JPH09281091A - Degradation method for heat resistant materials - Google Patents
Degradation method for heat resistant materialsInfo
- Publication number
- JPH09281091A JPH09281091A JP8090799A JP9079996A JPH09281091A JP H09281091 A JPH09281091 A JP H09281091A JP 8090799 A JP8090799 A JP 8090799A JP 9079996 A JP9079996 A JP 9079996A JP H09281091 A JPH09281091 A JP H09281091A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- deterioration
- measuring
- deterioration degree
- resistant material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は発電プラント等に適
用される耐熱材料の使用中における特性劣化の度合いを
非破壊的に推定する方法に関するTECHNICAL FIELD The present invention relates to a method for nondestructively estimating the degree of characteristic deterioration during use of a heat resistant material applied to a power plant or the like.
【0002】[0002]
【従来の技術】商業用発電プラント等に適用されている
耐熱材料の多くは、異なるプラント間での運転状況・立
地環境の相異はもちろん、同一プラントでも運転方法に
よっては使用環境の時間的な変動が大きく、材料劣化の
推定が容易ではない。このため、定期点検時における高
温部材の劣化度の判定は、クラックおよび腐食の発生状
況などの外観上の損傷検査に頼らざるを得ず、材料特性
の劣化度合いを直接的に検知することはできなかった。
このため、材料劣化が進行しているにも拘らず外観上は
損傷が認められない場合には当該部品は継続使用され、
プラント全体の信頼性管理上重大な問題となっていた。2. Description of the Related Art Most heat-resistant materials applied to commercial power generation plants and the like differ not only in the operating conditions and location environment between different plants but also in the same plant depending on the operating method depending on the operating environment. The fluctuations are large and it is not easy to estimate the material deterioration. For this reason, the degree of deterioration of high-temperature members during periodic inspections must rely on visual damage inspections such as the occurrence of cracks and corrosion, and the degree of deterioration of material properties cannot be directly detected. There wasn't.
Therefore, if there is no visible damage, despite the deterioration of the material, the part will continue to be used.
This was a serious problem in reliability management of the entire plant.
【0003】これを受けて、耐熱材料の非破壊的な劣化
度推定方法が各方面で盛んに研究されている。特開昭57
−29947号公報,特開昭58−92952 号公報,特開昭62−5
9263号公報及び特開平3−45790号公報では蒸気タービン
用低合金鋼を対象とした劣化度推定方法が開示されてい
る。また、特開平2−227654 号公報,特開平3−20916号
公報および特開平5−223809 号公報には、ガスタービン
用耐熱材料として最も多用されているγ′(ガンマープ
ライム)相析出強化型合金を対象とした劣化度推定方法
が開示されている。In response to this, nondestructive deterioration degree estimation methods for heat-resistant materials are being actively studied in various fields. JP 57
-29947, JP-A-58-92952, JP-A-62-5
Japanese Patent Laid-Open No. 9263 and Japanese Patent Laid-Open No. 3-45790 disclose a deterioration degree estimating method for a low alloy steel for a steam turbine. Further, in JP-A-2-227654, JP-A-3-20916, and JP-A-5-223809, a γ '(gamma prime) phase precipitation strengthening type alloy most frequently used as a heat-resistant material for gas turbines. There is disclosed a method of estimating deterioration degree for.
【0004】[0004]
【発明が解決しようとする課題】従来の非破壊的検査手
法は、電気抵抗測定法・磁化率測定法・レプリカ法等で
ある。電気抵抗測定法は非常に簡便な測定法であり測定
機具も軽量であるためプラント現地での測定が容易であ
るが、被測定物の表面状態・気温・被測定物の形状等で
その測定値が大きく影響を受けるためデータの信頼性確
保が難しい。磁化率測定法は、測定部位のキュリー温度
を測定するために被測定物を加熱する必要があるだけで
なく、部品中の特定の部分の磁化率を非破壊的に測定す
るのが困難であり、プラント現地での簡便な測定法とは
言い難い。またレプリカ法は、現状のプラントの定期検
査で多用されているが、被測定物表面の鏡面研磨・エッ
チング・レプリカ膜張り付け・顕微鏡検査等の手順が必
要で、目的とする表面組織のデータを採取するのに多大
の時間と熟練を要している。しかも、部品の表面付近の
情報しか得られないため、部品全体の劣化度を判定する
際に正確さを欠くきらいがある。The conventional non-destructive inspection methods are an electric resistance measuring method, a magnetic susceptibility measuring method, a replica method and the like. The electric resistance measuring method is a very simple measuring method and the measuring equipment is lightweight, so it is easy to measure at the plant site, but the measured value depends on the surface condition of the measured object, temperature, shape of the measured object, etc. However, it is difficult to secure the reliability of data. The magnetic susceptibility measurement method not only requires heating the object to be measured in order to measure the Curie temperature at the measurement site, but also makes it difficult to non-destructively measure the magnetic susceptibility of a specific part of the component. However, it is hard to say that this is a simple measurement method at the plant site. In addition, the replica method is often used in regular inspections of current plants, but it requires procedures such as mirror polishing, etching, replica film attachment, and microscope inspection of the surface of the object to be measured, and the data of the target surface structure is collected. It takes a lot of time and skill to do. Moreover, since only the information near the surface of the component can be obtained, there is a tendency to lack accuracy when determining the degree of deterioration of the entire component.
【0005】本発明の目的は、簡便な測定手順によっ
て、プラント現地での定期検査作業をより迅速かつ正確
に実施できる材料劣化度推定方法を提供することにあ
る。An object of the present invention is to provide a material deterioration degree estimating method capable of performing a regular inspection work at a plant site more quickly and accurately by a simple measurement procedure.
【0006】[0006]
【課題を解決するための手段】一般に発電プラント等に
使用されている耐熱材料は、高温下で使用中にその固有
の金属組織や化学組成に何らかの変化をきたし、これに
伴い材料特性が劣化する。したがってこの変化を直接あ
るいは間接的に知ることによって材料劣化度の推定が可
能となる。前記発明の課題の項で述べた公知例はいずれ
もこの手法によっている。The heat-resistant material generally used in power plants and the like undergoes some changes in its unique metal structure and chemical composition during use at high temperatures, and the material properties deteriorate accordingly. . Therefore, it is possible to estimate the degree of material deterioration by knowing this change directly or indirectly. All of the known examples described in the section of the problem of the invention are based on this method.
【0007】本発明者らは、材料劣化すなわち金属組織
及び化学組成の変化を反映する指標として、材料中を伝
播する音波の速度に注目した。The present inventors have paid attention to the speed of sound waves propagating in a material as an index that reflects deterioration of the material, that is, changes in the metal structure and chemical composition.
【0008】音速は、材料の密度・結晶構造・異相界面
の状態等に依存するため、高温下で使用して組織・組成
に変化が起きた材料と使用前の新材の音速には明確な差
異が生じる可能性が高い。したがって、材料劣化の進行
と共に音速が単調に増加或いは減少するような材料であ
れば、使用材の音速を測定することにより被測定物の材
料劣化度を推定できる。Since the sound velocity depends on the density, crystal structure, state of different phase interface, etc. of the material, there is a clear distinction between the sound velocity of the material whose structure / composition changed at high temperature and that of the new material before use. Differences are likely to occur. Therefore, if the material whose sound speed monotonously increases or decreases as the material deterioration progresses, the material deterioration degree of the measured object can be estimated by measuring the sound speed of the material used.
【0009】材料の音速測定の際に必要な手順を以下に
述べる。The procedure required for measuring the sound velocity of a material will be described below.
【0010】被測定物の所望の部分の表面を、研磨紙等
を用いて約10mm×10mmの範囲にわたって研磨する。
研磨紙の粗さで#1000程度まで用いて表面を平滑に
するのが望ましい。次に超音波の発振器兼検出器となる
測定子を研磨した面に接触させる。測定子は超音波の発
振器及び波形測定器に接続され、超音波の発振と材料か
らの反射波(エコー)の波形測定・記録が可能な装置構
成を有する。The surface of a desired portion of the object to be measured is polished with abrasive paper or the like over a range of about 10 mm × 10 mm.
It is desirable that the surface of the polishing paper be smoothed by using the roughness of up to about # 1000. Next, a probe, which also serves as an ultrasonic oscillator and detector, is brought into contact with the polished surface. The tracing stylus is connected to an ultrasonic wave oscillator and a waveform measuring instrument, and has a device configuration capable of measuring and recording the waveform of an ultrasonic wave oscillation and a reflected wave (echo) from a material.
【0011】被測定物に超音波を加振した時刻をt0 ,
被測定物からのエコーを検出した時刻をte ,測定部位
の厚みをwとすると、音速Vs は次式The time when ultrasonic waves are applied to the object to be measured is t 0 ,
Assuming that the time at which the echo from the object to be measured is detected is t e and the thickness of the measurement site is w, the sound velocity V s is
【0012】[0012]
【数1】 Vs =w/(te−t0) …(数1) により求められる。It is determined by the [number 1] V s = w / (t e -t 0) ... ( number 1).
【0013】一方被測定物を構成する耐熱材料に関して
は、あらかじめその劣化度と音速の関係が調べられてい
なければならない。このために当該材料に実験室的に長
時間の加熱や応力の負荷を行って模擬劣化を作製し、そ
れら模擬劣化の劣化度と音速の関係を長時間にわたって
調査したマスターカーブを作成しておく必要がある。観
測された音速と前述したマスターカーブにより、被測定
物を構成する耐熱材料の特性劣化度を求めることができ
る。On the other hand, regarding the heat-resistant material constituting the object to be measured, the relationship between the degree of deterioration and the sound velocity must be investigated in advance. For this purpose, the material is experimentally heated and stressed for a long time to create simulated deterioration, and a master curve is created by investigating the relationship between the deterioration degree of the simulated deterioration and the sound velocity for a long time. There is a need. From the observed sound velocity and the above-mentioned master curve, it is possible to determine the degree of characteristic deterioration of the heat resistant material forming the object to be measured.
【0014】本発明における音速測定法は、被測定物の
表面研磨は必要とするものの、その後の測定手順は簡便
でありデータの解析も汎用の計算機を用いて短時間で行
える。Although the sound velocity measuring method in the present invention requires surface polishing of the object to be measured, the subsequent measuring procedure is simple and data analysis can be performed in a short time using a general-purpose computer.
【0015】また、被測定物の表面だけでなく厚さ方向
に関する情報が得られるため、被測定物の劣化度をより
正確に推定でき、発電プラント等の現地での定期検査に
おける高温部品の特性劣化度評価法として好適である。Further, since not only the surface of the object to be measured but also the thickness direction information can be obtained, the degree of deterioration of the object to be measured can be more accurately estimated, and the characteristics of the high temperature parts in the regular inspection on site such as a power plant. It is suitable as a deterioration degree evaluation method.
【0016】さらに本発明は、特性劣化度と音速の関係
が1対1に対応するようなマスターカーブが得られる材
料であればいかなる材料にも適用が可能である。Further, the present invention can be applied to any material as long as it can obtain a master curve in which the characteristic deterioration degree and the sound velocity have a one-to-one relationship.
【0017】[0017]
【発明の実施の形態】以下、本発明の耐熱材料の特性劣
化度推定方法につき実施例により説明する。図1はγ′
相強化型合金である14Cr−9.5Co−4W−4M
o−3Al−5Ti−Ni基超合金を実験室にて長時間
加熱して特性を劣化させた数種の試験片と超合金の新材
を用意し、各々音速と0.2% 耐力を測定し、両者の関
係をグラフに表したものである。縦軸の目盛りは新材の
0.2% 耐力を100として振られ、横軸には音速をと
ってある。横軸上に劣化度推定の対象となる高温部品の
測定部位の音速をとれば、マスターカーブに応じて測定
部位の特性劣化度が求められる。BEST MODE FOR CARRYING OUT THE INVENTION The method for estimating the degree of characteristic deterioration of a heat-resistant material according to the present invention will be described below with reference to Examples. Figure 1 shows γ '
14Cr-9.5Co-4W-4M which is a phase strengthening alloy
o-3Al-5Ti-Ni-based superalloy was heated in the laboratory for a long time and several kinds of test pieces and new superalloy materials were used to deteriorate the characteristics, and the sonic velocity and 0.2% proof stress were measured respectively. However, the graph shows the relationship between the two. The scale on the vertical axis is based on the 0.2% proof stress of the new material as 100, and the horizontal axis is the speed of sound. If the sound velocity of the measurement site of the high-temperature component whose deterioration degree is to be estimated is plotted on the horizontal axis, the characteristic deterioration degree of the measurement site can be obtained according to the master curve.
【0018】また縦軸には0.2% 耐力のほか、引張り
強さ・クリープ破断時間・クリープ損傷率・疲労損傷率
等、対象とする高温部品の特性劣化度を計るのに最も適
した指標を用いることができる。In addition to the 0.2% proof stress, the vertical axis is the most suitable index for measuring the degree of characteristic deterioration of the target high temperature parts such as tensile strength, creep rupture time, creep damage rate, fatigue damage rate. Can be used.
【0019】[0019]
【発明の効果】本発明によれば、発電プラント等に使用
されている種々の耐熱材料につき、事前に特性劣化と音
速の関係を求めておけば、プラント現地で高温部品の劣
化度評価を簡便に非破壊的にしかも正確に行うことがで
き、プラントの信頼性管理の精度が向上するほか、定期
検査の所要時間短縮にもつながりプラントの維持管理の
効率化を図ることができる。EFFECTS OF THE INVENTION According to the present invention, for various heat-resistant materials used in power plants and the like, if the relationship between the characteristic deterioration and the sound velocity is obtained in advance, it is easy to evaluate the deterioration degree of high temperature parts at the plant site. In addition to being able to perform non-destructively and accurately, the accuracy of reliability management of the plant is improved, the time required for the periodic inspection can be shortened, and the efficiency of maintenance of the plant can be improved.
【0020】さらに本発明は、既存の電気抵抗法・磁化
率測定法・レプリカ法などの他の非破壊検査法と併用す
ることで、劣化度推定精度のさらなる向上が図られる。Furthermore, the present invention can be used in combination with other non-destructive inspection methods such as the existing electric resistance method, magnetic susceptibility measuring method, replica method, etc. to further improve the deterioration degree estimation accuracy.
【図1】14Cr−9.5Co−4W−4Mo−3Al
−5Ti−Ni 基超合金の新材と、この超合金を実験
室内で長時間加熱して特性を劣化させた試験材の各々に
つき音速と0.2%耐力を測定し、それらの音速と0.2
%耐力の関係を示した特性図。FIG. 1 14Cr-9.5Co-4W-4Mo-3Al
The sonic velocity and 0.2% proof stress were measured for each of the new -5Ti-Ni-based superalloy and the test material whose characteristics were deteriorated by heating this superalloy for a long time in the laboratory. .2
A characteristic diagram showing the relationship of% yield strength.
Claims (2)
劣化度の推定方法において、前記高温部品を構成する耐
熱材料の音速を測定し、あらかじめ作成された前記耐熱
材料の特性劣化と音速の関係を示す線図をもとに、前記
耐熱材料及び前記耐熱材料から構成される高温部品の劣
化度を推定することを特徴とする耐熱材料の劣化度推定
方法。1. A method for estimating a nondestructive deterioration degree of a high temperature component used under high temperature, wherein the sound velocity of a heat resistant material constituting the high temperature component is measured, and the characteristic deterioration of the heat resistant material created in advance is detected. A deterioration degree estimation method for a heat resistant material, comprising estimating the deterioration degree of the heat resistant material and a high temperature component composed of the heat resistant material based on a diagram showing a relationship of sonic speeds.
から構成される高温部品の劣化度を推定する耐熱材料の
劣化度推定方法。2. The deterioration degree estimating method according to claim 1, wherein the deterioration degree of a high temperature component made of a γ ′ phase precipitation strengthening alloy is estimated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8090799A JPH09281091A (en) | 1996-04-12 | 1996-04-12 | Degradation method for heat resistant materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8090799A JPH09281091A (en) | 1996-04-12 | 1996-04-12 | Degradation method for heat resistant materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09281091A true JPH09281091A (en) | 1997-10-31 |
Family
ID=14008644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8090799A Pending JPH09281091A (en) | 1996-04-12 | 1996-04-12 | Degradation method for heat resistant materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09281091A (en) |
-
1996
- 1996-04-12 JP JP8090799A patent/JPH09281091A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Si et al. | Potential difference methods for measuring crack growth: A review | |
Tomlinson et al. | Thermoelasticity for the analysis of crack tip stress fields—a review | |
Lane | The development of a 2D ultrasonic array inspection for single crystal turbine blades | |
EP1517138B1 (en) | Method and apparatus for acoustic thermography inspection | |
CN111597653A (en) | A method for dynamic detection and identification of structural defects of bridge crane bridge | |
JPH0621783B2 (en) | Fatigue / remaining life evaluation method for machine parts | |
JP2008014959A (en) | Method for inspecting coating member for interface defects | |
CN109946385A (en) | Ultrasonic method for evaluating early mechanical damage of material | |
JPH09281091A (en) | Degradation method for heat resistant materials | |
Fang et al. | The application of a reflected non-axisymmetric torsional guided wave model for imaging crack-like defects in small-diameter pipes | |
US6563309B2 (en) | Use of eddy current to non-destructively measure crack depth | |
Belahcene et al. | Determination of residual stress in Z8CDWV12 steel using critically refracted longitudinal waves | |
JP4602394B2 (en) | Coating material deterioration judgment device | |
JPS63228062A (en) | Predicting method for remaining life of metallic material | |
JP2575703B2 (en) | Method and apparatus for diagnosing material deterioration of stainless steel | |
JP2794623B2 (en) | Method for evaluating the degree of fatigue damage of materials | |
Djaballah et al. | Optimal sizing of microcrack surface-breaking using PoD and ECNDT techniques | |
JP3432364B2 (en) | Material strength evaluation method for metal materials | |
Szeleziński et al. | Comparison of calculating algorithms for logarithmic decrements applied to welded joints assessments | |
Weekes et al. | The effects of crack opening and coatings on the detection capability of thermosonics | |
JP2799824B2 (en) | Cavity generation evaluation method by hydrogen erosion | |
JP2001056316A (en) | Method for measuring magnetic characteristics of material and method for evaluating degree of creep deterioration of structural member | |
JPH02143158A (en) | Material deterioration detecting method | |
JP3224053B2 (en) | Non-destructive test method and apparatus for heat-resistant metal | |
KR20250014734A (en) | Ultrasonic probe apparatus for high temperature and method for measuring the thickness, poisson's ratio, young's modulus of inspected object using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040910 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041027 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050531 |