[go: up one dir, main page]

JPH09291317A - Treatment for waste material of iron-containing nickel - Google Patents

Treatment for waste material of iron-containing nickel

Info

Publication number
JPH09291317A
JPH09291317A JP10309196A JP10309196A JPH09291317A JP H09291317 A JPH09291317 A JP H09291317A JP 10309196 A JP10309196 A JP 10309196A JP 10309196 A JP10309196 A JP 10309196A JP H09291317 A JPH09291317 A JP H09291317A
Authority
JP
Japan
Prior art keywords
iron
nickel
waste material
alumina
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10309196A
Other languages
Japanese (ja)
Inventor
Etsuji Kimura
悦治 木村
Sugio Ito
杉夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10309196A priority Critical patent/JPH09291317A/en
Publication of JPH09291317A publication Critical patent/JPH09291317A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover nickel by adding a flux containing elements of specific contents to a waste material of iron-containing nickel and performing specific heat treatment. SOLUTION: This process is a treatment process for a waste material of iron-containing nickel, in which a flux containing silica, alumina, and lime is added to a waste material of iron-containing nickel and the resultant mixture is heated and melted under an inert-gas atmosphere, and then, oxygen is introduced and iron as impurity is passed in the form of oxide into a slag to separate iron and recover nickel. Further, this process is a treatment process where a flux, in which the contents of the above silica, alumina, and lime are regulated to 55-70wt.%, >=20wt.%, and 2-10wt.%, respectmvely, is used. Further, this process is a treatment process described in either of the above processes, in which the waste material of iron-containing nickel is composed of an iron-containing nickel-cobalt alloy or nickel-hydrogen battery waste.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は、ニッケル−水素電池廃棄
物に代表される水素吸蔵合金などの鉄含有ニッケル−コ
バルト廃材から鉄を簡単に効率良く分離除去してニッケ
ルおよびコバルトを回収する処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment method for recovering nickel and cobalt by easily and efficiently separating and removing iron from iron-containing nickel-cobalt waste material such as hydrogen storage alloy represented by nickel-hydrogen battery waste. Regarding

【0002】[0002]

【従来技術とその課題】ニッケル−水素電池(Ni-MH電
池)などには水素吸蔵材料としてニッケル−コバルト合
金が用いられており、このNi-MH電池の製造工程におい
て生じる不良品や廃材あるいは使用済みNi-MH電池に
は、ニッケルおよびコバルトがかなりの割合で含まれて
いる。このため、資源の有効利用および環境保護を図る
ため、これらの廃棄物からニッケルおよびコバルトを効
率良く回収して再利用することが求められている。
2. Description of the Related Art Nickel-cobalt alloys are used as a hydrogen storage material in nickel-hydrogen batteries (Ni-MH batteries), etc. Complete Ni-MH batteries contain a significant proportion of nickel and cobalt. For this reason, in order to effectively utilize resources and protect the environment, it is required to efficiently recover and reuse nickel and cobalt from these wastes.

【0003】従来、ニッケルなどの回収方法として、
(イ) 特開平1-228586号公報には、溶融状態に保持した銑
鉄または鋼にNi-Cd電池屑を投入し、揮発物から金属カ
ドミウムを回収する一方、ニッケルをフェロニッケル(F
e-Ni合金)として回収する方法が記載されている。ま
た、(ロ) 特開昭55-158238号公報には、重金属を含有す
る酸洗スラジ、メッキスラジ、スケール、ダスト等の重
金属含有廃棄物、或いはアルミナ等の軽金属を含有する
廃棄物をアルミナセメントによって固化し、団鉱にして
還元製錬することにより、重金属類を合金として回収し
て製鋼用原料とし、一方、軽金属類はスラグ化してアル
ミナセメントおよびアルミナ原料として回収する方法が
開示されている。
Conventionally, as a method of recovering nickel and the like,
(A) JP-A 1-228586 discloses that Ni-Cd battery waste is put into pig iron or steel held in a molten state to recover metallic cadmium from volatile matter, while nickel is replaced with ferronickel (F
(e-Ni alloy). Further, (b) JP-A-55-158238 discloses that pickling sludge containing heavy metals, plating sludge, scale, waste containing heavy metals such as dust, or waste containing light metals such as alumina by alumina cement. There is disclosed a method in which heavy metals are recovered as alloys and used as raw materials for steelmaking by solidifying and reducing smelting into briquettes, while light metals are slagged and recovered as alumina cement and alumina raw materials.

【0004】しかし、これらいずれの方法でも、ニッケ
ルは鉄を多く含んだフェロニッケルあるいはC-Si-Ni-Cr
等の合金として回収されるため、用途が製鋼原料等に限
定され、しかも、鉄とニッケルを分離する必要があるニ
ッケル−水素電池廃棄物の処理方法としては適さない。
However, in any of these methods, nickel is ferronickel or C-Si-Ni-Cr containing a large amount of iron.
Therefore, it is not suitable as a method for treating nickel-hydrogen battery waste, which is limited to steelmaking raw materials and the like and is required to be separated from iron and nickel.

【0005】[0005]

【発明の解決課題】本発明は従来のニッケル含有廃棄物
の処理方法における上記問題を解決したものであって、
ニッケル−水素電池廃棄物に代表される鉄含有ニッケル
廃棄物から鉄を簡単にかつ効率良く分離し、比較的高純
度のNiを回収する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has solved the above problems in the conventional method for treating nickel-containing waste,
An object of the present invention is to provide a method for easily and efficiently separating iron from iron-containing nickel waste represented by nickel-hydrogen battery waste and recovering Ni of relatively high purity.

【0006】[0006]

【課題の解決手段】即ち、本発明は、(1)鉄を含有す
るニッケル廃材にシリカ分とアルミナ分および石灰分を
含むフラックスを加え、不活性ガス雰囲気下で加熱溶融
し、これに酸素を導入して不純物の鉄を酸化物としてス
ラグに移行させることにより、鉄を分離してニッケルを
回収することを特徴とする鉄含有ニッケル廃材の処理方
法である。
Means for Solving the Problems According to the present invention, (1) a flux containing silica, alumina and lime is added to a nickel waste material containing iron, and the mixture is heated and melted in an inert gas atmosphere, and oxygen is added to this. It is a method for treating an iron-containing nickel waste material, which is characterized in that iron is separated and nickel is recovered by introducing and transferring iron as an oxide into a slag as an oxide.

【0007】上記処理方法は、(2)シリカ分が55〜
70重量%、石灰分が2〜10重量%およびアルミナ分
が20重量%以上からなるフラクッスを用いる上記(1)
に記載の処理方法、(3)鉄含有ニッケル廃材が鉄含有
ニッケル−コバルト合金である上記(1)または(2)に記載
の処理方法、(4)鉄含有ニッケル廃材がニッケル−水
素電池廃棄物である上記(1)〜(3)にいずれかに記載の処
理方法を含む。
In the above treatment method, (2) the silica content is 55 to
The above-mentioned (1) using a flux comprising 70% by weight, 2-10% by weight of lime and 20% by weight or more of alumina.
(3) the iron-containing nickel waste material is an iron-containing nickel-cobalt alloy, (4) the iron-containing nickel waste material is a nickel-hydrogen battery waste The processing method according to any one of (1) to (3) above is included.

【0008】[0008]

【具体的な説明】以下、本発明を実施例と共に具体的に
説明する。なお、以下の説明において特に表示しない限
り%は重量%である。
[Detailed Description] Hereinafter, the present invention will be specifically described with reference to Examples. In the following description,% is% by weight unless otherwise indicated.

【0009】本発明の処理方法は、鉄を含有するニッケ
ル廃材にシリカ分とアルミナ分および石灰分を含むフラ
ックスを加え、不活性ガス雰囲気下で加熱溶融し、これ
に酸素を導入して不純物の鉄を酸化物としてスラグに移
行させることにより、鉄を分離してニッケルを回収する
方法である。鉄を含有するニッケル廃材としては、前述
のように、水素吸蔵合金として知られるニッケル−コバ
ルト合金を多く含むニッケル−水素電池廃棄物などが挙
げられる。
According to the treatment method of the present invention, a flux containing silica, alumina and lime is added to nickel-containing waste material containing iron, the mixture is heated and melted in an inert gas atmosphere, and oxygen is introduced into this to remove impurities. It is a method of separating iron and recovering nickel by transferring iron to the slag as an oxide. Examples of the nickel waste material containing iron include nickel-hydrogen battery waste containing a large amount of nickel-cobalt alloy known as a hydrogen storage alloy, as described above.

【0010】フラックスとしては、シリカ(SiO2)−アル
ミナ(Al2O3)−石灰(CaO)からなる3成分系のフラックス
が用いられる。このフラックスは安価であるうえに、比
重および粘性の点で鉄との分離性が良く、メタル(Ni,C
o)とスラグの剥離が良好である。また、アルミナ分を含
むので、アルミナ製の容器に対して侵蝕や溶損を防止す
るので安全に使用できる利点がある。
As the flux, a ternary flux composed of silica (SiO 2 ) -alumina (Al 2 O 3 ) -lime (CaO) is used. In addition to being inexpensive, this flux has good separability from iron in terms of specific gravity and viscosity, and metal (Ni, C
Good separation of o) and slag. In addition, since an alumina component is contained, corrosion and erosion of an alumina container are prevented, so that there is an advantage that the container can be used safely.

【0011】各成分の量比は、後述する実施例および比
較例に示すように、シリカ分が55〜70重量%、石灰
分が2〜10重量%およびアルミナ分が20重量%以上
からなるものが好ましい。シリカ分が55重量%を下回
るものは鉄の分離効果が低下し、特にシリカ分が10重
量%程度のものは鉄の残留量が著しくなる。また、シリ
カ分が70重量%を上回ると相対的にアルミナ分および
石灰分が少なくなり、石灰分が2重量%未満では鉄の分
離効果が低くなる。一方、石灰分が15重量%を超える
と相対的にシリカ分およびアルミナ分が少なくなり、鉄
の分離効果が低下するので、石灰分は10重量%が適当
である。また、アルミナ分が10重量%程度ではやはり
鉄の分離効果が低く、従ってアルミナ分は20重量%以
上が好ましい。一方、アルミナ分が85重量%程度にな
ると相対的にシリカ分ないし石灰分が所定の量比を下回
り、鉄の分離効果が低下し、またニッケル等の回収率も
低下するので好ましくない。
As shown in Examples and Comparative Examples described later, the amount ratio of each component is such that the silica content is 55 to 70% by weight, the lime content is 2 to 10% by weight, and the alumina content is 20% by weight or more. Is preferred. When the silica content is less than 55% by weight, the effect of separating iron is reduced, and especially when the silica content is about 10% by weight, the residual iron amount becomes remarkable. Further, when the silica content exceeds 70% by weight, the alumina content and the lime content are relatively small, and when the lime content is less than 2% by weight, the effect of separating iron becomes low. On the other hand, when the lime content exceeds 15% by weight, the silica content and the alumina content are relatively reduced, and the iron separation effect is reduced, so 10% by weight is suitable for the lime content. Further, when the alumina content is about 10% by weight, the effect of separating iron is also low. Therefore, the alumina content is preferably 20% by weight or more. On the other hand, when the alumina content is about 85% by weight, the silica content or the lime content is relatively lower than a predetermined amount ratio, the separation effect of iron decreases, and the recovery rate of nickel and the like also decreases, which is not preferable.

【0012】フラックスは、シリカ分、アルミナ分およ
び石灰分が上記量比になるようにシリカ、アルミナおよ
び石灰を混合したものでも良く、また酸化物換算でこれ
らの成分を上記量比になるように含む珪酸塩を用いても
良い。フラックスの添加量は、ニッケル廃材の成分にも
よるが、概ねニッケル廃材100重量部に対して20〜
35重量部、好ましくは25〜30重量部が適当であ
る。フラックスの添加量が上記範囲より少ないと鉄の分
離効果が十分ではなく、また該添加量が上記範囲を上回
るとニッケルの回収効率に対して処理コストの無駄が多
くなる。
The flux may be a mixture of silica, alumina and lime so that the silica content, the alumina content and the lime content may be in the above amount ratio, and these components may be adjusted to the above amount ratio in terms of oxide. You may use the silicate containing. The amount of flux to be added depends on the composition of the nickel waste material, but is generally 20 to 100 parts by weight of the nickel waste material.
35 parts by weight, preferably 25-30 parts by weight are suitable. If the amount of the flux added is less than the above range, the effect of separating iron will not be sufficient, and if the amount of the flux added exceeds the above range, the treatment cost will be wasted against the nickel recovery efficiency.

【0013】鉄含有ニッケル廃材と上記フラックスとの
混合物を不活性ガス雰囲気下でニッケルの融点以上、好
ましくは1500〜1530℃に加熱し、廃材から生じ
る水素ガスなどの揮発性成分を不活性ガスで外部に追い
出しながら、溶融する。この加熱により、ニッケル廃材
の金属分が溶融した部分と該廃材およびフラックスのシ
リカ分や石灰分などからなるスラグが熔体表面に形成さ
れる。
A mixture of iron-containing nickel waste material and the above flux is heated in an inert gas atmosphere to a temperature not lower than the melting point of nickel, preferably 1500 to 1530 ° C., and volatile components such as hydrogen gas generated from the waste material are converted into an inert gas. It melts while being driven out. As a result of this heating, a slag is formed on the surface of the molten material, which is composed of a portion of the nickel waste material in which the metal content has been melted, and the waste material and the silica content and lime content of the flux.

【0014】不活性ガス雰囲気下で加熱溶融することに
より、水素ガスが安全に系外へ追い出される。不活性ガ
スを用いずに大気中で加熱すると発生する水素ガスが酸
素と激しく反応して爆発する危険性がある。また、酸素
が残留するとニッケルおよびコバルトが酸化され、スラ
グロスとなるので好ましくない。
By heating and melting under an inert gas atmosphere, hydrogen gas can be safely expelled from the system. When heated in the air without using an inert gas, hydrogen gas generated may react violently with oxygen and explode. Further, if oxygen remains, nickel and cobalt are oxidized and become slag loss, which is not preferable.

【0015】不活性ガス雰囲気下で加熱溶融した後に、
この熔体に酸素を導入して、熔体中の鉄や希土類金属、
アルミニウム、マンガンなどの不純物を酸化し、この酸
化物がスラグに移行することにより熔体から分離する。
酸素の導入は処理廃材が溶解した後に行う。処理廃材の
溶解終了時点は、経験的には熔体にアルミナ製試験棒を
差し入れ、その感触により把握できるが、一般的には、
溶解設定温度に到達後さらに60分程度加熱すれば良
い。
After heating and melting in an inert gas atmosphere,
By introducing oxygen into this melt, iron and rare earth metals in the melt,
Impurities such as aluminum and manganese are oxidized, and this oxide is separated from the melt by transferring to slag.
The introduction of oxygen is performed after the processing waste material is dissolved. At the end of melting of the treated waste material, it is empirically possible to grasp it by inserting an alumina test rod into the melt and feeling it, but in general,
After reaching the set melting temperature, heating may be further performed for about 60 minutes.

【0016】酸素の導入は空気の吹き込みなどにより行
えば良く、熔体の上側に設けたランスを通じた上吹き
法、炉底から熔体に吹き込む底吹き法などの何れの方法
でも良い。熔体中に吹込む空気量は、酸素換算で、熔体
中の不純物に対して等モル程度が適当である。空気量が
これより少ないと鉄等の不純物の酸化が不十分となり熔
体中に残留する。また空気量がこれより多いとニッケル
やコバルトの酸化が促進されてスラグロスとなるので好
ましくない。
The introduction of oxygen may be performed by blowing air, and any method such as a top blowing method through a lance provided on the upper side of the melt or a bottom blowing method in which the furnace bottom is blown into the melt may be used. The amount of air blown into the melt is preferably about equimolar to the impurities in the melt in terms of oxygen. When the amount of air is less than this, the oxidation of impurities such as iron becomes insufficient and remains in the melt. Further, if the amount of air is larger than this, the oxidation of nickel or cobalt is promoted and slag loss occurs, which is not preferable.

【0017】以上のように、熔体中の不純物は酸化され
て熔体表面に浮かぶスラグに吸収されるので、このスラ
グを熔体表面から除去し、熔体の金属分から分離する。
あるいは、溶融炉ないし溶融容器の底部からスラグを残
して金属熔体を抜き出しても良い。スラグと分離して回
収した金属分は冷却後、必要に応じて洗浄後、再利用さ
れる。
As described above, since the impurities in the melt are oxidized and absorbed by the slag floating on the surface of the melt, the slag is removed from the surface of the melt and separated from the metal content of the melt.
Alternatively, the metal melt may be extracted from the bottom of the melting furnace or the melting container leaving the slag. The metal component separated from the slag and recovered is cooled, washed if necessary, and reused.

【0018】本発明の処理方法は、以上のように、鉄含
有ニッケル廃材から、効率良く、かつ簡単に鉄を分離し
てニッケルを回収することができる方法であり、従っ
て、水素吸蔵材として知られるニッケル−コバルト合金
を多く含むニッケル−水素電池廃棄物の処理方法として
有用である。この水素吸蔵合金はニッケル−水素電池の
負極活物質として用いられており、その電池廃材には、
例えば、Ni:約34%、Co:約3.3%、Fe:約25%、Al:約0.5
%、Mn:約3.2%程度のニッケルとコバルト、および鉄そ
の他の金属不純物が含まれている。
As described above, the treatment method of the present invention is a method capable of efficiently and easily separating iron from an iron-containing nickel waste material to recover nickel, and thus is known as a hydrogen storage material. It is useful as a method for treating nickel-hydrogen battery waste containing a large amount of nickel-cobalt alloy. This hydrogen storage alloy is used as a negative electrode active material for nickel-hydrogen batteries, and the battery waste material includes
For example, Ni: about 34%, Co: about 3.3%, Fe: about 25%, Al: about 0.5.
%, Mn: Approximately 3.2% of nickel and cobalt, and iron and other metallic impurities are contained.

【0019】本発明の方法を上記電池廃材に適用するに
は、まず、該電池廃材の外装缶の一部を開口あるいは切
断して、加熱時に発生する水素ガスが缶外に抜け出すよ
うにし、この電池廃材に、上記フラックスを電池廃材に
対して20〜35重量%加えて不活性ガス雰囲気下で加
熱し、発生する水素ガスを不活性ガスで追い出しながら
溶融させる。溶融後、冷却してスラグを除去することに
より、ニッケル−コバルト合金を回収することができ
る。
In order to apply the method of the present invention to the above-mentioned waste battery material, first, a part of the outer can of the waste battery material is opened or cut so that hydrogen gas generated during heating is discharged to the outside of the can. 20 to 35% by weight of the above flux is added to a battery waste material and heated under an inert gas atmosphere to melt the generated hydrogen gas while expelling the generated hydrogen gas with the inert gas. After melting, the nickel-cobalt alloy can be recovered by cooling and removing the slag.

【0020】上記電池廃材の処理方法においては、電池
廃材全体を粉砕したり、外装缶と電極を分離するような
従来必要とされた前処理を必要とせず、極めて簡単に、
鉄が除かれたニッケル−コバルト合金を回収することが
できる。
The above-mentioned method for treating battery waste material is extremely simple and does not require the conventional pretreatment such as crushing the entire battery waste material or separating the outer can from the electrode.
Iron-free nickel-cobalt alloys can be recovered.

【0021】[0021]

【発明の実施形態】以下、本発明の実施例および比較例
を示す。なお、これらは例示であり発明の範囲を限定す
るものではない。
Hereinafter, examples of the present invention and comparative examples will be described. In addition, these are illustrations and do not limit the scope of the invention.

【0022】実施例1 市販品から廃棄された25gのNi-水素電池廃棄物(Ni:3
3.9%、Co:3.3%、Fe:25.3%、Al:0.5%、Mn:3.2%)に
ついて、外装缶の一部を開口し、廃電池装入量の25%
に相当する6.3gの融剤を添加し、これをアルミナ製
ルツボに入れ、高温加熱炉に装入して、Arガス雰囲気
中で1500℃、1時間加熱溶融した。溶融後、廃電池
中の鉄含有量(0.1モル相当)に対し酸素換算で0.1モ
ル量に相当する空気10.8リットルを90cc/分の割合で熔
体中に吹き込み、静置、冷却後、スラグを除き、8.8
gのNi-Co合金を回収した。融剤の組成および回収結果
等を表1に示した。また、回収したNi-Co合金中の不純
物量を表2に示した。
Example 1 25 g of Ni-hydrogen battery waste (Ni: 3) discarded from a commercial product
About 3.9%, Co: 3.3%, Fe: 25.3%, Al: 0.5%, Mn: 3.2%), part of the outer can is opened, and 25% of the amount of waste battery charged
Was added to a crucible made of alumina, charged into a high-temperature heating furnace, and heated and melted at 1500 ° C. for 1 hour in an Ar gas atmosphere. After melting, blow 10.8 liters of air corresponding to 0.1 mol amount of oxygen in the waste battery at a rate of 90 cc / min to the iron content (corresponding to 0.1 mol) in the waste battery, and leave it still. After cooling, except for slag, 8.8
g of Ni-Co alloy was recovered. The composition of the flux and the recovery results are shown in Table 1. In addition, Table 2 shows the amount of impurities in the recovered Ni-Co alloy.

【0023】実施例2、3 融剤の組成を表1のように変えた他は実施例1と同様に
してNi-Co合金を回収した。この結果等を表1に示し
た。また、回収したNi-Co合金中の不純物量を表2に示
した。
Examples 2 and 3 A Ni-Co alloy was recovered in the same manner as in Example 1 except that the composition of the flux was changed as shown in Table 1. The results are shown in Table 1. In addition, Table 2 shows the amount of impurities in the recovered Ni-Co alloy.

【0024】比較例1〜7 表1に示す組成の融剤を用いた他は実施例1と同様にし
て、Ni-Co合金を回収した。比較例1は融剤が石灰分を
含まない場合、比較例2、3は石灰分が過少または過多
の場合、比較例4は石灰に代えてフッ化カルシウムを用
いた場合、比較例5はシリカ分が過剰の場合、比較例6
はアルミナ分が過剰の場合である。また比較例7は融剤
を用いずにNi-Co合金を回収した。この結果等を表1に
示し、回収したNi-Co合金中の不純物量を表2に示し
た。
Comparative Examples 1 to 7 Ni-Co alloys were recovered in the same manner as in Example 1 except that the fluxing agents having the compositions shown in Table 1 were used. In Comparative Example 1, when the flux does not contain lime, Comparative Examples 2 and 3 have too little or too much lime, Comparative Example 4 uses calcium fluoride instead of lime, and Comparative Example 5 uses silica. When the amount is excessive, Comparative Example 6
Indicates the case where the alumina content is excessive. In Comparative Example 7, the Ni-Co alloy was recovered without using the flux. The results and the like are shown in Table 1, and the amount of impurities in the recovered Ni-Co alloy is shown in Table 2.

【0025】表1および表2に示すように、本発明の処
理方法によれば、ニッケル−水素電池廃材から、廃材料
中のNi-Co量の90%以上を回収することができる。回
収されたNi-Co合金中の鉄の含有量は1.2重量%以下で
あり、またアルミニウム、マンガンおよび希土類元素の
含有量はいずれも0.1重量%以下である。
As shown in Tables 1 and 2, according to the treatment method of the present invention, 90% or more of the amount of Ni-Co in the waste material of nickel-hydrogen battery can be recovered. The content of iron in the recovered Ni-Co alloy is 1.2% by weight or less, and the contents of aluminum, manganese, and rare earth elements are all 0.1% by weight or less.

【0026】一方、比較例はいずれもNi-Co合金の回収
率が80%台から50%台であり、大幅に低い。しかも
回収したNi-Co合金中の鉄の含有量も上記実施例の約3
倍〜30倍であり、そのほかの不純物量もかなり多い。
On the other hand, in each of the comparative examples, the Ni—Co alloy recovery rate is in the range of 80% to 50%, which is significantly low. Moreover, the content of iron in the recovered Ni-Co alloy was about 3 in the above example.
It is twice to 30 times, and the amount of other impurities is considerably large.

【0027】このうち、石灰分を含まない融剤を用いた
比較例1は、Ni-Co合金の回収率が81%台と低く、鉄
の含有量も4%台と多い。また、石灰分が過少の比較例
2も比較例1と同様である。一方、石灰分が過剰の比較
例3は、Ni-Co合金の回収率は他の比較例より高く、鉄
の含有量量も低減してるが、まだ実施例の約3倍程度と
多い。石灰に代えてフッ化カルシウムを用いた比較例4
は、Ni-Co合金の回収率が大幅に低く、鉄の含有量も1
4%台と格段に多い。また比較例4では、使用したアル
ミナ製坩堝の浸食がみられた。
Among them, in Comparative Example 1 in which the flux containing no lime was used, the recovery rate of the Ni—Co alloy was as low as 81% and the iron content was as high as 4%. Further, Comparative Example 2 in which the lime content is too small is similar to Comparative Example 1. On the other hand, in Comparative Example 3 in which the lime content is excessive, the recovery rate of the Ni—Co alloy is higher than that in the other Comparative Examples, and the iron content is also reduced, but it is still about three times as large as that in the Examples. Comparative Example 4 in which calcium fluoride was used instead of lime
Has a significantly lower Ni-Co alloy recovery rate and an iron content of 1
Remarkably high at 4% level. In Comparative Example 4, corrosion of the alumina crucible used was observed.

【0028】さらに、シリカ分が過剰でアルミナ分が過
少の比較例5では、熔体の粘性が高いためメタルとスラ
グの分離が悪く、回収率が低下すると共に鉄などの不純
物の分離効果も低い。アルミナ分が過剰の比較例6は、
一部に未溶融のアルミナが残留し、適正なスラグが形成
されないため、不純物の分離除去が不十分であり、回収
率も低い。また、融剤を用いない比較例7は、メタルと
酸化物が混在した状態となり、不純物を殆ど分離除去で
きない。
Further, in Comparative Example 5 in which the amount of silica is excessive and the amount of alumina is insufficient, the viscosity of the melt is so high that the separation of metal and slag is poor, the recovery rate is lowered, and the effect of separating impurities such as iron is also low. . Comparative Example 6 in which the alumina content was excessive,
Since unmelted alumina remains in part and proper slag is not formed, separation and removal of impurities are insufficient and the recovery rate is low. Further, in Comparative Example 7 in which no flux was used, the metal and the oxide were mixed, and the impurities could hardly be separated and removed.

【0029】 [0029]

【0030】 [0030]

【0031】[0031]

【発明の効果】以上のように、本発明の処理方法によれ
ば、鉄含有ニッケル廃材から、効率良く、かつ簡単に鉄
等の不純物を分離除去してニッケルを回収することがで
きる。従って、水素吸蔵材として知られるニッケル−コ
バルト合金を多く含むニッケル−水素電池廃棄物の処理
方法として有用である。
As described above, according to the treatment method of the present invention, nickel can be recovered from iron-containing nickel waste material by efficiently and easily separating and removing impurities such as iron. Therefore, it is useful as a method for treating nickel-hydrogen battery waste containing a large amount of nickel-cobalt alloy known as a hydrogen storage material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鉄を含有するニッケル廃材にシリカ分と
アルミナ分および石灰分を含むフラックスを加え、不活
性ガス雰囲気下で加熱溶融し、これに酸素を導入して不
純物の鉄を酸化物としてスラグに移行させることによ
り、鉄を分離してニッケルを回収することを特徴とする
鉄含有ニッケル廃材の処理方法。
1. A flux containing silica, alumina and lime is added to nickel-containing waste material containing iron, the mixture is heated and melted in an inert gas atmosphere, and oxygen is introduced into this to convert iron as an oxide into an oxide. A method for treating an iron-containing nickel waste material, characterized in that iron is separated and nickel is recovered by shifting to slag.
【請求項2】 シリカ分が55〜70重量%、石灰分が
2〜10重量%およびアルミナ分が20重量%以上から
なるフラクッスを用いる請求項1に記載の処理方法。
2. The processing method according to claim 1, wherein a flux having a silica content of 55 to 70% by weight, a lime content of 2 to 10% by weight, and an alumina content of 20% by weight or more is used.
【請求項3】 鉄含有ニッケル廃材が、鉄含有ニッケル
−コバルト合金である請求項1または2に記載の処理方
法。
3. The processing method according to claim 1, wherein the iron-containing nickel waste material is an iron-containing nickel-cobalt alloy.
【請求項4】 鉄含有ニッケル廃材が、ニッケル−水素
電池廃棄物である請求項1〜3にいずれかに記載の処理
方法。
4. The processing method according to claim 1, wherein the iron-containing nickel waste material is a nickel-hydrogen battery waste material.
JP10309196A 1996-04-25 1996-04-25 Treatment for waste material of iron-containing nickel Withdrawn JPH09291317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309196A JPH09291317A (en) 1996-04-25 1996-04-25 Treatment for waste material of iron-containing nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309196A JPH09291317A (en) 1996-04-25 1996-04-25 Treatment for waste material of iron-containing nickel

Publications (1)

Publication Number Publication Date
JPH09291317A true JPH09291317A (en) 1997-11-11

Family

ID=14344974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309196A Withdrawn JPH09291317A (en) 1996-04-25 1996-04-25 Treatment for waste material of iron-containing nickel

Country Status (1)

Country Link
JP (1) JPH09291317A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169206B2 (en) * 2004-04-19 2007-01-30 Umicore Battery recycling
CN102251118A (en) * 2011-06-25 2011-11-23 鞍山鑫普新材料有限公司 Method for recycling metals from waste nickel-hydrogen batteries
CN102251097A (en) * 2011-07-08 2011-11-23 鞍山鑫普新材料有限公司 Method for recovering metal from waste lithium battery
JP2012057238A (en) * 2010-09-13 2012-03-22 Sumitomo Metal Mining Co Ltd Method for recovering cobalt
JP2012102350A (en) * 2010-11-08 2012-05-31 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
WO2012111693A1 (en) * 2011-02-18 2012-08-23 住友金属鉱山株式会社 Valuable metal recovery method
JP2012172175A (en) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd Valuable metal recovery method
WO2012140951A1 (en) * 2011-04-15 2012-10-18 住友金属鉱山株式会社 Method for recovering valuable metals
JP2012224877A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
WO2013080266A1 (en) * 2011-11-28 2013-06-06 住友金属鉱山株式会社 Method for recovering valuable metal
KR20210079708A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Method for preparing nickel matt from ferronickel having low nickel content

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169206B2 (en) * 2004-04-19 2007-01-30 Umicore Battery recycling
JP2012057238A (en) * 2010-09-13 2012-03-22 Sumitomo Metal Mining Co Ltd Method for recovering cobalt
JP2012102350A (en) * 2010-11-08 2012-05-31 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2012172175A (en) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd Valuable metal recovery method
WO2012111693A1 (en) * 2011-02-18 2012-08-23 住友金属鉱山株式会社 Valuable metal recovery method
US9212406B2 (en) 2011-02-18 2015-12-15 Sumitomo Metal Mining Co., Ltd. Valuable metal recovery method
WO2012140951A1 (en) * 2011-04-15 2012-10-18 住友金属鉱山株式会社 Method for recovering valuable metals
JP2012224876A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2012224877A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
US9203126B2 (en) 2011-04-15 2015-12-01 Sumitomo Metal Mining Co., Ltd. Method for recovering valuable metals
CN102251118A (en) * 2011-06-25 2011-11-23 鞍山鑫普新材料有限公司 Method for recycling metals from waste nickel-hydrogen batteries
CN102251097A (en) * 2011-07-08 2011-11-23 鞍山鑫普新材料有限公司 Method for recovering metal from waste lithium battery
WO2013080266A1 (en) * 2011-11-28 2013-06-06 住友金属鉱山株式会社 Method for recovering valuable metal
US10294546B2 (en) 2011-11-28 2019-05-21 Sumitomo Metal Mining Co., Ltd. Method for recovering valuable metal
KR20210079708A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Method for preparing nickel matt from ferronickel having low nickel content

Similar Documents

Publication Publication Date Title
EP1126039B1 (en) Method for reductively processing the liquid slag and the baghouse dust of the electric arc furnace
US8088192B2 (en) Recovery of residues containing copper and other valuable metals
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
AU717488B2 (en) Method of recovering metals from slags
JPH09291317A (en) Treatment for waste material of iron-containing nickel
JP2024045536A (en) Pyrometallurgical process for the recovery of nickel, manganese, and cobalt
WO2022248245A1 (en) Recovery of nickel and cobalt from li-ion batteries or their waste
JP2001073021A (en) Flux for refining metal and production thereof
JPH09143586A (en) Method for removing copper in molten iron
JP3771634B2 (en) Effective utilization of chromium oxide-containing dust
RU2148102C1 (en) Method of preparing ferromanganese
KR102664172B1 (en) Recovery of nickel and cobalt from Li-ion batteries or their waste
US4375371A (en) Method for induction melting
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JP3709728B2 (en) Copper recovery and purification method
JP3709466B2 (en) Separation and recovery method of copper and iron from copper iron scrap
RU2115747C1 (en) Method for reducing metals from mixture of their oxides
RU2037543C1 (en) Method to produce metals and alloys
JP2001279339A (en) Dissolution and removal of impurity elements in iron
CA1055710A (en) Nickel matte refining by oxidation
US5382278A (en) Pretreatment of chromium-bearing metal scrap to remove chromium
JP2024034820A (en) How to recover valuable metals
JP2000309832A (en) Method for recovering aluminum component from molten aluminum slag
US5240496A (en) Pretreatment of chromium-bearing metal scrap to remove chromium
WO2024048249A1 (en) Method for recovering valuable metal

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701