JPH09287023A - Method for producing martensitic stainless steel seamless steel pipe - Google Patents
Method for producing martensitic stainless steel seamless steel pipeInfo
- Publication number
- JPH09287023A JPH09287023A JP9838096A JP9838096A JPH09287023A JP H09287023 A JPH09287023 A JP H09287023A JP 9838096 A JP9838096 A JP 9838096A JP 9838096 A JP9838096 A JP 9838096A JP H09287023 A JPH09287023 A JP H09287023A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- temperature
- seamless steel
- pipe
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
(57)【要約】
【課題】製管ライン内で製管に引き続いて熱処理を行
い、異方性がなく強度と耐食性に優れたマルテンサイト
系ステンレス鋼の継目無鋼管を製造する方法の提供。
【解決手段】マルテンサイト系のステンレス鋼を用いて
継目無鋼管を製造する方法であって、下記〜の工程
を順次行うことを特徴とする。
中空素管に施す延伸加工および仕上げ加工を、両加
工における合計の加工度で40%以上、仕上げ温度 800〜
1100℃で行い継目無鋼管とする工程、
上記継目無鋼管を補熱炉に装入し、下記の (a)式で
規定されるfnの値が22000 から27000 までの間の値と
なる温度T (℃) および時間t(hr)での補熱を行う工
程、
補熱炉から取り出した継目無鋼管を、少なくとも60
0 ℃までは10℃/分以上の冷却速度として 200℃以下ま
で冷却し、次いで 500〜780 ℃で焼き戻す工程。
fn=(T+ 273) × (21+ logt) ・・・ (a)
ただし、T≧ 800 (℃) である。(57) [Abstract] [PROBLEMS] To provide a method for producing a seamless martensitic stainless steel pipe that has no anisotropy and is excellent in strength and corrosion resistance by performing heat treatment subsequent to pipe manufacturing in a pipe manufacturing line. A method for producing a seamless steel pipe using martensitic stainless steel, characterized in that the following steps (1) to (2) are sequentially performed. 40% or more of the total working ratio of both drawing and finishing processes applied to hollow shells, finishing temperature 800 ~
The process of making a seamless steel pipe at 1100 ° C, charging the above seamless steel pipe into a reheating furnace, and the temperature T at which the value of fn defined by the following equation (a) becomes a value between 22000 and 27000. (° C) and time t (hr) for supplementary heat treatment, at least 60
A process of cooling to 0 ° C at a cooling rate of 10 ° C / minute or more to 200 ° C or less, and then tempering at 500 to 780 ° C. fn = (T + 273) × (21 + logt) (a) However, T ≧ 800 (° C.).
Description
【0001】[0001]
【発明の属する技術分野】この発明は、常温で実質的に
マルテンサイト組織となるステンレス鋼を用い、高強度
で、かつ、靱性および耐食性に優れた継目無鋼管を製造
する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe having high strength, excellent toughness and corrosion resistance, using stainless steel which has a substantially martensitic structure at room temperature.
【0002】[0002]
【従来の技術】マルテンサイト系ステンレス鋼の継目無
鋼管は、従来、製管後、焼入れ−焼戻しの熱処理を施し
て製品としている。この方法では、製管後に一旦冷却し
た鋼管を再加熱して焼入れをしなければならないので、
工程が多く、またエネルギー消費も大きい。そこで、普
通鋼および低合金鋼の継目無鋼管の製造で採用されてい
る、いわゆる「直接焼入れ」をマルテンサイト系ステン
レス鋼の継目無鋼管の製造にも適用する試みがなされて
いる。2. Description of the Related Art A seamless martensitic stainless steel pipe has hitherto been manufactured by a quenching-tempering heat treatment after the pipe is manufactured. In this method, it is necessary to reheat and quench the steel pipe once cooled after it has been manufactured.
There are many processes and energy consumption is large. Therefore, an attempt has been made to apply the so-called "direct quenching" used in the production of seamless steel pipes of ordinary steel and low alloy steel to the production of seamless steel pipes of martensitic stainless steel.
【0003】例えば、特公平 5-45651号公報には、マン
ドレルミル方式で製管した後の鋼管をそのまま室温まで
冷却した後、特定の条件で焼戻しを行う方法が、また、
特開平5-98347 号公報には、熱間加工後のマルテンサイ
ト系ステンレス鋼(鋼板、鋼管等) をそのまま直ちに2
段階の冷却を行う方法が、それぞれ開示されている。For example, Japanese Examined Patent Publication (Kokoku) No. 5-45651 discloses a method in which a steel pipe manufactured by a mandrel mill system is cooled to room temperature and then tempered under specific conditions.
Japanese Unexamined Patent Publication No. 5-98347 discloses that martensitic stainless steel (steel plate, steel pipe, etc.) immediately after hot working should be used as it is.
Each method of performing the stepwise cooling is disclosed.
【0004】しかし、これらの方法で得られる鋼管で
は、集合組織の形成が甚だしく、結晶粒界に析出したク
ロム炭化物の影響と重畳して、靱性等の機械的性質、耐
硫化物応力割れ性(耐SSC性)等の耐食性に著しく異
方性が現れる。However, in the steel pipes obtained by these methods, the formation of a texture is so great that it is superposed with the effect of chromium carbide precipitated at the grain boundaries, and mechanical properties such as toughness and sulfide stress crack resistance ( Anisotropy appears remarkably in corrosion resistance such as SSC resistance).
【0005】本発明者は、上記の異方性の問題を解決す
る方法として、仕上げ圧延後に完全に再結晶する条件で
熱間加工を行い、直接焼入れする方法を提案した(特開
平4-110420号公報、参照) 。しかしながら、マルテンサ
イト系ステンレス鋼の再結晶温度は、低合金鋼に較べて
著しく高いので、通常の継目無鋼管の製管ミルでは、製
品サイズによって完全に再結晶させることが困難な場合
がある。また、再結晶温度以上の高温で仕上げができる
サイズの鋼管であっても、その鋼管の部位によって温度
ムラがあって、これが製品に好ましくない影響を及ぼ
す。As a method for solving the above-mentioned problem of anisotropy, the present inventor has proposed a method in which hot working is performed under conditions of complete recrystallization after finish rolling and direct quenching is performed (Japanese Patent Laid-Open No. 4-104420). No. Gazette, see). However, since the recrystallization temperature of martensitic stainless steel is remarkably higher than that of low alloy steel, it may be difficult to completely recrystallize it in a conventional pipe mill of a seamless steel pipe depending on the product size. Further, even if the steel pipe is of a size that can be finished at a temperature higher than the recrystallization temperature, there are temperature variations depending on the portion of the steel pipe, which adversely affects the product.
【0006】継目無鋼管の製造過程では、中空素管ある
いは圧延後の鋼管が圧延ロールや搬送ラインのビーム等
に全面均一に接触することはない。従って、1本の鋼管
の部位(長手方向および円周方向の位置)によって冷却
状況が異なり、相当の温度差が生じる。このような鋼管
をそのまま焼入れすると、部位によっては未再結晶のま
ま焼入れされることになり、その結果として1本の鋼管
内に異方性のある部分や機械的性質および耐食性の異な
る部分が発生してしまう。即ち、製品鋼管は、特性にバ
ラツキの多い実用に耐えないものになる。[0006] In the process of manufacturing a seamless steel pipe, the hollow shell or the steel pipe after rolling does not come into uniform contact with the entire surface of the rolling roll, the beam of the conveying line or the like. Therefore, the cooling condition differs depending on the part of the one steel pipe (position in the longitudinal direction and the circumferential direction), and a considerable temperature difference occurs. If such a steel pipe is hardened as it is, depending on the part, it will be hardened without being recrystallized, and as a result, an anisotropic part and a part having different mechanical properties and corrosion resistance will occur in one steel pipe. Resulting in. That is, the product steel pipe becomes unusable for practical use with many variations in characteristics.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、製管
後に別ラインで再加熱して行われている従来の焼入れ−
焼戻し処理を、製管ライン内で製管に引き続いて行い、
しかも、あらゆる製品サイズにおいて異方性がなく強度
と耐食性に優れたマルテンサイト系ステンレス鋼の継目
無鋼管を製造する方法を提供することにある。DISCLOSURE OF THE INVENTION An object of the present invention is to perform conventional quenching which is carried out by reheating in a separate line after pipe making.
The tempering process is performed in the pipe making line following the pipe making,
Moreover, it is to provide a method for producing a seamless martensitic stainless steel pipe having no anisotropy and excellent in strength and corrosion resistance in all product sizes.
【0008】[0008]
【課題を解決するための手段】本発明は、常温で実質的
にマルテンサイト組織となるステンレス鋼を用いて継目
無鋼管を製造する方法であって、下記〜の工程を順
次行うことを特徴とする継目無鋼管の製造方法、を要旨
とする。The present invention is a method for producing a seamless steel pipe using a stainless steel that substantially has a martensitic structure at room temperature, characterized in that the following steps are sequentially performed. The manufacturing method of a seamless steel pipe is as follows.
【0009】 中空素管に施す延伸加工および仕上げ
加工を、両加工における合計の加工度で40%以上、仕上
げ温度 800〜1100℃で行い継目無鋼管とする工程、 上記継目無鋼管を補熱炉に装入し、下記の (a)式で
規定されるfnの値が22000 から27000 までの間の値と
なる温度T (℃) および時間t(hr)での補熱を行う工
程、 補熱炉から取り出した継目無鋼管を、少なくとも 6
00℃までは10℃/分以上の冷却速度として200 ℃以下に
冷却した後、 500〜780 ℃で焼き戻す工程。A step of performing a drawing process and a finishing process on the hollow shell at a total working ratio of 40% or more and a finishing temperature of 800 to 1100 ° C. to obtain a seamless steel pipe, wherein the seamless steel pipe is a reheating furnace. The process of charging at the temperature T (° C) and time t (hr) at which the value of fn defined by the formula (a) below becomes a value between 22000 and 27000, At least 6 seamless steel pipes removed from the furnace
A process of cooling to 200 ° C or less at a cooling rate of 10 ° C / min or more up to 00 ° C, and then tempering at 500 to 780 ° C.
【0010】 fn=(T+ 273) × (21+ logt) ・・・ (a) ただし、T≧ 800 (℃) である。Fn = (T + 273) × (21 + logt) (a) However, T ≧ 800 (° C.).
【0011】本発明方法の対象となる「常温で実質的に
マルテンサイト組織となるステンレス鋼」とは、常温で
マルテンサイト主体の組織(50%未満のδフェライトを
含んでいてもよい) となるステンレス鋼である。その化
学組成には特に制約はないが、一般的な成分およびその
含有量を例示すれば下記のとおりである(%は重量%で
ある)。The "stainless steel having a substantially martensitic structure at room temperature" which is the subject of the method of the present invention is a structure mainly containing martensite at room temperature (may contain less than 50% δ ferrite). It is stainless steel. There are no particular restrictions on the chemical composition, but typical components and their contents are as follows (% is% by weight).
【0012】C:0.001 〜1.2 %、 Si:1 %以下、M
n:2 %以下、 Cr: 8〜17%、sol.Al:0.005
〜0.1 %、P、S:それぞれ0.05%以下、Mo:0〜3
%、Ni: 0〜8 %、Cu: 0〜5 %、N:0.001 〜0.15
%、B:0 〜0.01%、Ti、Nb、V:それぞれ 0〜0.5
%、Ca、Mg、Y、希土類元素 (La、Ce等) :それぞれ 0
〜0.01%。C: 0.001 to 1.2%, Si: 1% or less, M
n: 2% or less, Cr: 8-17%, sol.Al: 0.005
~ 0.1%, P, S: 0.05% or less each, Mo: 0-3
%, Ni: 0 to 8%, Cu: 0 to 5%, N: 0.001 to 0.15
%, B: 0 to 0.01%, Ti, Nb, V: 0 to 0.5, respectively
%, Ca, Mg, Y, rare earth elements (La, Ce, etc.): 0 for each
~ 0.01%.
【0013】なお、これらの合金元素以外にも適当量の
他の合金元素を含有していてもよい。In addition to these alloy elements, a proper amount of other alloy elements may be contained.
【0014】[0014]
【発明の実施の形態】以下、本発明方法の各工程につい
て順次説明する。なお、製管素材 (ビレット) は、イン
ゴットまたは連続鋳造したスラブ、ブルーム等から分塊
圧延や鍛造を経て製造したビレットでもよいし、また、
連続鋳造で丸ビレットを鋳造すれば、そのまま穿孔工程
に付すことができる。BEST MODE FOR CARRYING OUT THE INVENTION Each step of the method of the present invention will be sequentially described below. The pipe-making material (billet) may be a billet manufactured by slab rolling or forging from an ingot or a continuously cast slab, bloom, or the like.
If a round billet is cast by continuous casting, it can be directly subjected to the punching process.
【0015】延伸圧延に付す中空素管(ホローシェル)
の製造、即ち、穿孔は、どんな方法で行ってもよい。例
えば、傾斜ロール圧延機等のいわゆるピアサーで行うこ
とができる。穿孔条件は、通常のマルテンサイト系ステ
ンレス鋼の継目無鋼管製造の場合と基本的に同じでよ
い。ただし、次工程の延伸圧延において厚肉の中空素管
を大きな加工度で圧延するには大きなミル・パワーを要
する。従って、次工程の圧延加工の加工度を大きくする
ためには、穿孔工程でできるだけ薄肉にしておくのが好
ましい。例えば、ピアサーをコーン型にし、交叉角を付
けたロールで拡管薄肉化が可能なタイプのピアサーを使
用して穿孔する方法が推奨される。Hollow shell for drawing and rolling (hollow shell)
The manufacturing, i.e. drilling, can be done in any way. For example, a so-called piercer such as an inclined roll mill can be used. The perforation conditions may be basically the same as in the case of producing a seamless martensitic stainless steel seamless steel pipe. However, a large mill power is required to roll a thick hollow shell with a large degree of workability in the subsequent drawing and rolling. Therefore, in order to increase the workability of the rolling process in the next step, it is preferable to make the wall thickness as thin as possible in the punching step. For example, a method of making a piercer into a cone shape and using a piercer of a type capable of expanding and thinning a pipe with a roll having a crossed angle is recommended.
【0016】 延伸加工および仕上げ加工工程:この
加工を行う設備には、マンネスマン・マンドレルミル方
式、マンネスマン・プラグミル方式等、種々の方式があ
る。本発明方法ではいずれの方式をも採用できる。例え
ばマンドレルミル方式では、マンドレルミルで延伸加
工、サイザーまたはレデューサーで仕上げ加工が行われ
る。Stretching and finishing processes: There are various systems for performing this process, such as the Mannesmann-mandrel mill system and the Mannesmann-plug mill system. Either method can be adopted in the method of the present invention. For example, in the mandrel mill system, a drawing process is performed by a mandrel mill and a finishing process is performed by a sizer or reducer.
【0017】延伸、仕上げ加工は、穿孔加工に比べると
低温加工になり、結晶粒微細化に重要な加工工程であ
る。これらの加工での仕上げ温度が 800℃よりも低くな
ると、後の補熱でも十分に固溶しない粗大なクロム炭化
物が析出し、製品鋼管の耐SSC性および靱性が低下す
る。一方、1100℃を超えると結晶粒が粗大化して、やは
り耐SSC性および靱性が低下する。従って、仕上げ温
度は 800〜1100℃としなければならない。なお、組織微
細化の点から仕上げ温度は 800〜900 ℃程度と低くする
のが望ましい。The stretching and finishing processes are low-temperature processes as compared with the piercing processes, and are important process steps for refining crystal grains. When the finishing temperature in these workings becomes lower than 800 ° C, coarse chromium carbides which do not form a solid solution sufficiently by the subsequent supplementary heat are precipitated, and the SSC resistance and toughness of the product steel pipe deteriorate. On the other hand, if the temperature exceeds 1100 ° C, the crystal grains become coarse, and the SSC resistance and toughness also deteriorate. Therefore, the finishing temperature must be 800-1100 ℃. It is desirable that the finishing temperature be as low as 800 to 900 ° C from the viewpoint of microstructure refinement.
【0018】延伸加工および仕上げ加工の合計加工度が
40 %未満であれば、結晶粒の微細化が十分でない。こ
の加工度の上限には特に制限はないが、90%を超えると
工具への負担が大きいので40〜90%の範囲とするのが好
ましい。The total processing degree of stretching and finishing is
If it is less than 40%, the grain refinement is not sufficient. The upper limit of the workability is not particularly limited, but if it exceeds 90%, the load on the tool will be heavy, so it is preferably in the range of 40 to 90%.
【0019】結晶粒微細化の観点からは、延伸加工工程
と仕上げ加工工程の間隔はなるべく短くするのがよい。
即ち、延伸加工時に導入された転位が回復する前に仕上
げ加工を実施して、十分に歪を蓄積した後に再結晶によ
る微細化を図ればその効果が大きい。From the viewpoint of grain refinement, it is preferable that the interval between the drawing process and the finishing process be as short as possible.
That is, the effect is great if the finishing process is performed before the dislocations introduced during the stretching process are recovered, and the strain is sufficiently accumulated and then the grain size is reduced by recrystallization.
【0020】上記のような加工は、延伸加工を行う圧延
機 (例えばマンドレルミル) と、仕上げ加工を行う圧延
機 (例えばサイザーまたはレデューサー) との間隔を、
前者で加工された中空素管の長さよりも短い間隔をおい
て設置した設備を使用して実施することができる。例え
ば、エキストラクティングサイザーによって、直ちに仕
上げ圧延を実施するとともにホローシェルからバーを引
き抜く作業を同時に行うような圧延プロセスが好まし
い。In the above-mentioned processing, the distance between the rolling mill (for example, a mandrel mill) for stretching and the rolling machine (for example, sizer or reducer) for finishing is determined by
It can be carried out using equipment installed at intervals shorter than the length of the hollow shell processed by the former. For example, a rolling process is preferred in which the finish rolling is immediately performed and the bar is pulled out from the hollow shell at the same time by using the extracting sizer.
【0021】 補熱工程:補熱は、製管した継目無鋼
管を製管ラインに設けた補熱炉に装入して行う。この補
熱には、前の加工で歪を導入した鋼管を再結晶させて微
細組織とすること、圧延加工中に析出したクロム炭化物
を固溶させること、および鋼管を均一に熱して特性のバ
ラツキや局部的異方性を少なくする、という多くの目的
がある。補熱炉を用いることによって、管全体の温度の
均一化のみならず温度の正確な調整が可能になり、製品
に望まれる特性に合わせた熱処理条件の選択ができると
いう利点がある。Supplementary heating step: Supplementary heating is performed by charging the seamless steel pipe produced into a supplementary heating furnace provided in a pipe production line. This supplementary heat includes recrystallizing the steel pipe to which strain has been introduced in the previous work to form a fine structure, solidifying the chromium carbide precipitated during rolling, and heating the steel pipe evenly to disperse the characteristics. There are many purposes to reduce local anisotropy. The use of the supplementary heating furnace has an advantage that not only the temperature of the entire tube can be made uniform but also the temperature can be accurately adjusted, and the heat treatment conditions can be selected according to the characteristics desired for the product.
【0022】補熱の温度が 800℃よりも低いとクロム炭
化物の析出および粗大化が著しい。When the temperature of supplementary heat is lower than 800 ° C., precipitation and coarsening of chromium carbide are remarkable.
【0023】従って、補熱は 800℃以上で行う必要があ
る。即ち、前記 (a)式のT(℃)は 800以上としなけれ
ばならない。Therefore, the supplementary heat must be performed at 800 ° C. or higher. That is, T (° C) in the above equation (a) must be 800 or more.
【0024】高温で再結晶させる場合には、再結晶後に
直ちに結晶粒の成長、粗大化が始まるので、補熱は短時
間にしなければならない。補熱の温度T(℃)と時間t
(hr)の関係は、再結晶の活性化エネルギーから導出さ
れる前記 (a)式のfnの値が22000〜27000 となるよう
に調整する必要がある。fnの値が 22000より小さい条
件の補熱では再結晶が完全に完了せず、一方、fnが 2
7000を超える条件では結晶粒の粗大化が著しく、製品鋼
管の耐SSC性および靱性が低下する。When recrystallization is carried out at a high temperature, since the growth and coarsening of crystal grains start immediately after the recrystallization, supplementary heat must be made in a short time. Supplementary heat temperature T (° C) and time t
It is necessary to adjust the relationship of (hr) so that the value of fn in the equation (a) derived from the activation energy of recrystallization is 22000 to 27000. The recrystallization was not completed completely by supplementary heating under the condition that the value of fn was less than 22000.
Under the condition of more than 7,000, the crystal grains are remarkably coarsened, and the SSC resistance and toughness of the product steel pipe are deteriorated.
【0025】前記の工程での仕上げ温度は、補熱工程
の適正温度より高い場合、同等である場合、およびそれ
より低い場合、のいずれもあり得る。従って、本発明方
法で補熱というのは、圧延仕上げ温度からの徐冷、仕上
げ温度とほぼ同じ温度での保持、仕上げ温度からの加熱
(昇温)のいずれもあり得る。前記 (a)式の条件を満足
する限り、ヒートパターンには何ら制約はない。なお、
(a)式を満たす条件で補熱すれば、管全体の温度の均一
化も達成される。The finishing temperature in the above step may be higher than, equal to, or lower than the appropriate temperature in the reheating step. Therefore, the supplementary heat in the method of the present invention may be any of gradual cooling from the rolling finishing temperature, holding at a temperature substantially the same as the finishing temperature, and heating (heating) from the finishing temperature. There is no restriction on the heat pattern as long as the condition of the expression (a) is satisfied. In addition,
If the heat is supplemented under the condition that satisfies the expression (a), the temperature of the entire tube can be made uniform.
【0026】 冷却工程:マルテンサイト系ステンレ
ス鋼の焼入れ性は高いので、補熱炉を出た鋼管の冷却
は、クロム炭化物が析出しない速度であれば十分であ
る。少なくとも、クロム炭化物が析出しやすい温度域で
ある 600℃までは 10 ℃/分以上の冷却速度で冷却す
る。それによって炭化物の析出は実用上問題にならない
程度に抑えることができる。600 ℃より低温では、任意
の冷却速度で、実質的なMf点である200 ℃以下まで冷
却すればよい。ただし、残留オーステナイトをできるだ
け少なくするために室温まで完全に冷し切るのが好まし
い。Cooling step: Since the martensitic stainless steel has a high hardenability, the cooling of the steel pipe exiting the auxiliary heating furnace is sufficient if the chromium carbide does not precipitate. Cool at a cooling rate of 10 ° C / min or more at least up to 600 ° C, which is a temperature range in which chromium carbide easily precipitates. As a result, the precipitation of carbides can be suppressed to such an extent that it does not pose a practical problem. If the temperature is lower than 600 ° C., it may be cooled at an arbitrary cooling rate to 200 ° C. or lower which is the substantial Mf point. However, it is preferable to completely cool to room temperature in order to reduce the retained austenite as much as possible.
【0027】焼戻しは、焼入れによって生成したマルテ
ンサイト組織を焼き戻して、製品鋼管の靱性と耐SSC
性を向上させるために行う。500 ℃よりも低温では焼戻
し効果が十分ではなく、780 ℃を超える温度では強度低
下を招く。なお、焼戻しの時間は 5分から1時間程度で
よい。The tempering is carried out by tempering the martensite structure produced by quenching to obtain the toughness and SSC resistance of the product steel pipe.
To improve the sex. If the temperature is lower than 500 ° C, the tempering effect is not sufficient, and if the temperature exceeds 780 ° C, the strength is lowered. The tempering time may be about 5 minutes to 1 hour.
【0028】[0028]
【実施例】表1に示すA〜Gの鋼を溶製し外径 225mmの
ビレットを作製して、マンネスマン−マンドレルミルを
用いて圧延を行い、外径 273.1mm、肉厚 9.3 mm の鋼管
を製造した。製造条件は表2に示すとおりである。な
お、補熱後の熱処理において600℃よりも低温域での冷
却は空冷とし、それぞれの冷却終了温度から焼戻し温度
の再加熱した。鋼管強度は鋼種によって変化するので、
この焼戻し温度を変えてどの鋼種においても耐力 (降伏
強度) が 60 kgf/mm2 前後になるように調整した。EXAMPLE Steels A to G shown in Table 1 were melted to prepare a billet having an outer diameter of 225 mm, which was rolled using a Mannesmann-mandrel mill to form a steel pipe having an outer diameter of 273.1 mm and a wall thickness of 9.3 mm. Manufactured. The manufacturing conditions are as shown in Table 2. In the heat treatment after supplementary heating, cooling in a temperature range lower than 600 ° C. was air cooling, and reheating was performed from the respective cooling end temperatures to the tempering temperature. Steel pipe strength changes with steel type, so
The tempering temperature was changed to adjust the yield strength (yield strength) to around 60 kgf / mm 2 for all steel types.
【0029】表2の従来例とは、前掲の特開平4-110420
号公報に開示した方法に準じ、十分に高温で加工を終了
させ、再結晶させた後の鋼管を直接焼入れし、焼戻しの
処理を施した例である。The conventional example of Table 2 is the same as the above-mentioned JP-A-4-110420.
This is an example in which, according to the method disclosed in Japanese Patent Laid-Open Publication No. 2003-242242, the working is finished at a sufficiently high temperature and the recrystallized steel pipe is directly quenched and tempered.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】得られた鋼管について、管端から長手方向
に3mおきの3カ所およびこれらの各位置について円周
方向に4等分した位置の合計12カ所から管軸方向に引張
試験片、シャルピー衝撃試験片および耐食性試験片を採
取し、下記の試験を行い機械的性質および耐食性を調べ
た。With respect to the obtained steel pipe, a tensile test piece and a Charpy impact were applied in the pipe axial direction from 3 places at intervals of 3 m in the longitudinal direction from the pipe end and a total of 12 places obtained by equally dividing each of these positions in the circumferential direction. A test piece and a corrosion resistance test piece were sampled and subjected to the following tests to examine mechanical properties and corrosion resistance.
【0033】引張試験は、直径4mm、平行部 34mm の丸
棒試験片を用いて行った。シャルピー衝撃試験は、5mm
×10mm×55mmの2mmVノッチ試験片を用い、0℃での衝
撃値で評価した。耐食性 (耐SSC性)は、NACE TM 01
77 METHOD-A に規定された定荷重試験に従い、45kgf/mm
2 の応力を負荷し、「30atm. CO2+0.01 atm. H2S +5
%NaCl」の溶液に浸漬し、200 時間後の割れの有無によ
って評価した。試験結果を表3に示す。The tensile test was carried out using a round bar test piece having a diameter of 4 mm and a parallel portion of 34 mm. Charpy impact test is 5mm
The impact value at 0 ° C. was evaluated using a 2 mm V notch test piece of × 10 mm × 55 mm. Corrosion resistance (SSC resistance) is NACE TM 01
According to the constant load test specified in 77 METHOD-A, 45 kgf / mm
Applying the stress of 2 , "30 atm. CO 2 + 0.01 atm. H 2 S + 5
% NaCl ", and evaluated for the presence or absence of cracks after 200 hours. The test results are shown in Table 3.
【0034】表3では、降伏強度と衝撃値は上記の12カ
所の試験片による最大値(M)、最小値(m)、平均
値、およびバラツキ(M−m)で示した。また、異方性
は衝撃試験片の破面にセパレーションが発生しているか
否かで示した。耐SSC性は、12カ所からの試験片のう
ち、何本が合格(割れ発生無し) であったか、により評
価した。In Table 3, the yield strength and impact value are shown by the maximum value (M), the minimum value (m), the average value, and the variation (M-m) of the above 12 test pieces. The anisotropy was indicated by whether or not separation was generated on the fracture surface of the impact test piece. The SSC resistance was evaluated based on how many of the 12 test pieces passed (no cracking occurred).
【0035】[0035]
【表3】 [Table 3]
【0036】表3から次の事実が明らかである。The following facts are clear from Table 3.
【0037】1) 本発明例である試番1から14までは、
強度、靱性ともに良好であり、鋼管の部位によるそれら
の値の差異は極めて小さい。即ち、バラツキが小さい。
また、上記本発明例の衝撃試験片の破面には異方性の指
標となるセパレーションが見られない。1) The trial numbers 1 to 14, which are examples of the present invention,
Both strength and toughness are good, and the difference in these values depending on the part of the steel pipe is extremely small. That is, the variation is small.
Further, no separation, which is an index of anisotropy, is observed on the fracture surface of the impact test piece of the present invention example.
【0038】2) 耐SSC性試験では、12本の試験片の
全てに割れが無く、耐SSC性も良好である。2) In the SSC resistance test, all 12 test pieces were free from cracks and had good SSC resistance.
【0039】3) 従来例である試番22〜28では、鋼管の
部位による機械的性質、特に強度のバラツキが大きい。
また、耐SSC性試験でも全数合格には到っていない。3) In the conventional sample Nos. 22 to 28, the mechanical properties, particularly the strength, vary greatly depending on the part of the steel pipe.
In addition, even the SSC resistance test has not passed the total number.
【0040】4) 試番15〜21は、製管および熱処理の条
件のどれかが本発明で定める条件を満たしていない比較
例である。これらのうち、試番15は延伸加工と仕上げ加
工の合計加工度が 5%と小さく、試番16は仕上げ温度が
高過ぎて、いずれもオーステナイト結晶粒が粗大にな
り、靱性および耐SSC性が劣る。4) Test Nos. 15 to 21 are comparative examples in which any of the conditions of pipe making and heat treatment do not satisfy the conditions defined in the present invention. Of these, trial No. 15 has a small total working ratio of stretching and finishing of 5%, and trial No. 16 has an excessively high finishing temperature, which results in coarse austenite grains, resulting in poor toughness and SSC resistance. Inferior.
【0041】5) 試番17は、補熱温度が低く過ぎて炭化
物が粗大に成長し、かつフェライト変態が起きたために
強度が低く、靱性および耐SSC性が劣る。5) In the sample No. 17, the supplementary heating temperature was too low, the carbides grew coarsely, and the ferrite transformation occurred, so the strength was low and the toughness and SSC resistance were poor.
【0042】6) 試番18は、fnの値が小さ過ぎたため
に再結晶が十分でなくセパレーションが観察された。即
ち、異方性が大きい。他方、試番19は、fnの値が大き
過ぎてオーステナイト結晶粒が粗大化したため、靱性お
よび耐SSC性が劣る。6) In the sample No. 18, recrystallization was not sufficient and separation was observed because the value of fn was too small. That is, the anisotropy is large. On the other hand, in sample No. 19, the toughness and SSC resistance are inferior because the value of fn is too large and the austenite crystal grains become coarse.
【0043】7) 試番20は、補熱後の 600℃までの冷却
速度が小さいので、粗大炭化物の析出によって靱性およ
び耐SSC性が低下している。一方、試番21は、冷却終
了温度が高過ぎたためにマルテンサイト変態が完了しな
い状態で焼戻されてしまい、強度が低く、靱性および耐
SSC性も劣っている。7) Sample No. 20 has a low cooling rate up to 600 ° C. after supplementary heating, so that the toughness and SSC resistance are lowered due to the precipitation of coarse carbide. On the other hand, Sample No. 21 is tempered in a state where the martensite transformation is not completed because the cooling end temperature is too high, and has low strength and inferior toughness and SSC resistance.
【0044】[0044]
【発明の効果】実施例からも明らかなとおり、本発明方
法によって製造したマルテンサイト系ステンレス鋼の継
目無鋼管には、従来の直接焼入れ法で製造された鋼管の
難点であった特性のバラツキが殆どなく、かつ異方性も
ない。本発明方法は、製管から熱処理まで、連続的にオ
ンラインで実施できるので、継目無鋼管の製造における
生産性の向上と製造コストの低減にも大きく寄与する。As is clear from the examples, the seamless steel pipe of the martensitic stainless steel produced by the method of the present invention has a characteristic variation which was a drawback of the steel pipe produced by the conventional direct quenching method. Almost none and no anisotropy. Since the method of the present invention can be continuously carried out online from pipe production to heat treatment, it greatly contributes to improvement of productivity and reduction of production cost in production of seamless steel pipe.
Claims (1)
ステンレス鋼を用いて継目無鋼管を製造する方法であっ
て、下記〜の工程を順次行うことを特徴とする継目
無鋼管の製造方法。 中空素管に施す延伸加工および仕上げ加工を、両加
工における合計の加工度で40%以上、仕上げ温度 800〜
1100℃で行い継目無鋼管とする工程、 上記継目無鋼管を補熱炉に装入し、下記の (a)式で
規定されるfnの値が22000 から27000 までの間の値と
なる温度T (℃) および時間t(hr)での補熱を行う工
程、 補熱炉から取り出した継目無鋼管を、少なくとも 6
00℃までは10℃/分以上の冷却速度として200 ℃以下に
冷却した後、 500〜780 ℃で焼き戻す工程。 fn=(T+ 273) × (21+ logt) ・・・ (a) ただし、T≧ 800 (℃) である。1. A method for producing a seamless steel pipe using stainless steel having a substantially martensitic structure at room temperature, which is characterized in that the following steps (1) to (2) are sequentially performed. 40% or more of the total working ratio of both drawing and finishing processes applied to hollow shells, finishing temperature 800 ~
The process of making a seamless steel pipe at 1100 ° C, charging the above seamless steel pipe into a reheating furnace, and the temperature T at which the value of fn defined by the following equation (a) becomes a value between 22000 and 27000. (° C) and time t (hr) for supplementary heat treatment, at least 6
A process of cooling to 200 ° C or less at a cooling rate of 10 ° C / min or more up to 00 ° C, and then tempering at 500 to 780 ° C. fn = (T + 273) × (21 + logt) (a) However, T ≧ 800 (° C.).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09838096A JP3694967B2 (en) | 1996-04-19 | 1996-04-19 | Method for producing martensitic stainless steel seamless steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09838096A JP3694967B2 (en) | 1996-04-19 | 1996-04-19 | Method for producing martensitic stainless steel seamless steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09287023A true JPH09287023A (en) | 1997-11-04 |
JP3694967B2 JP3694967B2 (en) | 2005-09-14 |
Family
ID=14218275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09838096A Expired - Fee Related JP3694967B2 (en) | 1996-04-19 | 1996-04-19 | Method for producing martensitic stainless steel seamless steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3694967B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001129602A (en) * | 1999-11-04 | 2001-05-15 | Sumitomo Metal Ind Ltd | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in descaleability and corrosion resistance |
JP2002348610A (en) * | 2001-05-22 | 2002-12-04 | Sumitomo Metal Ind Ltd | Method for producing martensitic stainless steel pipe |
WO2014119251A1 (en) * | 2013-01-31 | 2014-08-07 | Jfeスチール株式会社 | Manufacturing method and manufacturing equipment for seamless steel pipe or tube with excellent toughness |
JP2017031493A (en) * | 2015-08-05 | 2017-02-09 | 新日鐵住金株式会社 | Manufacturing method of stainless steel pipe |
CN107587033A (en) * | 2016-07-06 | 2018-01-16 | 建平县园田矿山机械制造有限公司 | High chromium multiple elements design tup and preparation method thereof |
CN109750222A (en) * | 2017-12-08 | 2019-05-14 | 上海落日新材料科技有限公司 | A kind of high-performance martensitic stain less steel and its high flatness board fabrication method |
-
1996
- 1996-04-19 JP JP09838096A patent/JP3694967B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001129602A (en) * | 1999-11-04 | 2001-05-15 | Sumitomo Metal Ind Ltd | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in descaleability and corrosion resistance |
JP2002348610A (en) * | 2001-05-22 | 2002-12-04 | Sumitomo Metal Ind Ltd | Method for producing martensitic stainless steel pipe |
WO2014119251A1 (en) * | 2013-01-31 | 2014-08-07 | Jfeスチール株式会社 | Manufacturing method and manufacturing equipment for seamless steel pipe or tube with excellent toughness |
JP2014148699A (en) * | 2013-01-31 | 2014-08-21 | Jfe Steel Corp | Method for producing seamless steel pipe having excellent toughness and production equipment therefor |
JP2017031493A (en) * | 2015-08-05 | 2017-02-09 | 新日鐵住金株式会社 | Manufacturing method of stainless steel pipe |
CN107587033A (en) * | 2016-07-06 | 2018-01-16 | 建平县园田矿山机械制造有限公司 | High chromium multiple elements design tup and preparation method thereof |
CN109750222A (en) * | 2017-12-08 | 2019-05-14 | 上海落日新材料科技有限公司 | A kind of high-performance martensitic stain less steel and its high flatness board fabrication method |
Also Published As
Publication number | Publication date |
---|---|
JP3694967B2 (en) | 2005-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6798559B2 (en) | Steel materials, steel pipes for oil wells, and methods for manufacturing steel materials | |
EP1288316A1 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
EP0787541B1 (en) | Method of manufacturing seamless steel pipes and manufacturing equipment therefor | |
GB1562104A (en) | Production of seamless steel pipe | |
JPH08311551A (en) | Method for producing high-strength seamless steel pipe with excellent resistance to sulfide stress cracking | |
WO2016080315A1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
JP4123672B2 (en) | Manufacturing method of high strength seamless steel pipe with excellent toughness | |
JP3598868B2 (en) | Manufacturing method of hot rolled wire rod | |
JP3506033B2 (en) | Method of manufacturing hot-rolled steel bars or wires | |
JP6901045B2 (en) | Steel pipe and manufacturing method of steel pipe | |
WO2015005119A1 (en) | METHOD FOR PRODUCING HIGH-Cr STEEL PIPE | |
JP6892008B2 (en) | Steel pipe and manufacturing method of steel pipe | |
JP3694967B2 (en) | Method for producing martensitic stainless steel seamless steel pipe | |
JP3965708B2 (en) | Manufacturing method of high strength seamless steel pipe with excellent toughness | |
JP3717745B2 (en) | Mandrel bar and its manufacturing method | |
JP2000096142A (en) | Method for reducing steel tube | |
JP3326783B2 (en) | Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength | |
JP3589066B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe | |
JP3214348B2 (en) | Manufacturing method of alloy steel pipe | |
JP3941749B2 (en) | Method for producing softened steel | |
JP3503211B2 (en) | Manufacturing method of high strength seamless steel pipe | |
JPH09287027A (en) | Manufacturing method of high strength and high toughness seamless steel pipe | |
JPH07109008B2 (en) | Martensitic stainless steel seamless pipe manufacturing method | |
JP3214351B2 (en) | Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength | |
JPH09287024A (en) | Method for producing ferritic stainless steel seamless steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050620 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |