 2013-09-05 | Hitachi Ltd | Device and method for surface inspection |
JP2013238534A (en) * | 2012-05-16 | 2013-11-28 | Shin Etsu Handotai Co Ltd | Wafer surface evaluation method |
US8599369B2 (en) | 2009-06-18 | 2013-12-03 | Hitachi High-Technologies Corporation | Defect inspection device and inspection method |
US8638429B2 (en) | 2009-02-27 | 2014-01-28 | Hitachi High-Technologies Corporation | Defect inspecting method and defect inspecting apparatus |
US8670116B2 (en) | 2010-07-30 | 2014-03-11 | Hitachi High-Technologies Corporation | Method and device for inspecting for defects |
US8711347B2 (en) | 2010-06-03 | 2014-04-29 | Hitachi High-Technologies Corporation | Defect inspection method and device therefor |
US8755041B2 (en) | 2006-07-14 | 2014-06-17 | Hitachi High-Technologies Corporation | Defect inspection method and apparatus |
US8804110B2 (en) | 2010-07-30 | 2014-08-12 | Hitachi High-Technologies Corporation | Fault inspection device and fault inspection method |
JP2014211440A (en) * | 2014-06-02 | 2014-11-13 | 株式会社日立製作所 | Device and method for surface inspection |
JP2014224831A (en) * | 2014-08-25 | 2014-12-04 | 株式会社日立ハイテクノロジーズ | Defect inspection method and defect inspection device |
US8908172B2 (en) | 2010-02-26 | 2014-12-09 | Hitachi High-Technologies Corporation | Defect inspection device and method of inspecting defect |
US8922764B2 (en) | 2010-12-27 | 2014-12-30 | Hitachi High-Technologies Corporation | Defect inspection method and defect inspection apparatus |
JP2015070116A (en) * | 2013-09-30 | 2015-04-13 | 信越半導体株式会社 | Wafer evaluation method |
US9041921B2 (en) | 2010-01-29 | 2015-05-26 | Hitachi High-Technologies Corporation | Defect inspection device and defect inspection method |
US9255888B2 (en) | 2011-11-24 | 2016-02-09 | Hitachi High-Technologies Corporation | Defect inspection method and device for same |
US9267898B2 (en) | 2011-03-02 | 2016-02-23 | Hitachi, Ltd. | Optical inspection method and optical inspection apparatus |
US9291574B2 (en) | 2011-09-28 | 2016-03-22 | Hitachi High-Technologies Corporation | Defect inspection method and defect inspection device |
US9360434B2 (en) | 2012-03-27 | 2016-06-07 | Hitachi, Ltd. | Optical inspection apparatus and method thereof |
CN109187580A (en) * | 2018-11-01 | 2019-01-11 | 上海超硅半导体有限公司 | A kind of detection method of silicon polished defect |
CN111665259A (en) * | 2019-03-08 | 2020-09-15 | 深圳中科飞测科技有限公司 | Detection device and detection method |
US11143600B2 (en) | 2018-02-16 | 2021-10-12 | Hitachi High-Tech Corporation | Defect inspection device |
-
1996
- 1996-04-09 JP JP11207396A patent/JP3686160B2/en not_active Expired - Lifetime
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003234A1 (en) * | 1998-07-08 | 2000-01-20 | Applied Materials, Inc. | Automatic defect classification with invariant core classes |
KR100327340B1 (en) * | 1999-09-30 | 2002-03-06 | 윤종용 | Inspection method of wafer surface |
US7417244B2 (en) | 2000-03-08 | 2008-08-26 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
US7952085B2 (en) | 2000-03-08 | 2011-05-31 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
US8729514B2 (en) | 2000-03-08 | 2014-05-20 | Hitachi High-Technologies Corporaation | Surface inspection apparatus and method thereof |
US9551670B2 (en) | 2000-03-08 | 2017-01-24 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
US7242016B2 (en) | 2000-03-08 | 2007-07-10 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
JP2002098645A (en) * | 2000-09-26 | 2002-04-05 | Hitachi Electronics Eng Co Ltd | Surface inspecting apparatus and method for substrate |
US6731384B2 (en) * | 2000-10-10 | 2004-05-04 | Hitachi, Ltd. | Apparatus for detecting foreign particle and defect and the same method |
US7315366B2 (en) | 2001-03-01 | 2008-01-01 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
US7511806B2 (en) | 2001-03-01 | 2009-03-31 | Hitachi High-Tech Electronics Engineering Co., Ltd. | Apparatus and method for inspecting defects |
US7187438B2 (en) * | 2001-03-01 | 2007-03-06 | Hitachi, Ltd. | Apparatus and method for inspecting defects |
JP2003194710A (en) * | 2001-12-21 | 2003-07-09 | Shiseido Co Ltd | Method and apparatus for measuring refractive index of light scattering body |
JP2006098154A (en) * | 2004-09-29 | 2006-04-13 | Hitachi High-Technologies Corp | Defect inspection method and apparatus |
JP4500641B2 (en) * | 2004-09-29 | 2010-07-14 | 株式会社日立ハイテクノロジーズ | Defect inspection method and apparatus |
JP2008516233A (en) * | 2004-10-04 | 2008-05-15 | ケーエルエー−テンカー テクノロジィース コーポレイション | Enhanced surface inspection system |
JP2007333476A (en) * | 2006-06-13 | 2007-12-27 | Fujitsu Ltd | Defect inspection method and defect inspection apparatus |
US7616299B2 (en) | 2006-07-07 | 2009-11-10 | Hitachi High-Technologies Corporation | Surface inspection method and surface inspection apparatus |
JP2008014848A (en) * | 2006-07-07 | 2008-01-24 | Hitachi High-Technologies Corp | Surface inspection method and surface inspection apparatus |
US7864310B2 (en) | 2006-07-07 | 2011-01-04 | Hitachi High-Technologies Corporation | Surface inspection method and surface inspection apparatus |
US8755041B2 (en) | 2006-07-14 | 2014-06-17 | Hitachi High-Technologies Corporation | Defect inspection method and apparatus |
JP2008020374A (en) * | 2006-07-14 | 2008-01-31 | Hitachi High-Technologies Corp | Defect inspection method and apparatus |
US8427634B2 (en) | 2006-07-14 | 2013-04-23 | Hitachi High-Technologies Corporation | Defect inspection method and apparatus |
US8462327B2 (en) | 2006-07-31 | 2013-06-11 | Hitachi High-Technologies Corporation | Appearance inspection apparatus |
US7557911B2 (en) | 2006-07-31 | 2009-07-07 | Hitachi High-Technologies Corporation | Appearance inspection apparatus |
US8699017B2 (en) | 2006-07-31 | 2014-04-15 | Hitachi High-Technologies Corporation | Appearance inspection apparatus |
US7773210B2 (en) | 2006-07-31 | 2010-08-10 | Hitachi High-Technologies Corporation | Appearance inspection apparatus |
US8169606B2 (en) | 2006-07-31 | 2012-05-01 | Hitachi High-Technologies Corporation | Appearance inspection apparatus |
US7719673B2 (en) | 2006-12-20 | 2010-05-18 | Hitachi High-Technologies Corporation | Defect inspecting device for sample surface and defect detection method therefor |
JP2007132949A (en) * | 2006-12-28 | 2007-05-31 | Sumco Techxiv株式会社 | Method of detecting defect in semiconductor wafer |
JP2008170222A (en) * | 2007-01-10 | 2008-07-24 | Fujitsu Ltd | Inspection method, inspection system, and inspection apparatus |
JP2008241570A (en) * | 2007-03-28 | 2008-10-09 | Hitachi High-Technologies Corp | Defect inspection apparatus and defect inspection method |
US8558999B2 (en) | 2007-03-28 | 2013-10-15 | Hitachi High-Technologies Corporation | Defect inspection apparatus and method utilizing multiple inspection conditions |
US8934092B2 (en) | 2007-04-25 | 2015-01-13 | Hitachi High-Technologies Corporation | Surface defect inspection method and apparatus |
US7710557B2 (en) | 2007-04-25 | 2010-05-04 | Hitachi High-Technologies Corporation | Surface defect inspection method and apparatus |
US8400629B2 (en) | 2007-04-25 | 2013-03-19 | Hitachi High-Technologies Corporation | Surface defect inspection method and apparatus |
JP2008268141A (en) * | 2007-04-25 | 2008-11-06 | Hitachi High-Technologies Corp | Defect inspection apparatus and method |
US8035808B2 (en) | 2007-04-25 | 2011-10-11 | Hitachi High-Technologies Corporation | Surface defect inspection method and apparatus |
JP2007212479A (en) * | 2007-05-07 | 2007-08-23 | Hitachi Ltd | Defect inspection apparatus and method |
JP2009031251A (en) * | 2007-06-28 | 2009-02-12 | Hitachi High-Technologies Corp | Optical inspection method and optical inspection apparatus |
US8189185B2 (en) | 2007-06-28 | 2012-05-29 | Hitachi High-Technologies Corporation | Optical inspection method and optical inspection system |
US8482727B2 (en) | 2008-02-01 | 2013-07-09 | Hitachi High-Technologies Corporation | Defect inspection method |
US8115915B2 (en) | 2008-02-01 | 2012-02-14 | Hitachi High-Technologies Corporation | Defect inspection method and apparatus |
US7916288B2 (en) | 2008-02-01 | 2011-03-29 | Hitachi High-Technologies Corporation | Defect inspection method |
US7675613B2 (en) | 2008-02-01 | 2010-03-09 | Hitachi High-Technologies Corporation | Defect inspection method |
US8477302B2 (en) | 2008-03-28 | 2013-07-02 | Hitachi High-Technologies Corporation | Defect inspection apparatus |
US8314929B2 (en) | 2008-03-31 | 2012-11-20 | Hitachi High-Technologies Corporation | Method and its apparatus for inspecting defects |
US7869024B2 (en) | 2008-03-31 | 2011-01-11 | Hitachi High-Technologies Corporation | Method and its apparatus for inspecting defects |
US7965386B2 (en) | 2008-03-31 | 2011-06-21 | Hitachi High-Technologies Corporation | Method and its apparatus for inspecting defects |
US8339568B2 (en) | 2008-04-17 | 2012-12-25 | Canon Kabushiki Kaisha | Foreign particle inspection apparatus, exposure apparatus, and method of manufacturing device |
JP2009257972A (en) * | 2008-04-17 | 2009-11-05 | Canon Inc | Foreign matter inspection apparatus, exposure apparatus, and method of manufacturing device |
US8264679B2 (en) | 2008-09-10 | 2012-09-11 | Hitachi High-Technologies Corporation | Inspection apparatus |
US9506872B2 (en) | 2008-09-10 | 2016-11-29 | Hitachi High-Technologies Corporation | Inspection apparatus |
US8120766B2 (en) | 2008-09-10 | 2012-02-21 | Hitachi High-Technologies Corporation | Inspection apparatus |
US8705026B2 (en) | 2008-09-10 | 2014-04-22 | Hitachi High-Technologies Corporation | Inspection apparatus |
US8638429B2 (en) | 2009-02-27 | 2014-01-28 | Hitachi High-Technologies Corporation | Defect inspecting method and defect inspecting apparatus |
US9841384B2 (en) | 2009-02-27 | 2017-12-12 | Hitachi High-Technologies Corporation | Defect inspecting method and defect inspecting apparatus |
US10254235B2 (en) | 2009-02-27 | 2019-04-09 | Hitachi High-Technologies Corporation | Defect inspecting method and defect inspecting apparatus |
US9228960B2 (en) | 2009-02-27 | 2016-01-05 | Hitachi High-Technologies Corporation | Defect inspecting method and defect inspecting apparatus |
WO2010106596A1 (en) * | 2009-03-19 | 2010-09-23 | 株式会社 日立ハイテクノロジーズ | Examination method and examination device |
US8587777B2 (en) | 2009-03-19 | 2013-11-19 | Hitachi High-Technologies Corporation | Examination method and examination device |
JP2010217129A (en) * | 2009-03-19 | 2010-09-30 | Hitachi High-Technologies Corp | Inspecting method and device |
US8599369B2 (en) | 2009-06-18 | 2013-12-03 | Hitachi High-Technologies Corporation | Defect inspection device and inspection method |
US9041921B2 (en) | 2010-01-29 | 2015-05-26 | Hitachi High-Technologies Corporation | Defect inspection device and defect inspection method |
US8908172B2 (en) | 2010-02-26 | 2014-12-09 | Hitachi High-Technologies Corporation | Defect inspection device and method of inspecting defect |
US8711347B2 (en) | 2010-06-03 | 2014-04-29 | Hitachi High-Technologies Corporation | Defect inspection method and device therefor |
US8670116B2 (en) | 2010-07-30 | 2014-03-11 | Hitachi High-Technologies Corporation | Method and device for inspecting for defects |
US8804110B2 (en) | 2010-07-30 | 2014-08-12 | Hitachi High-Technologies Corporation | Fault inspection device and fault inspection method |
US8922764B2 (en) | 2010-12-27 | 2014-12-30 | Hitachi High-Technologies Corporation | Defect inspection method and defect inspection apparatus |
US9267898B2 (en) | 2011-03-02 | 2016-02-23 | Hitachi, Ltd. | Optical inspection method and optical inspection apparatus |
US9470640B2 (en) | 2011-09-28 | 2016-10-18 | Hitachi High-Technologies Corporation | Defect inspection method and defect inspection device |
US9291574B2 (en) | 2011-09-28 | 2016-03-22 | Hitachi High-Technologies Corporation | Defect inspection method and defect inspection device |
US9255888B2 (en) | 2011-11-24 | 2016-02-09 | Hitachi High-Technologies Corporation | Defect inspection method and device for same |
US9488596B2 (en) | 2011-11-24 | 2016-11-08 | Hitachi High-Technologies Corporation | Defect inspection method and device for same |
JP2012068270A (en) * | 2012-01-13 | 2012-04-05 | Hitachi High-Technologies Corp | Defect inspection method and device therefor |
US9360434B2 (en) | 2012-03-27 | 2016-06-07 | Hitachi, Ltd. | Optical inspection apparatus and method thereof |
JP2013238534A (en) * | 2012-05-16 | 2013-11-28 | Shin Etsu Handotai Co Ltd | Wafer surface evaluation method |
JP2013174599A (en) * | 2013-04-01 | 2013-09-05 | Hitachi Ltd | Device and method for surface inspection |
JP2015070116A (en) * | 2013-09-30 | 2015-04-13 | 信越半導体株式会社 | Wafer evaluation method |
JP2014211440A (en) * | 2014-06-02 | 2014-11-13 | 株式会社日立製作所 | Device and method for surface inspection |
JP2014224831A (en) * | 2014-08-25 | 2014-12-04 | 株式会社日立ハイテクノロジーズ | Defect inspection method and defect inspection device |
US11143600B2 (en) | 2018-02-16 | 2021-10-12 | Hitachi High-Tech Corporation | Defect inspection device |
CN109187580A (en) * | 2018-11-01 | 2019-01-11 | 上海超硅半导体有限公司 | A kind of detection method of silicon polished defect |
CN111665259A (en) * | 2019-03-08 | 2020-09-15 | 深圳中科飞测科技有限公司 | Detection device and detection method |
Also Published As
Publication number | Publication date |
---|---|
JP3686160B2 (en) | 2005-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09304289A (en) | Method and apparatus for inspecting surface of wafer | |
US5903342A (en) | Inspection method and device of wafer surface | |
US5424536A (en) | Substrate internal defect and external particle detecting apparatus using s-polarized and p-polarized light | |
US7643139B2 (en) | Method and apparatus for detecting defects | |
JP5349742B2 (en) | Surface inspection method and surface inspection apparatus | |
EP0493815B1 (en) | Apparatus for detecting extraneous substance on glass plate | |
US6528333B1 (en) | Method of and device for detecting micro-scratches | |
US5032734A (en) | Method and apparatus for nondestructively measuring micro defects in materials | |
JP3941863B2 (en) | Surface inspection method and surface inspection apparatus | |
JP5520736B2 (en) | Defect inspection method and defect inspection apparatus | |
US20070229833A1 (en) | High-sensitivity surface detection system and method | |
US20090279081A1 (en) | Defect inspection apparatus | |
US20120092656A1 (en) | Defect Inspection Method and Defect Inspection Apparatus | |
JP2009162768A (en) | Improved defect detection system | |
JPH09210918A (en) | Foreign matter sensing optical system for surface of silicon wafer | |
WO2003001185A1 (en) | Systems and methods for inspection of transparent mask substrates | |
JP2002340811A (en) | Surface evaluation device | |
JP5417793B2 (en) | Surface inspection method | |
JPH07318500A (en) | Inspection device near the object surface | |
JPH07146245A (en) | Apparatus and method for detecting foreign matter | |
JP2004163240A (en) | Surface evaluation device | |
JP2798288B2 (en) | Method and apparatus for non-destructively measuring fine defects in a material | |
JP3338118B2 (en) | Method for manufacturing semiconductor device | |
JPH0196537A (en) | Glass disk flaw identification method and flaw detecting optical device | |
JPH10206338A (en) | Foreign matter inspecting method and foreign matter inspecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050602 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090610 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100610 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130610 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |