[go: up one dir, main page]

JPH09283371A - Formation of thin film capacitor - Google Patents

Formation of thin film capacitor

Info

Publication number
JPH09283371A
JPH09283371A JP8098049A JP9804996A JPH09283371A JP H09283371 A JPH09283371 A JP H09283371A JP 8098049 A JP8098049 A JP 8098049A JP 9804996 A JP9804996 A JP 9804996A JP H09283371 A JPH09283371 A JP H09283371A
Authority
JP
Japan
Prior art keywords
thin film
film
plasma
capacitor
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8098049A
Other languages
Japanese (ja)
Other versions
JP3139369B2 (en
Inventor
Shuji Sone
修次 曽祢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP08098049A priority Critical patent/JP3139369B2/en
Publication of JPH09283371A publication Critical patent/JPH09283371A/en
Application granted granted Critical
Publication of JP3139369B2 publication Critical patent/JP3139369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the residual carbon concn. in a dielectric film by emitting a hydrogen plasma or that diluted with an inert gas e.g. Ar to a perovskite oxide thin film which forms a thin film capacitor. SOLUTION: An electron cyclotron resonance(ECR) generator 3 in a film- forming chamber 1 upper part generates an O2 plasma which reacts with other org. metal material fed from an injection nozzle 5 to form a perovskite oxide dielectric film on a substrate 2 heated at approximately 500 deg.C. A H plasma diluted with an inert gas e.g. Ar is irradiated on the substrate 2 held at approximately 50 deg.C to thereby reduce the residual C concn. in the dielectric film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜キャパシタの
形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film capacitor.

【0002】[0002]

【従来の技術】1Gビット以上の次世代高密度DRAM
用容量膜に適用するために、誘電特性、絶縁性、化学的
安定性に優れたSrTiO3 、(Ba,Sr)Ti
3 、(Pb,Zr)TiO3 等のペロブスカイト型酸
化物誘電体薄膜の研究開発が行われている。
2. Description of the Related Art Next-generation high-density DRAM of 1 Gbit or more
SrTiO 3 , (Ba, Sr) Ti, which has excellent dielectric properties, insulating properties, and chemical stability for use as a capacitor film
Research and development of perovskite type oxide dielectric thin films such as O 3 and (Pb, Zr) TiO 3 have been conducted.

【0003】酸化物誘電体薄膜の成膜法としてはスパッ
タ法、気相成長法(CVD法)、ゾルゲル法等がある。
1Gビット用DRAMを実現するにはスタック構造の側
面積を利用することが必要であることから、段差被覆性
に優れるCVD法による成膜技術の確立が望まれてい
る。
As a method for forming the oxide dielectric thin film, there are a sputtering method, a vapor phase growth method (CVD method), a sol-gel method and the like.
Since it is necessary to use the side area of the stack structure to realize a 1 Gbit DRAM, it is desired to establish a film forming technique by a CVD method having excellent step coverage.

【0004】CVD法におけるペロブスカイト型酸化物
誘電体の成膜、例えば(Ba,Sr)TiO3 (以下、
BST)の場合については、ティー・カワハラら、マテ
リアル・リサーチ・ソサエティ・シンポジウム・プロシ
ーディング、361巻、361頁、1995年(T.K
awahara et al.,Mat.Res.So
c.Symp.Proc.Vol.361,325(1
995))あるいはマサジ・ヨシダら、ジャーナル・オ
ブ・エレクトロケミカル・ソサエティ、142巻、24
4頁、1995年(Masaji Yoshida e
t al.,Journal of the Elec
trochemical Society Vol.1
42,244(1995))などの報告がなされてい
る。一般にBSTのCVD成膜原料としては、ビスジピ
バロイルメタネイトバリウム(bis−(dipiva
loylmethanato)barium(Ba(D
PM)2 ))、ビスジピバロイルメタネイトストロンチ
ウム(bis−(dipivaloylmethana
to)strontium(Sr(DPM)2 ))、テ
トライソプロポキシチタニウム(tetra−iso−
propoxytitanium(Ti(i−OC3
7 4 ))、チタニルビスヂピアロイメタネイト(ti
tanyl bis(dipivaloylmetha
nato)(TiO(DPM)2 ))、O2 が用いられ
ている。これまでの報告では、BST成膜後の後処理と
して膜中の残留炭素を除去する工程は含まれていない。
Film formation of a perovskite type oxide dielectric by the CVD method, for example, (Ba, Sr) TiO 3 (hereinafter, referred to as
In the case of BST), T. Kawahara et al., Material Research Society Symposium Proceedings, 361, 361, 1995 (TK
awahara et al. , Mat. Res. So
c. Symp. Proc. Vol. 361, 325 (1
995)) or Masaji Yoshida et al., Journal of Electrochemical Society, 142, 24.
P. 4, 1995 (Masaji Yoshida e
t al. , Journal of the Elec
trochemical Society Vol. 1
42, 244 (1995)). Generally, as a raw material for CVD film formation of BST, bis-dipivaloylmethanate barium (bis- (dipiva) is used.
loylmethanato) barium (Ba (D
PM) 2 )), bis- (dipivaloylmethana)
to) trontium (Sr (DPM) 2 )), tetraisopropoxytitanium (tetra-iso-
propoxytitanium (Ti (i-OC 3 H
7 ) 4 )), titanyl bis dipialoy metalate (ti
tanyl bis (dipivaloylmetha
nato) (TiO (DPM) 2 )) and O 2 are used. The reports so far do not include a step of removing residual carbon in the film as a post-treatment after the BST film formation.

【0005】CVD成膜によるものではないが、ペロブ
スカイト型酸化物誘電体中の残留炭素を除去するため
に、積層セラミックコンデンサの焼成に先立って行うバ
ーンアウトを水素含有雰囲気中で行うことが、特開平4
−317309号公報、特開平5−90066号公報に
記載されている。
Although not by CVD film formation, in order to remove the residual carbon in the perovskite type oxide dielectric, it is particularly preferable to perform burnout in a hydrogen-containing atmosphere prior to firing the multilayer ceramic capacitor. Kaihei 4
-317309 and JP-A-5-90066.

【0006】[0006]

【発明が解決しようとする課題】従来例において述べた
ように、ペロブスカイト型酸化物誘電体薄膜のCVD成
膜においては有機基を含む原料が用いられている。この
ような有機基を含む原料を用いているため、成膜された
膜中には原料に由来する炭素の残留が生じることが問題
となっている。
As described in the conventional example, a raw material containing an organic group is used in the CVD film formation of a perovskite type oxide dielectric thin film. Since a raw material containing such an organic group is used, there is a problem that carbon derived from the raw material remains in the formed film.

【0007】第一の理由は、これが誘電体膜のリーク電
流増加の原因となっていることである(ヒサト・ヤブタ
ら、マテリアル・リサーチ・ソサエティ・シンポジウム
・プロシーディング、361巻、325頁、1995年
(Hisato Yabuta et al.,Ma
t.Res.Soc.Symp.Proc.Vol.3
61,325(1995))を参照)。
The first reason is that this causes an increase in the leak current of the dielectric film (Hisato Yabuta et al., Material Research Society Symposium Proceedings, 361, 325, 1995). Year (Hisato Yabuta et al., Ma
t. Res. Soc. Symp. Proc. Vol. 3
61, 325 (1995))).

【0008】第二の理由として、BST膜中の残留炭素
は吸湿性の高いBaCO3 を形成し、これはキャパシタ
として動作させたときに誘電損失(tanδ)を増加さ
せることが報告されている(蒔田ら、第41回応用物理
学関係連合講演会講演予稿集No.2、413頁、19
94年)。
Secondly, it has been reported that residual carbon in the BST film forms BaCO 3 having high hygroscopicity, which increases the dielectric loss (tan δ) when operated as a capacitor ( Makita et al., Proceedings of 41st Joint Lecture on Applied Physics No. 2, 413 pages, 19
1994).

【0009】本発明の目的は、CVD成膜されたペロブ
スカイト型酸化物誘電体薄膜においてリーク電流、誘電
損失増大の原因となる誘電体膜中の残留炭素の除去を行
い、絶縁性、誘電特性に優れたペロブスカイト型酸化物
誘電体薄膜キャパシタを提供することにある。
An object of the present invention is to remove residual carbon in a dielectric film, which causes increase of leakage current and dielectric loss, in a perovskite type oxide dielectric thin film formed by CVD to improve insulation and dielectric properties. An object is to provide an excellent perovskite type oxide dielectric thin film capacitor.

【0010】[0010]

【課題を解決するための手段】本発明における薄膜キャ
パシタ形成方法は、薄膜キャパシタを構成するペロブス
カイト型酸化物薄膜に対し、水素プラズマ、あるいはア
ルゴン等の不活性ガスで希釈した水素プラズマを照射す
る工程を含むことを特徴とする。
A method of forming a thin film capacitor according to the present invention comprises a step of irradiating a perovskite type oxide thin film forming a thin film capacitor with hydrogen plasma or hydrogen plasma diluted with an inert gas such as argon. It is characterized by including.

【0011】本発明の実施の形態において詳述するよう
に、本発明の筆者による実験ではCVD法により(B
a,Sr)TiO3 膜を作製した後、このウエハを活性
水素を含むプラズマ雰囲気中にさらす実験を行った結
果、プラズマ処理を行わない場合に比べ膜中の炭素濃度
が1/10に減少していた。これは、活性な水素と膜中
の炭素の間で反応が生じ、膜中の炭素がhydroca
rbonとなって脱離したものと考えられる。
As will be described in detail in the embodiments of the present invention, in the experiment by the author of the present invention, the CVD method (B
After the a, Sr) TiO 3 film was formed, an experiment was conducted in which this wafer was exposed to a plasma atmosphere containing active hydrogen. As a result, the carbon concentration in the film was reduced to 1/10 of that in the case without plasma treatment. Was there. This is because a reaction occurs between active hydrogen and carbon in the film, and the carbon in the film is hydroca.
It is considered that it became an rbon and was detached.

【0012】量産性の観点からは、大面積基板上におい
て均一な特性が得られることが望ましい。今回の実験か
ら、プラズマ処理を行った場合の電気特性の面内均一性
はプラズマ処理を行わない場合に比べて向上することが
わかった。これは、プラズマ処理による膜中の炭素濃度
の減少が面内において均一に行われたものと考えられ
る。
From the viewpoint of mass productivity, it is desirable to obtain uniform characteristics on a large area substrate. From this experiment, it was found that the in-plane uniformity of the electrical characteristics when the plasma treatment was performed was improved as compared with the case where the plasma treatment was not performed. It is considered that this is because the reduction of the carbon concentration in the film by the plasma treatment was carried out uniformly in the plane.

【0013】この方法を適用することにより、膜中の炭
素濃度が減少し、その結果絶縁性、誘電特性の高い薄膜
キャパシタを提供することができる。
By applying this method, the carbon concentration in the film is reduced, and as a result, it is possible to provide a thin film capacitor having high insulating and dielectric properties.

【0014】従来の技術において述べたように、CVD
成膜によるものではないが、ペロブスカイト型酸化物誘
電体中の残留炭素を除去するために、積層セラミックコ
ンデンサの焼成に先立って行うバーンアウトを水素含有
雰囲気中で行うことが報告されている。
As mentioned in the prior art, CVD
Although not by film formation, it has been reported that burnout is performed in a hydrogen-containing atmosphere prior to firing of the multilayer ceramic capacitor in order to remove carbon residue in the perovskite oxide dielectric.

【0015】この技術と本発明との第1の相違点は、本
発明ではCVD成膜によるものであるのに対して先行技
術では原料混合物を焼成することによるものである。
The first difference between this technique and the present invention is that the present invention is based on the CVD film formation, whereas the prior art is based on firing the raw material mixture.

【0016】第2の相違点は、水素を含むプラズマを照
射するのに対して先行技術では水素含有ガス中で焼成を
行うというものである。水素プラズマを照射することに
より、単に水素含有ガス中で焼成することに比較して、
次のような効果が得られる。第1の効果は、炭素濃度減
少の効率が著しく改善される。すなわち、ガス中で焼成
するよりもより少ない水素濃度でより高濃度の炭素を除
去することができる。第2の効果は、面内における炭素
濃度除去の均一性が著しく改善される。これは水素を含
むプラズマが面内において均一に照射されるためであ
る。
The second difference is that, in the prior art, firing is performed in a hydrogen-containing gas, whereas irradiation with plasma containing hydrogen is performed. By irradiating with hydrogen plasma, compared to simply firing in a hydrogen-containing gas,
The following effects can be obtained. The first effect is that the efficiency of carbon concentration reduction is significantly improved. That is, a higher concentration of carbon can be removed with a lower hydrogen concentration than by firing in gas. The second effect is that the uniformity of carbon concentration removal in the plane is significantly improved. This is because the plasma containing hydrogen is uniformly irradiated in the plane.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION 【実施例】【Example】

(実施例1)以下、本発明の実施例1について、図1及
び図2を参照しながら説明する。
(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS.

【0018】図1は、本発明の実施例1を説明するため
に用いたElectron Cyclotron Re
sonance(ECR)−CVD装置1の成膜室の概
略図である。成膜室上部のECR生成部3からO2 プラ
ズマ4が生成され、インジェクションノズル5から導入
された他の有機金属原料と反応することにより、基板2
上に誘電体膜が形成される。基板温度は輻射加熱により
50〜600℃まで制御される。
FIG. 1 shows an Electron Cyclotron Re used for explaining Example 1 of the present invention.
1 is a schematic view of a film forming chamber of a sonance (ECR) -CVD apparatus 1. FIG. O 2 plasma 4 is generated from the ECR generation unit 3 in the upper part of the film forming chamber and reacts with another organometallic raw material introduced from the injection nozzle 5 to generate the substrate 2
A dielectric film is formed on top. The substrate temperature is controlled to 50 to 600 ° C. by radiant heating.

【0019】図2は同じく薄膜キャパシタの断面図であ
る。スパッタ法により6インチSi基板9上にTiN
8、RuO2 7をそれぞれ50、200nmの膜厚で積層
した。RuO2 はキャパシタの下部電極、TiNはRu
2 とSiの反応を防ぐバリア層である。
FIG. 2 is a sectional view of the same thin film capacitor. TiN on 6 inch Si substrate 9 by sputtering method
8 and RuO 2 7 were laminated to a film thickness of 50 and 200 nm, respectively. RuO 2 is the lower electrode of the capacitor, TiN is Ru
This is a barrier layer that prevents the reaction between O 2 and Si.

【0020】このウエハを(ECR)−CVD装置の成
膜室1に導入し、ウエハを500℃に加熱した状態でペ
ロブスカイト型酸化物誘電体(Ba,Sr)TiO3
を30nm形成した(Ba/(Ba+Sr)=0.5)。
成膜原料にはBa(DPM)2 、Sr(DPM)2 、T
i(i−OC3 7 4 (以下、TIP)、O2 を用い
た。Ba(DPM)2 温度は200℃、流量は70sc
cm、Sr(DPM)2 温度は190℃、流量は70s
ccm、TIP温度は36℃、流量は140sccm
(それぞれ、キャリアガスはアルゴン)、O2 流量は1
40sccm、プラズマ励起マイクロ波パワーは750
W、成膜室圧力は1Pa、堆積速度は1.0nm/min
とした。
This wafer was introduced into the film forming chamber 1 of the (ECR) -CVD apparatus, and the perovskite type oxide dielectric (Ba, Sr) TiO 3 6 was heated to 500 ° C.
Of 30 nm was formed (Ba / (Ba + Sr) = 0.5).
Ba (DPM) 2 , Sr (DPM) 2 , T
i (i-OC 3 H 7 ) 4 (hereinafter, TIP) and O 2 were used. Ba (DPM) 2 temperature is 200 ° C, flow rate is 70sc
cm, Sr (DPM) 2 temperature is 190 ° C, flow rate is 70s
ccm, TIP temperature 36 ° C, flow rate 140 sccm
(Each carrier gas is argon), O 2 flow rate is 1
40 sccm, plasma excitation microwave power is 750
W, deposition chamber pressure 1 Pa, deposition rate 1.0 nm / min
And

【0021】(Ba,Sr)TiO3 を成膜後、ウエハ
温度を500℃に保持したまま、アルゴン等の不活性ガ
スで希釈した水素プラズマ(水素流量:10sccm、
アルゴン流量:130sccm)をウエハに照射した。
プラズマ励起マイクロ波パワーは750W、プラズマ照
射時間は5〜10分とした。
After forming the (Ba, Sr) TiO 3 film, while maintaining the wafer temperature at 500 ° C., hydrogen plasma diluted with an inert gas such as argon (hydrogen flow rate: 10 sccm,
The wafer was irradiated with an argon flow rate of 130 sccm).
The plasma excitation microwave power was 750 W, and the plasma irradiation time was 5 to 10 minutes.

【0022】プラズマ照射を行った後、ウエハをCVD
成膜室から取り出し、酸素雰囲気中でのアニール(アニ
ール温度400℃、アニール時間1時間)を行った。こ
れは水素プラズマ処理により生じた膜中の酸素欠損を補
償するために行う。
After plasma irradiation, the wafer is CVD
The film was taken out from the film forming chamber and annealed in an oxygen atmosphere (annealing temperature 400 ° C., annealing time 1 hour). This is done to compensate for oxygen deficiency in the film caused by the hydrogen plasma treatment.

【0023】その後、スパッタ法により上部電極である
Ru10を300nm堆積した。
After that, Ru10, which is an upper electrode, was deposited to a thickness of 300 nm by a sputtering method.

【0024】以上のような工程により作製された薄膜キ
ャパシタは、比誘電率160、リーク電流密度1×10
-8(A/cm2 )(1V印加時)、tanδ=1%以下と
いう良好な特性を示した。SIMSにより(Ba,S
r)TiO3 膜中の炭素濃度を分析した結果、プラズマ
処理を行わない場合に比べ約1/10に減少していた。
また、6インチウエハにおける電気特性の面内分布を調
べたところ、均一性は3%以内になっており、プラズマ
処理を行わない場合に比べて改善されていた(プラズマ
処理を行わない場合の電気特性の面内均一性は約10
%)。
The thin film capacitor manufactured by the above steps has a relative dielectric constant of 160 and a leakage current density of 1 × 10.
-8 (A / cm 2 ) (at 1 V applied), tan δ = 1% or less, which is a good characteristic. SIMS (Ba, S
r) As a result of analyzing the carbon concentration in the TiO 3 film, it was reduced to about 1/10 of that in the case where the plasma treatment was not performed.
In addition, when the in-plane distribution of the electrical characteristics of the 6-inch wafer was examined, the uniformity was within 3%, which was improved compared to the case where the plasma treatment was not performed (electricity when the plasma treatment was not performed). In-plane uniformity of characteristics is about 10
%).

【0025】(実施例2)以下、本発明の実施例2につ
いて、図1及び図3を参照しながら説明する。図3は薄
膜キャパシタの断面図である。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIGS. FIG. 3 is a sectional view of the thin film capacitor.

【0026】Si基板21上に熱酸化したSiO2 (6
00nm)9中にpoly−Siプラグ7を形成し、その
上にスパッタ法によりTiN(50nm)4、RuO
2 (500nm)3を積層した。RuO2 /TiN構造は
フォトリソグラフィによりパターニングし(パターン幅
は0.4μm )、プラズマエッチングにより、図のよう
な立体構造のスタック電極に加工した。
Thermally oxidized SiO 2 (6
(00 nm) 9 in which a poly-Si plug 7 is formed, and TiN (50 nm) 4 and RuO are formed thereon by a sputtering method.
2 (500 nm) 3 was laminated. The RuO 2 / TiN structure was patterned by photolithography (pattern width was 0.4 μm) and processed into a stack electrode having a three-dimensional structure as shown by plasma etching.

【0027】このウエハをECR−CVD装置の成膜室
1に導入し、ウエハを500℃に加熱した状態でペロブ
スカイト型酸化物誘電体(Ba,Sr)TiO3 6を3
0nm形成した(Ba/(Ba+Sr)=0.5)。成膜
原料にはBa(DPM)2 、Sr(DPM)2 、TI
P、O2 を用いた。Ba(DPM)2 温度は200℃、
流量は70sccm、Sr(DPM)2 温度は190
℃、流量は70sccm、TIP温度は36℃、流量は
140sccm(それぞれ、キャリアガスはアルゴ
ン)、O2 流量は140sccm、プラズマ励起マイク
ロ波パワーは750W、成膜室圧力は1Pa、堆積速度
は1.0nm/minとした。
This wafer was introduced into the film forming chamber 1 of the ECR-CVD apparatus, and the perovskite type oxide dielectric (Ba, Sr) TiO 3 6 was added to the film while heating the wafer to 500 ° C.
0 nm was formed (Ba / (Ba + Sr) = 0.5). Ba (DPM) 2 , Sr (DPM) 2 , TI
P and O 2 were used. Ba (DPM) 2 temperature is 200 ° C,
Flow rate is 70 sccm, Sr (DPM) 2 temperature is 190
° C., the flow rate is 70 sccm, TIP temperature 36 ° C., the flow rate is 140 sccm (respectively, the carrier gas is argon), O 2 flow rate 140 sccm, plasma excitation microwave power 750W, the deposition chamber pressure is 1 Pa, the deposition rate of 1. It was set to 0 nm / min.

【0028】次に、ウエハ温度を80℃とし、アルゴン
等の不活性ガスで希釈した水素プラズマ(水素流量:1
0sccm、アルゴン流量:130sccm)をウエハ
に照射した。プラズマ励起マイクロ波パワーは750
W、プラズマ照射時間は5〜10分とした。
Next, the wafer temperature is set to 80 ° C. and hydrogen plasma diluted with an inert gas such as argon (hydrogen flow rate: 1
The wafer was irradiated with 0 sccm and an argon flow rate of 130 sccm). Plasma excitation microwave power is 750
W and the plasma irradiation time were 5 to 10 minutes.

【0029】プラズマ照射を行った後、ウエハをCVD
成膜室から取り出し、酸素雰囲気中でのアニール(アニ
ール温度400℃、アニール時間1時間)を行った。こ
れは水素プラズマ処理により生じた膜中の酸素欠損を補
償するために行う。
After plasma irradiation, the wafer is CVD
The film was taken out from the film forming chamber and annealed in an oxygen atmosphere (annealing temperature 400 ° C., annealing time 1 hour). This is done to compensate for oxygen deficiency in the film caused by the hydrogen plasma treatment.

【0030】その後、スパッタ法により上部電極である
Ru(700nm)10を堆積した。
After that, Ru (700 nm) 10 as the upper electrode was deposited by the sputtering method.

【0031】以上の方法により作製した薄膜キャパシタ
の比誘電率は250、リーク電流密度1×10-8(A/
cm2 )(1V印加時)、tanδは1%以下という良好
な特性を示した。SIMSにより(Ba,Sr)TiO
3 膜中の炭素濃度を分析した結果、プラズマ処理を行わ
ない場合に比べ約1/10に減少していた。また、6イ
ンチウエハにおける電気特性の面内分布を調べたとこ
ろ、均一性は3%以内になっており、プラズマ処理を行
わない場合に比べて改善されていた(プラズマ処理を行
わない場合の電気特性の面内均一性は約10%)。
The thin film capacitor manufactured by the above method has a relative dielectric constant of 250 and a leakage current density of 1 × 10 -8 (A /
cm 2 ) (at the time of applying 1 V) and tan δ was 1% or less, which is a good characteristic. (Ba, Sr) TiO by SIMS
As a result of analyzing the carbon concentration in the three films, it was reduced to about 1/10 as compared with the case where the plasma treatment was not performed. In addition, when the in-plane distribution of the electrical characteristics of the 6-inch wafer was examined, the uniformity was within 3%, which was improved compared to the case where the plasma treatment was not performed (electricity when the plasma treatment was not performed). In-plane uniformity of properties is about 10%).

【0032】[0032]

【発明の効果】本発明の薄膜キャパシタ形成方法によれ
ば、薄膜キャパシタを構成するペロブスカイト型酸化物
薄膜に対し、水素プラズマ、あるいはアルゴン等の不活
性ガスで希釈した水素プラズマを照射する工程を含むこ
とにより、誘電体薄膜中の残留炭素濃度が減少する。
According to the method of forming a thin film capacitor of the present invention, a step of irradiating a perovskite type oxide thin film forming a thin film capacitor with hydrogen plasma or hydrogen plasma diluted with an inert gas such as argon is included. As a result, the residual carbon concentration in the dielectric thin film is reduced.

【0033】その結果、第一の効果として絶縁性に優れ
た薄膜キャパシタを提供することができる。
As a result, the first effect is to provide a thin film capacitor excellent in insulation.

【0034】第二の効果として誘電特性に優れた薄膜キ
ャパシタを提供することができる。
As a second effect, it is possible to provide a thin film capacitor having excellent dielectric characteristics.

【0035】第三の効果として電気特性の面内均一性を
向上させることができる。
As a third effect, the in-plane uniformity of electrical characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すECR−CVD装置の
成膜室を示す概略図である。
FIG. 1 is a schematic view showing a film forming chamber of an ECR-CVD apparatus showing an embodiment of the present invention.

【図2】本発明の一実施例を示す薄膜キャパシタの断面
図である。
FIG. 2 is a sectional view of a thin film capacitor showing an embodiment of the present invention.

【図3】本発明の一実施例を示す薄膜キャパシタの断面
図である。
FIG. 3 is a cross-sectional view of a thin film capacitor showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ECR−CVD装置の成膜室 2 基板 3 ECR生成部 4 プラズマ 5 インジェクションノズル 6 ペロブスカイト型酸化物誘電体 7 下部電極 8 バリア層 9 Si基板 10 上部電極 11 poly−Siプラグ 12 SiO2 1 Film-forming chamber of ECR-CVD apparatus 2 Substrate 3 ECR generation part 4 Plasma 5 Injection nozzle 6 Perovskite type oxide dielectric 7 Lower electrode 8 Barrier layer 9 Si substrate 10 Upper electrode 11 poly-Si plug 12 SiO 2 layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】薄膜キャパシタを構成する気相成長された
ペロブスカイト型酸化物薄膜に対し、水素プラズマ、あ
るいはアルゴン等の不活性ガスで希釈した水素プラズマ
を照射する工程を含むことを特徴とする薄膜キャパシタ
の形成方法。
1. A thin film comprising a step of irradiating a vapor-grown perovskite type oxide thin film forming a thin film capacitor with hydrogen plasma or hydrogen plasma diluted with an inert gas such as argon. Method of forming a capacitor.
JP08098049A 1996-04-19 1996-04-19 Method of forming thin film capacitor Expired - Fee Related JP3139369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08098049A JP3139369B2 (en) 1996-04-19 1996-04-19 Method of forming thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08098049A JP3139369B2 (en) 1996-04-19 1996-04-19 Method of forming thin film capacitor

Publications (2)

Publication Number Publication Date
JPH09283371A true JPH09283371A (en) 1997-10-31
JP3139369B2 JP3139369B2 (en) 2001-02-26

Family

ID=14209351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08098049A Expired - Fee Related JP3139369B2 (en) 1996-04-19 1996-04-19 Method of forming thin film capacitor

Country Status (1)

Country Link
JP (1) JP3139369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043792B1 (en) * 2002-07-30 2011-06-27 쌩-고벵 글래스 프랑스 Titanium Dioxide Deposition Method and Substrate
JPWO2022269659A1 (en) * 2021-06-21 2022-12-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043792B1 (en) * 2002-07-30 2011-06-27 쌩-고벵 글래스 프랑스 Titanium Dioxide Deposition Method and Substrate
JPWO2022269659A1 (en) * 2021-06-21 2022-12-29

Also Published As

Publication number Publication date
JP3139369B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US20230112490A1 (en) Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US6365519B2 (en) Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride
US6165916A (en) Film-forming method and film-forming apparatus
US6815374B2 (en) Method for improving thickness uniformity of deposited ozone-TEOS silicate glass layers
KR100363081B1 (en) Thin film formation apparatus
JP3584129B2 (en) Method for manufacturing capacitor of semiconductor device
JP4804603B2 (en) Capacitor manufacturing method for semiconductor device
WO2000044033A1 (en) Method and apparatus for film deposition
JP3355236B2 (en) Method for manufacturing capacitor of semiconductor memory device
JPH04350167A (en) Method for manufacturing high dielectric thin film
KR20000027398A (en) Method for forming perovskite nuclei of ferroelectric layer
US6800570B2 (en) Method of forming a metal oxide film
KR100351238B1 (en) Method of manufacturing a capacitor in a semiconductor device
JP3139369B2 (en) Method of forming thin film capacitor
JP2924753B2 (en) Method for manufacturing thin film capacitor
KR100671604B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR100229358B1 (en) SBT ferroelectric thin film manufacturing method
KR100382742B1 (en) Method for forming capacitor of semiconductor device
JPH0574763A (en) Method for forming gate insulating film
KR20020012163A (en) Method for fabricating high permitivity dielectric stacks having low buffer oxide
JPH11177057A (en) Manufacture of semiconductor device
KR19980018503A (en) Thin film manufacturing method and thin film manufacturing device
JPS62149876A (en) Formation of oxide film
KR20000041429A (en) Method for fabricating capacitor which can prevent oxidation of bottom electrode
KR100451507B1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees