[go: up one dir, main page]

JPH09295869A - Sialon ceramic excellent in impact resistance and its production - Google Patents

Sialon ceramic excellent in impact resistance and its production

Info

Publication number
JPH09295869A
JPH09295869A JP8129304A JP12930496A JPH09295869A JP H09295869 A JPH09295869 A JP H09295869A JP 8129304 A JP8129304 A JP 8129304A JP 12930496 A JP12930496 A JP 12930496A JP H09295869 A JPH09295869 A JP H09295869A
Authority
JP
Japan
Prior art keywords
sialon
particles
impact resistance
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8129304A
Other languages
Japanese (ja)
Inventor
Norikazu Sashita
則和 指田
Atsushi Suzuki
敦 鈴木
Sukeyuki Matsuo
祐之 松尾
Keizo Tsukamoto
恵三 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP8129304A priority Critical patent/JPH09295869A/en
Publication of JPH09295869A publication Critical patent/JPH09295869A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem an weak impact resistance with a sialon ceramic in which the growth of particles in a sintered product are accelerated to form columnar particles or which is mixed with short fibers to form a composite material. SOLUTION: This sialon ceramic comprises a sintered product containing β-sialon in an amount of 80-90wt.%. Therein, a volume occupied with columnar particles constituting the sintered product and having minor axis diameters of >=1μm and aspect ratios of >=3 and further with uniaxial particles having particle diameter of <1μm and aspect ratios of <3 is >=70% based on the total volume of the β-sialon, and the area ratio of the columnar particles to the uniaxial particles is 1:1 to 3:1 in the same cross section. This method for producing the sialon ceramic comprises adding the oxide of the group IIIa element in the periodic table in an amount of 3-8wt.% as a sintering auxiliary to sialon powder, preparing the mixture into particles having a specific surface area of 12-15m<2> /g, molding the particles, sintering the molded product at the atmospheric pressure and further subjecting the sintered product to a HIP treatment, or hot-pressing the molded product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、サイアロンセラミ
ックス及びその製造方法に関し、特に耐衝撃性に優れた
サイアロンセラミックス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to sialon ceramics and a method for manufacturing the same, and more particularly to sialon ceramics having excellent impact resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】サイアロンセラミックスは、高強度であ
り、耐酸化性、耐熱衝撃性、耐食性、耐摩耗性等に優れ
ることから、ガスタービンをはじめとする高温高負荷条
件で用いられる部品に適した材料として有望視されてい
る。
2. Description of the Related Art Sialon ceramics have high strength and are excellent in oxidation resistance, thermal shock resistance, corrosion resistance, wear resistance, etc., and are suitable for parts used under high temperature and high load conditions such as gas turbines. Promising as a material.

【0003】しかし、このサイアロンセラミックスは、
破壊靱性が低いという欠点があるので、それを向上させ
るため粒成長を促進して焼結体中の粒子を柱状化する方
法や炭化ケイ素ウィスカーのような短繊維を加えて複合
化するなどの方法が試みられている。
However, this sialon ceramics
Since it has the disadvantage of low fracture toughness, in order to improve it, there is a method of promoting grain growth and columnarizing the grains in the sintered body, or a method of adding short fibers such as silicon carbide whiskers to form a composite. Is being attempted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
方法は、静的な破壊靱性の向上には効果があるものの、
動的な破壊靱性の向上には効果が少なく、耐衝撃性に弱
いという問題があった。そのため、例えば動作中のガス
タービンなどに使われているセラミックス部品に粒子が
衝突した場合、それによってセラミックスに容易に亀裂
が生じ、その結果大きな強度劣化を引き起こしてしまう
ことがあった。
However, although the above-mentioned method is effective in improving the static fracture toughness,
There is a problem that it is less effective in dynamically improving fracture toughness and weak in impact resistance. Therefore, for example, when particles collide with a ceramic component used in a gas turbine during operation, the ceramic may be easily cracked, resulting in large strength deterioration.

【0005】本発明は、上述した従来のサイアロンセラ
ミックス及びその製造方法が有する課題に鑑みなされた
ものであって、その目的は、耐衝撃性を向上させたサイ
アロンセラミックスとその製造方法を提供することにあ
る。
The present invention has been made in view of the problems of the above-described conventional sialon ceramics and the manufacturing method thereof, and an object thereof is to provide a sialon ceramic having improved impact resistance and a manufacturing method thereof. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、焼結体を構成する比
較的大径の柱状粒子と極めて小径の等軸粒子との割合を
適切にした焼結体とすれば、耐衝撃性を向上させたサイ
アロンセラミックスが得られるとの知見を得て本発明を
完成した。
Means for Solving the Problems As a result of earnest studies to achieve the above-mentioned object, the present inventors have found that the ratio of relatively large-diameter columnar particles and extremely small-diameter equiaxed particles constituting a sintered body is determined. The present invention has been completed based on the finding that sialon ceramics having improved impact resistance can be obtained by using a suitable sintered body.

【0007】即ち本発明は、(1)サイアロンセラミッ
クスが、β−サイアロンを80〜90重量%含む焼結体
であり、その焼結体を構成する短軸径が1μm以上でア
スぺクト比が3以上の柱状粒子と粒径が1μm未満でア
スぺクト比が3未満の等軸粒子の占める体積が、β−サ
イアロン全体の70%以上であり、かつその柱状粒子と
等軸粒子の同一断面で占める面積の比が、1:1〜3:
1であることを特徴とする耐衝撃性に優れたサイアロン
セラミックス(請求項1)とし、さらに、(2)サイア
ロン質粉末に焼結助剤として1種以上の周期律表第3a
属元素の酸化物を3〜8重量%添加し、比表面積が12
〜15m2/gとなる細かさに調製した後、その粉末の
成形体を窒素ガス中で1700〜1800℃の温度で常
圧焼結し、さらにその焼結体を圧力が150MPa以上
の窒素ガス中で1650〜1750℃の温度でHIP処
理することを特徴とする耐衝撃性に優れたサイアロンセ
ラミックスの製造方法(請求項2)とし、さらにまた、
(3)サイアロン質粉末に焼結助剤として1種以上の周
期律表第3a属元素の酸化物を3〜8重量%添加し、比
表面積が12〜15m2/gとなる細かさに調製した
後、その粉末の成形体を窒素ガス中で1800〜185
0℃の温度で200Kg/cm2以上の圧力を加えてホ
ットプレスすることを特徴とする耐衝撃性に優れたサイ
アロンセラミックスの製造方法(請求項3)とすること
を要旨とする。以下にさらに詳細に述べる。
That is, according to the present invention, (1) a sialon ceramic is a sintered body containing 80 to 90% by weight of β-sialon, and the minor axis diameter of the sintered body is 1 μm or more and the aspect ratio is The volume occupied by 3 or more columnar particles and equiaxed particles having a particle size of less than 1 μm and an aspect ratio of less than 3 is 70% or more of the whole β-sialon, and the columnar particles and the equiaxed particles have the same cross section. The ratio of the area occupied by is 1: 1 to 3:
Sialon ceramics excellent in impact resistance (claim 1) characterized by being 1 and further (2) one or more kinds of periodic table 3a as a sintering aid in the sialon powder.
Addition of 3 to 8% by weight of oxide of group 3 element and specific surface area of 12
After adjusting to a fineness of ˜15 m 2 / g, the powder compact is subjected to normal pressure sintering in nitrogen gas at a temperature of 1700 to 1800 ° C., and the sintered body is further compressed with nitrogen gas having a pressure of 150 MPa or more. In the method for producing sialon ceramics excellent in impact resistance, which is characterized in that HIP treatment is carried out at a temperature of 1650 to 1750 ° C. (Claim 2).
(3) To the sialon powder, 3 to 8% by weight of an oxide of one or more elements of Group 3a of the periodic table is added as a sintering aid, and the specific surface area is adjusted to 12 to 15 m 2 / g. After that, the powder compact is 1800-185 in nitrogen gas.
The gist of the present invention is to provide a method for producing sialon ceramics having excellent impact resistance, which comprises hot pressing at a temperature of 0 ° C. by applying a pressure of 200 kg / cm 2 or more (claim 3). Further details will be given below.

【0008】焼結体を構成する柱状粒子と等軸粒子との
割合を適切にすれば、耐衝撃性が向上する理由は詳細に
は明らかでないが、次のように推測できる。粒子の衝突
といった瞬間的な応力負荷によって、材料表面に亀裂が
生じるが、セラミックスのような脆性の場合、この亀裂
が破壊起点となり、大きく強度劣化を起こすのが普通で
ある。これが本発明のような極めて小径の等軸粒子で焼
結体が構成されていれば、界面強度が高いので亀裂が発
生し難く破壊起点の発生を抑えることができる。また、
亀裂が発生しても本発明のような比較的大径の柱状粒子
で焼結体が構成されていれば、その亀裂の進展を阻害す
るので大きく進展することはなく、強度劣化を少なくす
ることができる。このように、焼結体中に適切な粒径を
有する柱状粒子と等軸粒子とが適切に混在していれば、
亀裂が発生し難く、発生しても大きな欠陥とならないた
め、衝撃抵抗が高くなるものと考えられる。
The reason why the impact resistance is improved by appropriately adjusting the ratio of the columnar particles and the equiaxed particles constituting the sintered body is not clear in detail, but it can be inferred as follows. A momentary stress such as collision of particles causes a crack on the surface of the material. In the case of brittleness such as ceramics, the crack usually becomes a fracture starting point and causes a large deterioration in strength. If the sintered body is composed of extremely small-diameter equiaxed particles as in the present invention, the interfacial strength is high, so that cracks are less likely to occur and the occurrence of fracture starting points can be suppressed. Also,
Even if a crack occurs, if the sintered body is composed of relatively large-diameter columnar particles as in the present invention, the progress of the crack is inhibited so that the crack does not significantly progress, and the strength deterioration is reduced. You can In this way, if the columnar particles having an appropriate particle diameter and the equiaxed particles are appropriately mixed in the sintered body,
It is thought that the impact resistance will be high because cracks are unlikely to occur and even if they do, they do not become large defects.

【0009】その柱状粒子としては、短軸径が1μm以
上でアスぺクト比が3以上の柱状粒子とし、等軸粒子と
しては、粒径が1μm未満でアスぺクト比が3未満の等
軸粒子とした(請求項1)。柱状粒子は短軸径が1μm
未満では亀裂の進展に対する抵抗が小さく望ましくな
い。またアスぺクト比が3未満であると亀裂の偏向が起
こらず、亀裂進展の妨げとならないので望ましくない。
等軸粒子はその粒径が1μm以上では粒界相の厚さが厚
くなり界面強度が低くなるため、衝撃に対して亀裂が発
生し易くなる。またアスぺクト比が3以上でも粒子に沿
って亀裂が発生し易くなるため、望ましくない。
The columnar particles are columnar particles having a minor axis diameter of 1 μm or more and an aspect ratio of 3 or more, and the equiaxed particles are equiaxed particles having a particle size of less than 1 μm and an aspect ratio of less than 3. Particles (claim 1). Columnar particles have a minor axis diameter of 1 μm
If it is less than 1, the resistance to crack growth is low, which is not desirable. Further, if the aspect ratio is less than 3, crack deflection does not occur and it does not hinder crack growth, which is not desirable.
When the particle size of the equiaxed particles is 1 μm or more, the thickness of the grain boundary phase becomes thick and the interfacial strength becomes low, so that cracks easily occur upon impact. Further, even if the aspect ratio is 3 or more, cracks are likely to occur along the particles, which is not desirable.

【0010】上記柱状粒子と等軸粒子との割合として
は、同一断面で占める面積の比で1:1〜3:1とし、
その両粒子合わせてβ−サイアロン粒子全体に対する割
合としては、体積分率で70%以上とした(請求項
1)。比が3:1より大きい、即ち柱状粒子が多すぎる
と粒界面積が少なくなり、粒界相が厚くなり過ぎて粒界
が弱くなるため、衝撃抵抗が低くなる。逆に1:1より
小さい、即ち等軸粒子が多すぎると長軸粒子の亀裂進展
阻害効果のみとなり亀裂が進展し易くなるため、全体と
して衝撃抵抗が低下して望ましくない。それら両粒子合
わせての割合がβ−サイアロン粒子全体の70%より少
なくなるとやはり亀裂の発生、進展の阻害効果がなくな
り望ましくない。
The ratio of the columnar particles to the equiaxed particles is 1: 1 to 3: 1 in terms of the ratio of the areas occupied by the same cross section,
The volume ratio of the both particles to the total amount of β-sialon particles was 70% or more (claim 1). If the ratio is larger than 3: 1, that is, if the number of columnar particles is too large, the grain boundary area becomes small, the grain boundary phase becomes too thick, and the grain boundaries become weak, resulting in low impact resistance. On the other hand, if it is smaller than 1: 1, that is, if the number of equiaxed particles is too large, only the crack growth inhibiting effect of the long-axis particles is present, and the cracks easily propagate, so that the impact resistance decreases as a whole, which is not desirable. When the ratio of the total of both particles is less than 70% of the total amount of β-sialon particles, the effect of inhibiting the generation and propagation of cracks is also lost, which is not desirable.

【0011】また、そのβ−サイアロン粒子全体が焼結
体全体に占める割合としては、80〜90重量%とした
(請求項1)。これは、β相が低すぎると等軸形のα相
の粒子が多いということであり、前述の理由で望ましく
なく、逆にβ相の割合が多すぎるとサイアロン粒子内に
稀土類元素が取り込まれないため、粒界相が厚くなり、
衝撃抵抗が低下して好ましくない。
Further, the proportion of the entire β-sialon particles in the whole sintered body is set to 80 to 90% by weight (claim 1). This means that if the β phase is too low, there are many particles of the equiaxed α phase, which is not desirable for the reason described above. Conversely, if the proportion of the β phase is too high, rare earth elements are incorporated into the sialon particles. The grain boundary phase becomes thicker,
Impact resistance is lowered, which is not preferable.

【0012】上記の組織構成を有するサイアロンセラミ
ックスを製造する方法としては、サイアロン質粉末に焼
結助剤として1種以上の周期律表第3a属元素の酸化物
を3〜8重量%添加し、比表面積が12〜15m2/g
となる細かさに調製した後、その粉末の成形体を窒素ガ
ス中で1700〜1800℃の温度で常圧焼結し、さら
にその焼結体を圧力が150MPa以上の窒素ガス中で
1650〜1750℃の温度でHIP処理することとし
た(請求項2)。焼結助剤が3重量%より少ないと焼成
中に生成する液相が少な過ぎて緻密化が進まず、8重量
%より多いと焼結体中にガラス相が多く残存し粒界強度
が弱くなるため、衝撃抵抗が著しく低下し望ましくな
い。
As a method for producing the sialon ceramics having the above-mentioned structural constitution, 3 to 8% by weight of an oxide of a Group 3a element of the periodic table is added to a sialon powder as a sintering aid, Specific surface area of 12 to 15 m 2 / g
After that, the powder compact is subjected to atmospheric pressure sintering in nitrogen gas at a temperature of 1700 to 1800 ° C., and the sintered body is further exposed to nitrogen gas having a pressure of 150 MPa or more from 1650 to 1750. The HIP treatment is performed at a temperature of ℃ (Claim 2). If the amount of the sintering aid is less than 3% by weight, the liquid phase generated during firing will be too small and the densification will not proceed. If it is more than 8% by weight, a large amount of the glass phase will remain in the sintered body and the grain boundary strength will be weak. Therefore, the impact resistance is significantly reduced, which is not desirable.

【0013】また、原料粉末が比表面積で12m2/g
より粗いと溶解再析出による粒成長の促進に効果がな
く、15m2/gより細かいと溶解再析出による柱状粒
子の成長が進み過ぎて好ましくない。
The raw material powder has a specific surface area of 12 m 2 / g.
If it is coarser, there is no effect in promoting grain growth by dissolution and reprecipitation, and if it is finer than 15 m 2 / g, the growth of columnar particles due to dissolution and reprecipitation proceeds too much, which is not preferable.

【0014】さらに、常圧での焼結温度が1700℃よ
り低いと十分緻密化せず、1800℃より高いとサイア
ロンの分解反応が起こり、やはり緻密化が阻害され望ま
しくない。HIP処理での温度では、1650℃より低
いと緻密化及び粒成長の効果が認められず、1750℃
より高いと急激な粒成長と分解反応が起こるため所望の
焼結体組織が得られない。
Further, if the sintering temperature at normal pressure is lower than 1700 ° C., the densification is not sufficiently performed, and if it is higher than 1800 ° C., the decomposition reaction of sialon occurs, and the densification is also hindered, which is not desirable. At the temperature of HIP treatment, if it is lower than 1650 ° C, the effects of densification and grain growth are not recognized, and 1750 ° C.
If it is higher, rapid grain growth and decomposition reaction occur, so that a desired sintered body structure cannot be obtained.

【0015】上記の他に別の製造方法としては、サイア
ロン質粉末に焼結助剤として1種以上の周期律表第3a
属元素の酸化物を3〜8重量%添加し、比表面積が12
〜15m2/gとなる細かさに調製した後、その粉末の
成形体を窒素ガス中で1800〜1850℃の温度で2
00Kg/cm2以上の圧力を加えてホットプレスする
こととした(請求項3)。このホットプレス法では、2
段焼結する必要はなく、その焼結温度が1800℃より
低いと緻密化せず、1850℃より高いと溶解再析出が
進み過ぎて所望の組織を得ることができない。プレス圧
が200Kg/cm2未満ではプレスによる効果が認め
られずやはり所望の組織を得ることができない。
As another production method other than the above, one or more kinds of periodic table 3a as a sintering aid may be added to the sialon powder.
Addition of 3 to 8% by weight of oxide of group 3 element and specific surface area of 12
After adjusting to a fineness of ˜15 m 2 / g, the powder compact is molded in nitrogen gas at a temperature of 1800 to 1850 ° C. for 2 minutes.
It was decided to apply a pressure of not less than 00 Kg / cm 2 for hot pressing (Claim 3). In this hot press method, 2
It is not necessary to carry out stage sintering, and if the sintering temperature is lower than 1800 ° C., densification does not occur, and if it is higher than 1850 ° C., dissolution reprecipitation proceeds too much to obtain a desired structure. If the pressing pressure is less than 200 Kg / cm 2 , the effect of pressing is not observed and the desired structure cannot be obtained.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0016】上記サイアロンセラミックスの製造方法を
さらに詳細に述べると、先ずサイアロン質粉末としてβ
−サイアロン粉末あるいは窒化珪素、窒化アルミニウム
及びアルミナをβ−サイアロンの化学組成となるように
配合した粉末を用意する。これら粉末中に含まれる不純
物は、その量が多いとサイアロン粒子の強度が弱くな
り、衝撃抵抗が低下するため、0.1重量%以下が好ま
しい。ただし、窒化珪素及び窒化アルミニウム粉末につ
いては、酸素量は2重量%を越えないことが望ましく、
2重量%を越えると焼結体中に生成する粒界ガラス相の
量が多くなり、衝撃抵抗を低下させる原因となる。
The method for producing the sialon ceramics will be described in more detail.
-Prepare sialon powder or powder in which silicon nitride, aluminum nitride and alumina are blended so as to have a chemical composition of β-sialon. If the amount of impurities contained in these powders is large, the strength of the sialon particles will be weakened and the impact resistance will be lowered, so 0.1% by weight or less is preferable. However, for silicon nitride and aluminum nitride powder, it is desirable that the amount of oxygen does not exceed 2% by weight.
If it exceeds 2% by weight, the amount of the grain boundary glass phase generated in the sintered body increases, which causes a reduction in impact resistance.

【0017】添加する焼結助剤としては、周期律表第3
a属元素の酸化物であるY23、Sc23、Yb23
どを用い、内割りで3〜8重量%添加する。焼結助剤の
純度は99.9%以上が好ましい。また焼結助剤は1種
類だけでなく、2種類以上を組み合わせて用いた方が良
好な結果となる場合が多く好ましい。これは、焼結時に
生成する多成分の液相が、溶解再析出による粒成長をあ
る程度促進するためと思われる。
As the sintering aid to be added, the third group of the periodic table is used.
Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 and the like, which are oxides of group a elements, are used, and 3 to 8 wt% is added by internal division. The purity of the sintering aid is preferably 99.9% or more. In addition, it is preferable to use not only one kind of the sintering aid but also two or more kinds in combination, which often gives good results. It is considered that this is because the multi-component liquid phase generated during sintering promotes grain growth due to dissolution and reprecipitation to some extent.

【0018】焼結助剤を添加したサイアロン質粉末を、
分散媒には粉末の酸化を抑制するためにメタノールやイ
ソプロピルアルコール等のアルコール類を使用し、媒体
には不純物の混入を防ぐために窒化珪素やサイアロンセ
ラミックス製のビーズを用いてミルで比表面積が12〜
15m2の細かさに混合粉砕する。このスラリーを用い
て、例えば乾燥してCIP成形する方法や結合剤を添加
して鋳込み成形する方法、あるいは樹脂を添加して射出
成形する方法などの慣用の方法で成形する。
The sialon powder to which the sintering aid was added was
Alcohols such as methanol and isopropyl alcohol are used as the dispersion medium to suppress the oxidation of the powder, and beads made of silicon nitride or sialon ceramics are used as the medium to prevent the inclusion of impurities. ~
Mix and grind to a fineness of 15 m 2 . Using this slurry, molding is performed by a conventional method such as a method of drying and CIP molding, a method of adding a binder and casting, or a method of adding a resin and injection molding.

【0019】次いで、作製した成形体を窒素ガス中で1
700〜1800℃の温度で常圧焼結し、さらにその焼
結体を1650〜1750℃の温度で150MPa以上
の圧力の窒素ガス中でHIP処理する、あるいは作製し
た成形体を窒素ガス中で1800〜1850℃の温度で
200Kg/cm2以上の圧力でホットプレス焼結して
サイアロンセラミックスを作製する。
Next, the formed body was subjected to 1 in nitrogen gas.
Normal pressure sintering is performed at a temperature of 700 to 1800 ° C., and the sintered body is subjected to HIP treatment at a temperature of 1650 to 1750 ° C. in nitrogen gas at a pressure of 150 MPa or more, or the formed body is made to 1800 in nitrogen gas. Sialon ceramics are produced by hot press sintering at a temperature of ˜1850 ° C. and a pressure of 200 Kg / cm 2 or more.

【0020】以上の方法でサイアロンセラミックスを作
製すれば、耐衝撃性に優れたサイアロンセラミックスを
得ることができる。
When the sialon ceramics are manufactured by the above method, the sialon ceramics excellent in impact resistance can be obtained.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と共に挙げ、
本発明をより詳細に説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.
The present invention will be described in more detail.

【0021】(実施例1〜9) (1)サイアロンセラミックスの作製 窒化珪素、窒化アルミニウム及びアルミナ粉末をZ値が
0.3のβ−サイアロンとなるように配合した後、これ
に表1に示す酸化物を表1に示す量だけ添加し、イソプ
ロピルアルコール中に分散させ、サイアロンセラミック
ス製のビーズを用いて媒体攪拌ミルにより比表面積が表
1に示す細かさになるまで混合粉砕した。
(Examples 1 to 9) (1) Preparation of sialon ceramics Silicon nitride, aluminum nitride and alumina powders were blended so as to be β-sialon having a Z value of 0.3, and then shown in Table 1. The oxides were added in the amounts shown in Table 1, dispersed in isopropyl alcohol, and mixed and pulverized using beads made of Sialon ceramics by a medium stirring mill until the specific surface area became fine as shown in Table 1.

【0020】得られたスラリーを乾燥後、65×65×
8mmに1軸加圧成形し、それをさらに1.5tの圧力
でCIP成形した。その成形体を窒素ガス中で表1に示
す温度で常圧焼結した後、さらにそれを180MPaの
圧力の窒素ガス中で表1に示す温度でHIP処理してサ
イアロンセラミックスを作製した。
After drying the obtained slurry, 65 × 65 ×
It was uniaxially pressure-molded to 8 mm, and then CIP-molded at a pressure of 1.5 t. The compact was subjected to normal pressure sintering in nitrogen gas at a temperature shown in Table 1, and then subjected to HIP treatment in nitrogen gas at a pressure of 180 MPa at a temperature shown in Table 1 to produce a sialon ceramic.

【0021】(2)評価 得られた焼結体のβ化率は、焼結体を解碎して粉末と
し、その粉末のX線回折で得られたピークの強度比から
求めた。また、柱状粒子と等軸粒子の占める割合の比
は、焼結体を切断した同一断面の写真を電子顕微鏡で撮
り、その写真を画像処理して本発明の粒径を有する柱状
粒子と等軸粒子との面積を求めて算出した。さらに、粒
子体積分率は、同じく同一断面の電子顕微鏡写真から前
記の柱状粒子と等軸粒子の面積に加えてβ−サイアロン
粒子全体の面積を求めて算出した。得られた焼結体の破
壊靱性値については、焼結体を研削加工により8×6×
50mmの試験片に加工し、1点曲げ衝撃破壊試験によ
り衝撃破壊靱性値を求めた。それらの結果を表1に示
す。
(2) Evaluation The β-conversion rate of the obtained sintered body was determined from the intensity ratio of the peaks obtained by X-ray diffraction of the powder obtained by disintegrating the sintered body into powder. Further, the ratio of the proportion of the columnar particles and the equiaxed particles is determined by taking a photograph of the same cross section obtained by cutting the sintered body with an electron microscope and subjecting the photograph to image processing to make it equiaxed with the columnar particles having the particle diameter of the present invention. The area with particles was calculated and calculated. Further, the particle volume fraction was calculated by obtaining the area of the entire β-sialon particles in addition to the areas of the columnar particles and the equiaxed particles from the electron micrograph of the same cross section. Regarding the fracture toughness value of the obtained sintered body, the sintered body was ground to 8 × 6 ×
A 50 mm test piece was processed and the impact fracture toughness value was obtained by a one-point bending impact fracture test. Table 1 shows the results.

【0022】(実施例10〜14)焼結を表1に示す温
度と圧力でホットプレスすることの他は実施例と同様に
焼結体を作製し、評価した。その結果を表2に示す。
(Examples 10 to 14) Sinters were produced and evaluated in the same manner as in Examples except that hot pressing was performed at the temperatures and pressures shown in Table 1. The results are shown in Table 2.

【0023】(比較例1〜8)比較のために、表1に示
す通り、サイアロン質粉末の比表面積、あるいは焼結助
剤の添加量、もしくは常圧またはHIP処理の焼結温度
を本発明の範囲外にする以外は実施例と同じ方法でサイ
アロン質セラミックスを作製し、同様に評価した。それ
らの結果も表1に示す。
(Comparative Examples 1 to 8) For comparison, as shown in Table 1, the specific surface area of the sialon powder, the addition amount of the sintering aid, the atmospheric pressure or the sintering temperature of the HIP treatment was used in the present invention. Sialon-based ceramics were produced by the same method as that of the example except that it was out of the range and evaluated in the same manner. The results are also shown in Table 1.

【0024】(比較例9〜11)また、同様にホットプ
レス焼結の圧力または焼結温度を本発明の範囲外にした
以外は実施例と同じくサイアロンセラミックスを作製
し、評価した。それらの結果を表2に示す。
Comparative Examples 9 to 11 Sialon ceramics were prepared and evaluated in the same manner as in Examples except that the pressure or sintering temperature of hot press sintering was set outside the range of the present invention. Table 2 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表1及び表2から明らかなように、本発明
の範囲内の条件で焼結体を作製した実施例においては、
焼結体のβ化率、粒子体積分率、柱状粒子と等軸粒子の
占める比が全て本発明の範囲内に入っており、その結果
衝撃破壊靱性値が8.5MPa√mより大きい数値とな
っている。これは、本発明の条件で焼結体を製造すれ
ば、耐衝撃性に優れたサイアロンセラミックスが作製さ
れることを示している。
As is clear from Tables 1 and 2, in the examples in which the sintered bodies were produced under the conditions within the scope of the present invention,
The β ratio of the sintered body, the particle volume fraction, and the ratio of the columnar particles to the equiaxed particles are all within the scope of the present invention, and as a result, the impact fracture toughness value is larger than 8.5 MPa√m. Has become. This indicates that if a sintered body is manufactured under the conditions of the present invention, a sialon ceramic having excellent impact resistance can be manufactured.

【0028】これに対して比較例は本発明の範囲外の条
件で焼結体を製造しているので、全て焼結体のβ化率、
粒子体積分率、柱状粒子と等軸粒子の占める比のうち1
つ以上が本発明の範囲外となり、その結果衝撃破壊靱性
値がいずれも実施例より大幅に低下していた。
On the other hand, in the comparative example, since the sintered body was manufactured under the conditions outside the scope of the present invention, all the β conversion of the sintered body,
1 of particle volume fraction and ratio of columnar particles to equiaxed particles
Three or more were out of the scope of the present invention, and as a result, the impact fracture toughness values were all significantly lower than those of the examples.

【0029】[0029]

【発明の効果】以上の通り、本発明にかかる方法でサイ
アロンセラミックスを製造すれば、比較的大径の柱状粒
子と極めて小径の等軸粒子を適切な割合で混在させたサ
イアロンセラミックスを作製することができ、これによ
り、耐衝撃性に優れたサイアロンセラミックスを得るこ
とができるようになった。
As described above, when sialon ceramics are produced by the method according to the present invention, sialon ceramics in which columnar particles having a relatively large diameter and equiaxed particles having an extremely small diameter are mixed in an appropriate ratio can be produced. As a result, sialon ceramics having excellent impact resistance can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サイアロンセラミックスが、β−サイア
ロンを80〜90重量%含む焼結体であり、その焼結体
を構成する短軸径1μm以上でアスぺクト比3以上の柱
状粒子と粒径1μm未満でアスぺクト比3未満の等軸粒
子の占める体積分率が、β−サイアロン全体の70%以
上であり、かつその柱状粒子と等軸粒子の同一断面で占
める面積の比が、1:1〜3:1であることを特徴とす
る耐衝撃性に優れたサイアロンセラミックス。
1. Sialon ceramics is a sintered body containing 80 to 90% by weight of β-sialon, and columnar particles having a minor axis diameter of 1 μm or more and an aspect ratio of 3 or more and a particle diameter which compose the sintered body. The volume fraction occupied by equiaxed particles having a diameter of less than 1 μm and an aspect ratio of less than 3 is 70% or more of the whole β-sialon, and the ratio of the area occupied by the columnar particles and the equiaxed particles in the same cross section is 1 : Sialon ceramics excellent in impact resistance, which is characterized by being 1 to 3: 1.
【請求項2】 サイアロン質粉末に焼結助剤として1種
以上の周期律表第3a属元素の酸化物を3〜8重量%添
加し、比表面積が12〜15m2/gとなる細かさに調
製した後、その粉末の成形体を窒素ガス中で1700〜
1800℃の温度で常圧焼結し、さらにその焼結体を圧
力が150MPa以上の窒素ガス中で1650〜175
0℃の温度でHIP処理することを特徴とする耐衝撃性
に優れたサイアロンセラミックスの製造方法。
2. A fine powder having a specific surface area of 12 to 15 m 2 / g when 3 to 8% by weight of an oxide of one or more elements of Group 3a of the Periodic Table is added to a sialon powder as a sintering aid. After that, the powder compact was molded in nitrogen gas at 1700 to 1700.
Pressureless sintering is performed at a temperature of 1800 ° C., and the sintered body is further subjected to a pressure of 150 MPa or more in a nitrogen gas of 1650 to 175.
A method for producing sialon ceramics having excellent impact resistance, which comprises performing HIP treatment at a temperature of 0 ° C.
【請求項3】 サイアロン質粉末に焼結助剤として1種
以上の周期律表第3a属元素の酸化物を3〜8重量%添
加し、比表面積が12〜15m2/gとなる細かさに調
製した後、その粉末の成形体を窒素ガス中で1800〜
1850℃の温度で200Kg/cm2以上の圧力を加
えてホットプレスすることを特徴とする耐衝撃性に優れ
たサイアロンセラミックスの製造方法。
3. A fine powder having a specific surface area of 12 to 15 m 2 / g by adding 3 to 8% by weight of an oxide of an element of Group 3a of the periodic table as a sintering aid to a sialon powder. Then, the powder compact is prepared in nitrogen gas at 1800 to
A method for producing sialon ceramics excellent in impact resistance, which comprises hot pressing at a temperature of 1850 ° C. at a pressure of 200 kg / cm 2 or more.
JP8129304A 1996-04-26 1996-04-26 Sialon ceramic excellent in impact resistance and its production Withdrawn JPH09295869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8129304A JPH09295869A (en) 1996-04-26 1996-04-26 Sialon ceramic excellent in impact resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8129304A JPH09295869A (en) 1996-04-26 1996-04-26 Sialon ceramic excellent in impact resistance and its production

Publications (1)

Publication Number Publication Date
JPH09295869A true JPH09295869A (en) 1997-11-18

Family

ID=15006261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8129304A Withdrawn JPH09295869A (en) 1996-04-26 1996-04-26 Sialon ceramic excellent in impact resistance and its production

Country Status (1)

Country Link
JP (1) JPH09295869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256427A (en) * 2008-04-14 2009-11-05 Nichia Corp Phosphor, light-emitting device using the same and manufacturing method of phosphor
EP2402098A1 (en) * 2004-12-22 2012-01-04 NGK Spark Plug Co., Ltd. Sialon insert, cutting tool equipped therewith, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402098A1 (en) * 2004-12-22 2012-01-04 NGK Spark Plug Co., Ltd. Sialon insert, cutting tool equipped therewith, and manufacturing method thereof
JP2009256427A (en) * 2008-04-14 2009-11-05 Nichia Corp Phosphor, light-emitting device using the same and manufacturing method of phosphor

Similar Documents

Publication Publication Date Title
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
JP3100871B2 (en) Aluminum nitride sintered body
KR960016070B1 (en) Sintered aluminium nitride and its production
JPS58213679A (en) Composite ceramic cutting tool and manufacture
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH06219840A (en) Silicon nitride sintered compact and its production
EP0631997B1 (en) Silicon nitride based sintered body and method for producing the same
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JP2773976B2 (en) Super tough monolithic silicon nitride
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
US5120685A (en) Sintered silicon nitride
JPH0867568A (en) Silicon carbide/silicon nitride composite material and production thereof
EP0095129B1 (en) Composite ceramic cutting tool and process for making same
JPH08319168A (en) Production of sialon ceramic
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JPH07101777A (en) Silicon nitride sintered body and method for producing the same
JPH0812443A (en) Superplastic silicon nitride sintered body
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JP2820846B2 (en) High toughness sialon sintered body and method of manufacturing the same
JPH05319910A (en) Ceramic composite material and its production

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041202