JPH09284234A - Optical repeater for nonlinear pulse transmission and nonlinear pulse transmission system - Google Patents
Optical repeater for nonlinear pulse transmission and nonlinear pulse transmission systemInfo
- Publication number
- JPH09284234A JPH09284234A JP8117146A JP11714696A JPH09284234A JP H09284234 A JPH09284234 A JP H09284234A JP 8117146 A JP8117146 A JP 8117146A JP 11714696 A JP11714696 A JP 11714696A JP H09284234 A JPH09284234 A JP H09284234A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- terminal
- output
- input
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非線形パルス伝送
において、線形波であるOTDR信号(Optical
Time Domain Reflectometo
ry;破断点測定)や監視信号が使用できる光中継器に
関するものである。The present invention relates to a linear wave OTDR signal (Optical signal) in nonlinear pulse transmission.
Time Domain Reflectometo
ry; break point measurement) and an optical repeater capable of using a monitoring signal.
【0002】[0002]
【従来の技術】図1に示すような光増幅器を用いた多中
継光伝送系では、伝送路である光ファイバで生じる非線
形効果と波長分散により送信パルス波形が劣化するた
め、伝送速度の高速化や伝送距離の長距離化を達成する
上で問題となっていた。2. Description of the Related Art In a multi-repeater optical transmission system using an optical amplifier as shown in FIG. 1, a transmission pulse waveform is deteriorated due to deterioration of a transmission pulse waveform due to a nonlinear effect and wavelength dispersion generated in an optical fiber which is a transmission line. It has been a problem in achieving a long transmission distance.
【0003】上記送信パルス波形の劣化を防ぐ手段とし
て提案された伝送系(F.Fontana et a
l.,“Self−starting sliding
−frequency fiber soliton
laser”,Electron.Lett.,30,
pp.321−322(1994))が、図2に示した
ものであり、図1の光フィルタに比べ狭帯域な光フィル
タと光周波数シフタを用いている。この伝送路の平均零
分散波長より長波長側に送信パルスの中心周波数とこの
中心周波数に光フィルタのそれが一致するように設定す
るとともに、送信パルス幅と伝送路の波長分散で決まる
光パワーに送信出力を設定すると、上記光フィルタと光
周波数シフタの働きにより、波長分散と光非線形効果に
よる自己位相変調とがバランスする光ソリトン効果が強
調されるため、送信パルス波形の劣化を低減することが
可能となる。A transmission system (F. Fontana et al.) Proposed as a means for preventing the above-mentioned deterioration of the transmission pulse waveform.
l. , "Self-starting sliding
-Frequency fiber soliton
laser ”, Electron. Lett., 30,
pp. 321-322 (1994)) is shown in FIG. 2, and uses an optical filter and an optical frequency shifter having a narrower band than the optical filter of FIG. Set the center frequency of the transmission pulse on the long wavelength side of the mean zero dispersion wavelength of this transmission line so that it matches that of the optical filter, and set the optical power determined by the transmission pulse width and the chromatic dispersion of the transmission line. When the transmission output is set, the optical soliton effect that balances the chromatic dispersion and the self-phase modulation due to the optical nonlinear effect is emphasized by the functions of the optical filter and the optical frequency shifter, so that the deterioration of the transmission pulse waveform can be reduced. It will be possible.
【0004】光周波数シフタを用いず、上記光フィルタ
の中心周波数をスライドさせることでも、同様の伝送が
可能である(L.F.Mollenauer et a
l.,“The sliding−frequency
guiding filter: an impro
ved form of soliton jitte
r control”,Opt.Lett.,17,p
p.1575−1577(1992))。The same transmission is possible by sliding the center frequency of the optical filter without using the optical frequency shifter (LF Mollenauer et a).
l. , "The sliding-frequency"
guiding filter: an impro
ved form of soliton jite
r control ", Opt. Lett., 17, p.
p. 1575-1577 (1992)).
【0005】しかしながら、システム運用上必須である
OTDRや監視(SV)用の信号は、通常非線形効果を
用いない線形波であるため、上記伝送系では使用ができ
ない。However, signals for OTDR and monitoring (SV), which are indispensable for system operation, are usually linear waves that do not use nonlinear effects, and therefore cannot be used in the above transmission system.
【0006】非線形パルス信号は光周波数シフタにより
周波数シフトを受けても、光ファイバの非線形効果と光
フィルタにより、非線形パルス信号の中心波長は光フィ
ルタのそれに一致して伝搬する。一方、システム運用上
必須であるOTDRや監視(SV)用の信号は、通常光
ファイバの非線形効果が作用しないように、伝送路への
入力光パワーを設定しているため、光周波数シフタによ
る周波数シフトで、その中心周波数が伝搬するにつれ徐
々にずれてくる。光フィルタの中心周波数は伝搬方向に
対して同一の値に固定されているため、周波数シフトを
受けたOTDRや監視(SV)用の信号は、伝搬するに
つれ減衰してしまい、このような伝送系では使用ができ
ず、システム構成上の大きな問題となっていた。Even if the nonlinear pulse signal is frequency-shifted by the optical frequency shifter, the center wavelength of the nonlinear pulse signal propagates in accordance with that of the optical filter due to the nonlinear effect of the optical fiber and the optical filter. On the other hand, for signals for OTDR and monitoring (SV), which are essential for system operation, the input optical power to the transmission line is usually set so that the nonlinear effect of the optical fiber does not act, so the frequency by the optical frequency shifter is set. The shift causes the center frequency to gradually shift as it propagates. Since the center frequency of the optical filter is fixed to the same value in the propagation direction, the frequency-shifted OTDR and surveillance (SV) signals are attenuated as they propagate, and such a transmission system Could not be used, which was a big problem in system configuration.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、非線
形パルス伝送において、OTDRやSV用の線形波信号
が使用可能となる光中継器及び光伝送システムを構成す
ることを目的にする。SUMMARY OF THE INVENTION An object of the present invention is to construct an optical repeater and an optical transmission system in which a linear wave signal for OTDR or SV can be used in nonlinear pulse transmission.
【0008】[0008]
【課題を解決するための手段】上述した非線形パルス伝
送系において、OTDRや監視用の線形波信号を伝送で
きる光中継器は従来皆無であった。図3に本発明におけ
る光中継器の構成を示す。狭帯域光フィルタと光周波数
シフタを用いて送信パルス波形の劣化を防止する際の光
中継器である。光フィルタの透過特性に対して、非線形
パルス信号、OTDR及びSV信号の中心波長を図に示
すように配置する。即ち、非線形パルス信号波長は伝送
路の平均零分散波長より長波長側(異常分散領域)に、
OTDR及びSV信号波長は平均零分散波長より短波長
側の正常分散領域に配置する。光増幅器を通過した非線
形パルス信号は、光サーキュレータ、光フィルタ及び光
周波数シフタを通過後、全反射ミラーで反射され、再び
光周波数シフタ、光フィルタ及び光サーキュレータを通
過し伝送路に出射される。In the above-mentioned nonlinear pulse transmission system, there has been no optical repeater capable of transmitting an OTDR or a linear wave signal for monitoring. FIG. 3 shows the configuration of the optical repeater according to the present invention. It is an optical repeater for preventing the deterioration of the transmission pulse waveform by using a narrow band optical filter and an optical frequency shifter. With respect to the transmission characteristics of the optical filter, the center wavelengths of the nonlinear pulse signal, the OTDR and the SV signal are arranged as shown in the figure. That is, the nonlinear pulse signal wavelength is on the longer wavelength side (abnormal dispersion region) than the mean zero dispersion wavelength of the transmission line,
The OTDR and SV signal wavelengths are arranged in the normal dispersion region on the shorter wavelength side than the average zero dispersion wavelength. The nonlinear pulse signal that has passed through the optical amplifier passes through the optical circulator, the optical filter and the optical frequency shifter, is then reflected by the total reflection mirror, passes through the optical frequency shifter, the optical filter and the optical circulator again, and is emitted to the transmission path.
【0009】一方、OTDR及びSV信号は、光サーキ
ュレータを通過後光フィルタで反射されて光サーキュレ
ータに戻り、伝送路に出射されるため、光周波数シフタ
による周波数シフトを受けない。従って、線形波である
OTDR及びSV信号は、非線形パルス信号と同様にこ
の光中継器を用いて伝送することが可能となる。On the other hand, since the OTDR and SV signals pass through the optical circulator, are reflected by the optical filter, return to the optical circulator, and are emitted to the transmission path, they are not subjected to frequency shift by the optical frequency shifter. Therefore, the OTDR and SV signals which are linear waves can be transmitted using this optical repeater similarly to the nonlinear pulse signal.
【0010】[0010]
【発明の実施の形態】図4は、本発明の実施例であり、
4−1は光増幅器、4−2は光サーキュレータ、4−3
は光フィルタ、4−4は光周波数シフタ、4−5は全反
射ミラーである。上述したように、光フィルタ4−3の
透過特性に対して、非線形パルス信号、OTDR及びS
V信号の中心波長を図に示すように配置する。即ち、非
線形パルス信号波長は伝送路の平均零分散波長λ0 より
長波長側に、OTDR及びSV信号波長はλ0 より短波
長側に配置する。光増幅器4−1を通過した非線形パル
ス信号は、光サーキュレータ4−2、光フィルタ4−3
及び光周波数シフタ4−4を通過後、全反射ミラー4−
5で反射され、再び光周波数シフタ4−4、光フィルタ
4−3及び光サーキュレータ4−2を通過し伝送路に出
射される。FIG. 4 shows an embodiment of the present invention.
4-1 is an optical amplifier, 4-2 is an optical circulator, 4-3
Is an optical filter, 4-4 is an optical frequency shifter, and 4-5 is a total reflection mirror. As described above, with respect to the transmission characteristics of the optical filter 4-3, the nonlinear pulse signal, OTDR and S
The center wavelength of the V signal is arranged as shown in the figure. That is, the nonlinear pulse signal wavelength is arranged on the longer wavelength side than the mean zero dispersion wavelength λ 0 of the transmission line, and the OTDR and SV signal wavelengths are arranged on the shorter wavelength side than λ 0 . The nonlinear pulse signal that has passed through the optical amplifier 4-1 is an optical circulator 4-2 and an optical filter 4-3.
After passing through the optical frequency shifter 4-4, the total reflection mirror 4-
It is reflected by 5, and again passes through the optical frequency shifter 4-4, the optical filter 4-3 and the optical circulator 4-2 and is emitted to the transmission line.
【0011】一方、OTDR及びSV信号は、光サーキ
ュレータ4−2を通過後光フィルタ4−3で反射されて
光サーキュレータ4−2に戻り、伝送路に出射されるた
め、光周波数シフタ4−4による周波数シフトを受けな
い。従って、線形波であるOTDR及びSV信号は、非
線形パルス信号と同様にこの光中継器を用いて伝送する
ことが可能となる。On the other hand, the OTDR and SV signals pass through the optical circulator 4-2, are reflected by the optical filter 4-3, return to the optical circulator 4-2, and are emitted to the transmission path. Therefore, the optical frequency shifter 4-4 is used. Not subject to frequency shift due to. Therefore, the OTDR and SV signals which are linear waves can be transmitted using this optical repeater similarly to the nonlinear pulse signal.
【0012】図5は、本発明の実施例であり、5−1は
光増幅器、5−2は光サーキュレータ、5−3は光フィ
ルタ、5−4は光周波数シフタ、5−5は全反射ミラ
ー、5−6は光フィルタ、5−7は光増幅器出力用制御
回路、5−8は光分岐器である。この実施例の特徴は、
伝送路に出射した光出力の一部を光分岐器5−8で分岐
後、光フィルタ5−3と同様の透過特性を持つ光フィル
タ5−6と光増幅器出力用制御回路5−7を用いて、光
増幅器の出力を制御することで、非線形波信号の出力が
所望の値(図1の送信器の出力とほぼ同じレベル)にな
るようにすることである。FIG. 5 shows an embodiment of the present invention. 5-1 is an optical amplifier, 5-2 is an optical circulator, 5-3 is an optical filter, 5-4 is an optical frequency shifter, and 5-5 is total reflection. Reference numeral 5-6 is an optical filter, 5-7 is an optical amplifier output control circuit, and 5-8 is an optical branching device. The features of this embodiment are:
An optical filter 5-6 having the same transmission characteristics as the optical filter 5-3 and an optical amplifier output control circuit 5-7 are used after a part of the optical output emitted to the transmission path is branched by the optical branching device 5-8. Then, the output of the optical amplifier is controlled so that the output of the nonlinear wave signal becomes a desired value (about the same level as the output of the transmitter in FIG. 1).
【0013】光増幅器の出力の制御は、励起光源の注入
電流を制御して増幅率を制御することにより行なう。The output of the optical amplifier is controlled by controlling the injection current of the pumping light source to control the amplification factor.
【0014】図6は、本発明の実施例であり、6−1は
光増幅器、6−2は光サーキュレータ、6−3は光フィ
ルタ、6−4は偏波ビームスプリッタ、6−5は光周波
数シフタ、6−6は偏波保持光ファイバである。この実
施例の特徴は、光周波数シフタが偏光依存性を有する場
合、偏波ビームスプリッタ6−4と偏波保持光ファイバ
6−6を用いて、光周波数シフタ6−5の偏光依存性を
補償していることである。偏波保持光ファイバ6−6は
90度ねじりp、sそれぞれの偏光に対して同一の主軸
が対応するように配置する。このように光学系を配置す
ると、偏波ビームスプリッタ6−4でp偏光とs偏光に
分離され、偏波保持光ファイバ6−6を左右両回りに伝
搬する非線形波信号は、光周波数シフタ6−5に対して
は同一直線偏波で通過することができるため、光周波数
シフタ6−5の偏光依存性が補償される。偏波保持光フ
ァイバ6−6を伝搬した非線形波信号は、再び、偏波ビ
ームスプリッタで合波されて、光フィルタ6−3に戻
る。FIG. 6 shows an embodiment of the present invention. 6-1 is an optical amplifier, 6-2 is an optical circulator, 6-3 is an optical filter, 6-4 is a polarization beam splitter, and 6-5 is an optical filter. The frequency shifter 6-6 is a polarization maintaining optical fiber. The feature of this embodiment is that when the optical frequency shifter has polarization dependency, the polarization dependency of the optical frequency shifter 6-5 is compensated by using the polarization beam splitter 6-4 and the polarization maintaining optical fiber 6-6. Is what you are doing. The polarization-maintaining optical fiber 6-6 is arranged so that the same principal axes correspond to the 90-degree twisted polarizations p and s, respectively. When the optical system is arranged in this way, the nonlinear wave signal that is split into p-polarized light and s-polarized light by the polarization beam splitter 6-4 and propagates left and right in the polarization-maintaining optical fiber 6-6 is the optical frequency shifter 6 Since -5 can be passed with the same linear polarization, the polarization dependence of the optical frequency shifter 6-5 is compensated. The non-linear wave signal propagating through the polarization maintaining optical fiber 6-6 is again combined by the polarization beam splitter and returns to the optical filter 6-3.
【0015】図7は、本発明の実施例であり、7−1は
光増幅器、7−2は光サーキュレータ、7−3は光フィ
ルタ、7−4は偏波ビームスプリッタ、7−5は光周波
数シフタ、7−6は偏波保持光ファイバ、7−7は光フ
ィルタ、7−8は光増幅器出力用制御回路、7−9は光
分岐器である。実施例3との差異は、伝送路に出射した
光出力の一部を光分岐器7−9で分岐後、光フィルタ7
−3と同様の透過特性を持つ光フィルタ7−7と光増幅
器出力用制御回路7−8を用いて、光増幅器出力を制御
することで、非線形波信号の出力が所望の値になるよう
にすることである。FIG. 7 shows an embodiment of the present invention. 7-1 is an optical amplifier, 7-2 is an optical circulator, 7-3 is an optical filter, 7-4 is a polarization beam splitter, and 7-5 is an optical filter. A frequency shifter, 7-6 is a polarization maintaining optical fiber, 7-7 is an optical filter, 7-8 is an optical amplifier output control circuit, and 7-9 is an optical branching device. The difference from the third embodiment is that a part of the optical output emitted to the transmission path is branched by the optical branching device 7-9, and then the optical filter 7
The optical filter output is controlled by using the optical filter 7-7 and the optical amplifier output control circuit 7-8 having the same transmission characteristic as that of -3 so that the output of the nonlinear wave signal becomes a desired value. It is to be.
【0016】図8は、本発明の実施例であり、8−1は
光増幅器、8−2は光サーキュレータ、8−3は光フィ
ルタ(2)、8−4は光フィルタ(1)、8−5は光周
波数シフタ、8−6は全反射ミラーである。実施例1と
の差異は、図中に示した透過特性を有する2種類の光フ
ィルタを用いたことである。光フィルタ(2)8−3
に、周期性を有する透過特性を与えることで、波長多重
伝送が可能となる。FIG. 8 shows an embodiment of the present invention. 8-1 is an optical amplifier, 8-2 is an optical circulator, 8-3 is an optical filter (2), 8-4 is an optical filter (1), 8 -5 is an optical frequency shifter, and 8-6 is a total reflection mirror. The difference from Example 1 is that two types of optical filters having the transmission characteristics shown in the figure are used. Optical filter (2) 8-3
In addition, wavelength-division multiplex transmission becomes possible by giving a transmission characteristic having periodicity.
【0017】図9は、本発明の実施例であり、9−1は
光増幅器、9−2は光サーキュレータ、9−3は光フィ
ルタ(2)、9−4は光フィルタ(1)、9−5は光周
波数シフタ、9−6は全反射ミラー、9−7は光フィル
タ(3)、9−8は光増幅器出力用制御回路、9−9は
光分岐器である。実施例5との差異は、伝送路に出射し
た光出力の一部を光分岐器9−9で分岐後、図中に示し
た透過特性を有する光フィルタ(3)9−7と光増幅器
出力用制御回路9−8を用いて、光増幅器出力を制御す
ることで、非線形波信号の出力が所望の値になるように
することである。FIG. 9 shows an embodiment of the present invention, 9-1 is an optical amplifier, 9-2 is an optical circulator, 9-3 is an optical filter (2), 9-4 is an optical filter (1), 9 -5 is an optical frequency shifter, 9-6 is a total reflection mirror, 9-7 is an optical filter (3), 9-8 is an optical amplifier output control circuit, and 9-9 is an optical branching device. The difference from the fifth embodiment is that after a part of the optical output emitted to the transmission line is branched by the optical branching device 9-9, the optical filter (3) 9-7 having the transmission characteristics shown in the figure and the optical amplifier output. The control circuit 9-8 is used to control the output of the optical amplifier so that the output of the nonlinear wave signal becomes a desired value.
【0018】図10は、本発明の実施例であり、10−
1は光増幅器、10−2は光サーキュレータ、10−3
は光フィルタ(2)、10−4は光フィルタ(1)、1
0−5は偏波ビームスプリッタ、10−6は光周波数シ
フタ、10−7は偏波保持光ファイバである。この実施
例の特徴は、光周波数シフタが偏光依存性を有する場合
に、偏波ビームスプリッタ10−5と偏波保持光ファイ
バ10−7を用いて、光周波数シフタ10−6の偏光依
存性を補償していることである。FIG. 10 shows an embodiment of the present invention.
1 is an optical amplifier, 10-2 is an optical circulator, 10-3
Is an optical filter (2), 10-4 is an optical filter (1), 1
Reference numeral 0-5 is a polarization beam splitter, 10-6 is an optical frequency shifter, and 10-7 is a polarization maintaining optical fiber. The feature of this embodiment is that, when the optical frequency shifter has polarization dependency, the polarization dependency of the optical frequency shifter 10-6 is changed by using the polarization beam splitter 10-5 and the polarization maintaining optical fiber 10-7. That is to compensate.
【0019】図11は、本発明の実施例であり、11−
1は光増幅器、11−2は光サーキュレータ、11−3
は光フィルタ(2)、11−4は光フィルタ(1)、1
1−5は偏波ビームスプリッタ、11−6は光周波数シ
フタ、11−7は偏波保持光ファイバ、11−8は光フ
ィルタ(3)、11−9は光増幅器出力用制御回路、1
1−10は光分岐器である。実施例7との差異は、伝送
路に出射した光出力の一部を光分岐器11−10で分岐
後、実施例6の光フィルタ(3)と同様の透過特性を有
する光フィルタ(3)11−8と光増幅器出力用制御回
路11−9を用いて、光増幅器出力を制御することで、
非線形波信号の出力が所望の値になるようにすることで
ある。FIG. 11 shows an embodiment of the present invention.
1 is an optical amplifier, 11-2 is an optical circulator, 11-3
Is an optical filter (2), 11-4 is an optical filter (1), 1
1-5 is a polarization beam splitter, 11-6 is an optical frequency shifter, 11-7 is a polarization maintaining optical fiber, 11-8 is an optical filter (3), 11-9 is an optical amplifier output control circuit, 1
Reference numeral 1-10 is an optical branching device. The difference from the seventh embodiment is that an optical filter (3) having a transmission characteristic similar to that of the optical filter (3) of the sixth embodiment after a part of the optical output emitted to the transmission path is branched by the optical branching device 11-10. By using 11-8 and the optical amplifier output control circuit 11-9 to control the optical amplifier output,
This is to make the output of the nonlinear wave signal have a desired value.
【0020】なお、上記各実施例において、光サーキュ
レータ(及びこれに結合する光フィルタ、光周波数シフ
タ、全反射ミラー)が光増幅器の出力側に結合されてい
るが、これを光増幅器の入力側に結合することが可能で
ある。又、光周波数シフタを用いず、代りに、光フィル
タの通過帯域の中心周波数を中継器毎に所定値だけずら
して構成しても同様の伝送が可能である。In each of the above embodiments, the optical circulator (and the optical filter, optical frequency shifter, and total reflection mirror coupled thereto) are coupled to the output side of the optical amplifier, which is connected to the input side of the optical amplifier. Can be combined with. Also, the same transmission can be performed without using the optical frequency shifter, but instead by displacing the center frequency of the pass band of the optical filter by a predetermined value for each repeater.
【0021】[0021]
【発明の効果】本発明によると、非線形波は光周波数シ
フタと光フィルタの作用により送信パルス波形の劣化を
低減することができ、一方、線形波は光周波数シフタと
光フィルタの作用をうけないので、上記非線形波の伝送
系で使用することができる。According to the present invention, the nonlinear wave can reduce the deterioration of the transmission pulse waveform due to the action of the optical frequency shifter and the optical filter, while the linear wave is not subject to the action of the optical frequency shifter and the optical filter. Therefore, it can be used in the above-mentioned nonlinear wave transmission system.
【0022】以上説明したように、本発明を用いれば、
OTDRやSV用の線形波信号を非線形パルス信号と同
様に伝送することができる。As described above, according to the present invention,
Linear wave signals for OTDR and SV can be transmitted in the same manner as nonlinear pulse signals.
【図1】従来の多中継光伝送系を示す。FIG. 1 shows a conventional multi-repeater optical transmission system.
【図2】従来の別の多中継光伝送系を示す。FIG. 2 shows another conventional multi-repeater optical transmission system.
【図3】本発明による光中継器の原理を示す図である。FIG. 3 is a diagram showing the principle of an optical repeater according to the present invention.
【図4】本発明の実施例1を示す図である。FIG. 4 is a diagram showing a first embodiment of the present invention.
【図5】本発明の実施例2を示す図である。FIG. 5 is a diagram showing a second embodiment of the present invention.
【図6】本発明の実施例3を示す図である。FIG. 6 is a diagram showing a third embodiment of the present invention.
【図7】本発明の実施例4を示す図である。FIG. 7 is a diagram showing a fourth embodiment of the present invention.
【図8】本発明の実施例5を示す図である。FIG. 8 is a diagram showing a fifth embodiment of the present invention.
【図9】本発明の実施例6を示す図である。FIG. 9 is a diagram showing a sixth embodiment of the present invention.
【図10】本発明の実施例7を示す図である。FIG. 10 is a diagram showing Embodiment 7 of the present invention.
【図11】本発明の実施例8を示す図である。FIG. 11 is a diagram showing Example 8 of the present invention.
4−1 光増幅器 4−2 光サーキュレータ 4−3 光フィルタ 4−4 光周波数シフタ 4−5 全反射ミラー 5−1 光増幅器 5−2 光サーキュレータ 5−3 光フィルタ 5−4 光周波数シフタ 5−5 全反射ミラー 5−6 光フィルタ 5−7 光増幅器出力用制御回路 5−8 光分岐器 6−1 光増幅器 6−2 光サーキュレータ 6−3 光フィルタ 6−4 偏波ビームスプリッタ 6−5 光周波数シフタ 6−6 偏波保持光ファイバ 7−1 光増幅器 7−2 光サーキュレータ 7−3 光フィルタ 7−4 偏波ビームスプリッタ 7−5 光周波数シフタ 7−6 偏波保持光ファイバ 7−7 光フィルタ 7−8 光増幅器出力用制御回路 7−9 光分岐器 8−1 光増幅器 8−2 光サーキュレータ 8−3 光フィルタ(2) 8−4 光フィルタ(1) 8−5 光周波数シフタ 8−6 全反射ミラー 9−1 光増幅器 9−2 光サーキュレータ 9−3 光フィルタ(2) 9−4 光フィルタ(1) 9−5 光周波数シフタ 9−6 全反射ミラー 9−7 光フィルタ(3) 9−8 光増幅器出力用制御回路 9−9 光分岐器 10−1 光増幅器 10−2 光サーキュレータ 10−3 光フィルタ(2) 10−4 光フィルタ(1) 10−5 偏波ビームスプリッタ 10−6 光周波数シフタ 10−7 偏波保持光ファイバ 11−1 光増幅器 11−2 光サーキュレータ 11−3 光フィルタ(2) 11−4 光フィルタ(1) 11−5 偏波ビームスプリッタ 11−6 光周波数シフタ 11−7 偏波保持光ファイバ 11−8 光フィルタ(3) 11−9 光増幅器出力用制御回路 11−10 光分岐器 4-1 Optical amplifier 4-2 Optical circulator 4-3 Optical filter 4-4 Optical frequency shifter 4-5 Total reflection mirror 5-1 Optical amplifier 5-2 Optical circulator 5-3 Optical filter 5-4 Optical frequency shifter 5- 5 Total Reflection Mirror 5-6 Optical Filter 5-7 Optical Amplifier Output Control Circuit 5-8 Optical Splitter 6-1 Optical Amplifier 6-2 Optical Circulator 6-3 Optical Filter 6-4 Polarization Beam Splitter 6-5 Optical Frequency shifter 6-6 Polarization maintaining optical fiber 7-1 Optical amplifier 7-2 Optical circulator 7-3 Optical filter 7-4 Polarization beam splitter 7-5 Optical frequency shifter 7-6 Polarization maintaining optical fiber 7-7 Optical Filter 7-8 Optical amplifier output control circuit 7-9 Optical splitter 8-1 Optical amplifier 8-2 Optical circulator 8-3 Optical filter (2) 8-4 Optical filter (1) 8- 5 Optical Frequency Shifter 8-6 Total Reflection Mirror 9-1 Optical Amplifier 9-2 Optical Circulator 9-3 Optical Filter (2) 9-4 Optical Filter (1) 9-5 Optical Frequency Shifter 9-6 Total Reflection Mirror 9- 7 Optical Filter (3) 9-8 Optical Amplifier Output Control Circuit 9-9 Optical Divider 10-1 Optical Amplifier 10-2 Optical Circulator 10-3 Optical Filter (2) 10-4 Optical Filter (1) 10-5 Polarization beam splitter 10-6 Optical frequency shifter 10-7 Polarization maintaining optical fiber 11-1 Optical amplifier 11-2 Optical circulator 11-3 Optical filter (2) 11-4 Optical filter (1) 11-5 Polarized beam Splitter 11-6 Optical frequency shifter 11-7 Polarization-maintaining optical fiber 11-8 Optical filter (3) 11-9 Optical amplifier output control circuit 11-10 Optical splitter
Claims (7)
システムで使われる非線形パルス伝送用光中継器におい
て、 入力光信号を増幅するための光増幅器と、 少なくとも3つの入出力端子を有し、光増幅器の出力光
が第1の端子に入力され、第1の端子からの入力光は第
2の端子から出力され、第2の端子からの入力光は光中
継器の出力光を与える第3の端子から出力される光結合
手段と、 該光結合手段の第2の端子と光学的に結合され、伝送路
の零分散波長よりも長波長側に通過帯域を持ち、通過帯
域以外の波長の光は反射して前記光結合手段の第2の端
子に入力する光フィルタと、 光フィルタを通過した光に周波数シフトを与える光周波
数シフタと、 該光周波数シフタの出力光を反射して光周波数シフタに
戻す全反射ミラーとを有する非線形パルス伝送用光中継
器。1. An optical repeater for nonlinear pulse transmission used in a system for transmitting a nonlinear optical signal via a transmission line, comprising an optical amplifier for amplifying an input optical signal, and at least three input / output terminals. The output light of the optical amplifier is input to the first terminal, the input light from the first terminal is output from the second terminal, and the input light from the second terminal is the output light of the optical repeater. The optical coupling means output from the third terminal is optically coupled to the second terminal of the optical coupling means, has a pass band on the longer wavelength side than the zero dispersion wavelength of the transmission line, and has a wavelength other than the pass band. Light is reflected and input to the second terminal of the optical coupling means, an optical frequency shifter for giving a frequency shift to the light passing through the optical filter, and an output light of the optical frequency shifter Has a total reflection mirror that returns to the frequency shifter Linear pulse transmitting optical repeater.
力を分岐して入力する前記フィルタと同様の中心波長に
通過帯域を持つ第2の光フィルタと、当該第2の光フィ
ルタの出力を所定の値に調整する電子回路を持つことを
特徴とする請求項1記載の非線形パルス伝送用光中継
器。2. A second optical filter having a pass band at the same center wavelength as that of the filter for branching and inputting the output of the third terminal of the optical circulator, and an output of the second optical filter is predetermined. The optical repeater for nonlinear pulse transmission according to claim 1, further comprising an electronic circuit for adjusting the value of
を偏波ビームスプリッタと当該偏波ビームスプリッタの
2出力を90度のねじりを加えた偏波保持光ファイバで
結合し、当該偏波保持光ファイバの中に光周波数シフタ
を設置することを特徴とする請求項1記載の非線形パル
ス伝送用光中継器。3. A polarization beam splitter and two outputs of the polarization beam splitter are coupled by a polarization maintaining optical fiber with a twist of 90 degrees to connect the optical frequency shifter and the total reflection mirror, The optical repeater for nonlinear pulse transmission according to claim 1, wherein an optical frequency shifter is installed in the fiber.
な透過特性を有する光フィルタと伝送路の零分散波長よ
りも長波長側に通過帯域を持つ光フィルタから構成され
る非線形パルス伝送用光中継器。4. The non-linear pulse transmission, wherein the optical filter comprises an optical filter having a periodic transmission characteristic with respect to wavelength and an optical filter having a pass band on the long wavelength side of the zero dispersion wavelength of the transmission line. Optical repeater.
号と、障害点探索やシステムの監視のための監視光信号
を伝送する非線形パルス伝送システムにおいて、 光中継器は、 入力光信号を増幅するための光増幅器と、 少なくとも3つの入出力端子を有し、光増幅器の出力光
が第1の端子に入力され、第1の端子からの入力光は第
2の端子から出力され、第2の端子からの入力光は第3
の端子から出力される光結合手段と、 光結合手段の第2の端子と光学的に結合され、伝送路の
零分散波長よりも長波長側に通過帯域を持ち、通過帯域
以外の波長の光は反射して前記光結合手段の第2の端子
に入力する光フィルタと、 該光フィルタを通過した光に周波数シフトを与える光周
波数シフタと、 光周波数シフタの出力光を反射して光周波数シフタに戻
す全反射ミラーとを有し、 光結合手段の第3の端子を光中継器の出力端子とし、 非線形光信号の波長は伝送路の零分散波長よりも長波長
側に設定され、 監視光信号の波長は伝送路の零分散波長よりも短波長側
に設定されることを特徴とする非線形パルス伝送システ
ム。5. A non-linear pulse transmission system for transmitting a non-linear optical signal and a supervisory optical signal for fault point search and system monitoring via a transmission line and an optical repeater, wherein the optical repeater is an input optical signal. An optical amplifier for amplifying light, and at least three input / output terminals, the output light of the optical amplifier is input to the first terminal, the input light from the first terminal is output from the second terminal, The input light from the second terminal is the third
Is optically coupled to the second terminal of the optical coupling means and has a pass band on the longer wavelength side than the zero-dispersion wavelength of the transmission line, and has a wavelength other than the pass band. Are reflected and inputted to the second terminal of the optical coupling means, an optical frequency shifter for giving a frequency shift to the light passing through the optical filter, and an optical frequency shifter for reflecting the output light of the optical frequency shifter. And a total reflection mirror for returning the optical signal to the output terminal of the optical repeater, and the wavelength of the nonlinear optical signal is set to a wavelength side longer than the zero dispersion wavelength of the transmission line. A nonlinear pulse transmission system characterized in that the wavelength of the signal is set on the shorter wavelength side than the zero-dispersion wavelength of the transmission line.
システムで使われる非線形パルス伝送用光中継器におい
て、 入力光信号を増幅するための光増幅器と、 少なくとも3つの入出力端子を有し、光増幅器の入力光
が第1の端子に入力され、第1の端子からの入力光は第
2の端子から出力され、第2の端子からの入力光は第3
の端子から出力されて前記光増幅器に入力される光結合
手段と、 該光結合手段の第2の端子と光学的に結合され、伝送路
の零分散波長よりも長波長側に通過帯域を持ち、通過帯
域以外の波長の光は反射して前記光結合手段の第2の端
子に入力する光フィルタと、 光フィルタを通過した光に周波数シフトを与える光周波
数シフタと、 該光周波数シフタの出力光を反射して光周波数シフタに
戻す全反射ミラーとを有する非線形パルス伝送用光中継
器。6. An optical repeater for nonlinear pulse transmission used in a system for transmitting a nonlinear optical signal via a transmission line, comprising an optical amplifier for amplifying an input optical signal, and at least three input / output terminals. , The input light of the optical amplifier is input to the first terminal, the input light from the first terminal is output from the second terminal, and the input light from the second terminal is the third
The optical coupling means that is output from the terminal and is input to the optical amplifier is optically coupled to the second terminal of the optical coupling means, and has a pass band on the longer wavelength side than the zero dispersion wavelength of the transmission line. An optical filter for reflecting light having a wavelength other than the pass band and inputting it to the second terminal of the optical coupling means, an optical frequency shifter for giving a frequency shift to the light passing through the optical filter, and an output of the optical frequency shifter An optical repeater for nonlinear pulse transmission having a total reflection mirror that reflects light and returns it to an optical frequency shifter.
システムで使われる非線形パルス伝送用光中継器におい
て、 入力光信号を増幅するための光増幅器と、 少なくとも3つの入出力端子を有し、光増幅器の出力光
が第1の端子に入力され、第1の端子からの入力光は第
2の端子から出力され、第2の端子からの入力光は光中
継器の出力光を与える第3の端子から出力される光結合
手段と、 該光結合手段の第2の端子と光学的に結合され、伝送路
の零分散波長よりも長波長側に通過帯域を持ち、通過帯
域以外の波長の光は反射して前記光結合手段の第2の端
子に入力する光フィルタと、 該光周波数シフタの出力光を反射して光周波数シフタに
戻す全反射ミラーとを有し、前記光フィルタの通過帯域
の中心波長が各光中継器ごとに所定値だけずれているこ
とを特徴とする、非線形パルス伝送用光中継器。7. An optical repeater for nonlinear pulse transmission used in a system for transmitting a nonlinear optical signal via a transmission line, comprising an optical amplifier for amplifying an input optical signal, and at least three input / output terminals. The output light of the optical amplifier is input to the first terminal, the input light from the first terminal is output from the second terminal, and the input light from the second terminal is the output light of the optical repeater. The optical coupling means output from the third terminal is optically coupled to the second terminal of the optical coupling means, has a pass band on the longer wavelength side than the zero dispersion wavelength of the transmission line, and has a wavelength other than the pass band. Of the optical filter having a total reflection mirror for reflecting the output light of the optical frequency shifter and returning the output light of the optical frequency shifter to the optical frequency shifter. The center wavelength of the pass band is a predetermined value for each optical repeater It is characterized in that is, non-linear pulse transmitting optical repeater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11714696A JP3248128B2 (en) | 1996-04-16 | 1996-04-16 | Optical repeater for nonlinear pulse transmission and nonlinear pulse transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11714696A JP3248128B2 (en) | 1996-04-16 | 1996-04-16 | Optical repeater for nonlinear pulse transmission and nonlinear pulse transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09284234A true JPH09284234A (en) | 1997-10-31 |
JP3248128B2 JP3248128B2 (en) | 2002-01-21 |
Family
ID=14704607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11714696A Expired - Fee Related JP3248128B2 (en) | 1996-04-16 | 1996-04-16 | Optical repeater for nonlinear pulse transmission and nonlinear pulse transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248128B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6909853B1 (en) | 1999-05-07 | 2005-06-21 | Nec Corporation | Apparatus for transferring monitor signals in photo-transfer system |
US7532821B2 (en) | 2005-04-19 | 2009-05-12 | Electronics And Telecommunications Research Institute | Apparatus for optical clock extraction |
-
1996
- 1996-04-16 JP JP11714696A patent/JP3248128B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6909853B1 (en) | 1999-05-07 | 2005-06-21 | Nec Corporation | Apparatus for transferring monitor signals in photo-transfer system |
US7532821B2 (en) | 2005-04-19 | 2009-05-12 | Electronics And Telecommunications Research Institute | Apparatus for optical clock extraction |
Also Published As
Publication number | Publication date |
---|---|
JP3248128B2 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3989627B2 (en) | Optical gate device, method of manufacturing the device, and system including the device | |
US6453082B1 (en) | Device and system for waveform shaping | |
US6477300B2 (en) | Method, device, and system for waveform shaping of signal light | |
US5677786A (en) | Device for reducing the optical noise due to four wave mixing | |
US7116913B2 (en) | Optical transmission system and dispersion compensator | |
JP3732371B2 (en) | Optical signal generation circuit | |
US6259552B1 (en) | Optical wavelength converter | |
JPH03185430A (en) | Superspeed logic device | |
JPH07168220A (en) | Polarization-insensitive optical mixer | |
EP1029400B1 (en) | Optical wavelength converter | |
US6850655B2 (en) | Optical apparatus with faraday rotator, static gain flattening filter and variable optical attenuator | |
JP3248128B2 (en) | Optical repeater for nonlinear pulse transmission and nonlinear pulse transmission system | |
US20050180758A1 (en) | Optical regenerator for high bit rate return-to-zero transmission | |
JP3553857B2 (en) | Wavelength conversion circuit | |
US6847742B2 (en) | Tunable dynamic gain flattening filter using polarization delays | |
JP2002303894A (en) | Application of phase conjugate optics to optical systems | |
US20090290827A1 (en) | Nonlinear optical loop mirrors | |
JP2000121855A (en) | Orthogonally polarized wave output device | |
JP4089707B2 (en) | Optical signal generation circuit | |
JP3552761B2 (en) | Dispersion compensation method and dispersion compensation device | |
JPH088821A (en) | Method for transmitting dark optical solution | |
JP2000249734A (en) | Sensing device | |
JPH02278232A (en) | Optical amplifier | |
JPH08251100A (en) | Polarization nondependent and total luminous type signal regeneration circuit | |
JPS5840942A (en) | Optical communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011002 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |