[go: up one dir, main page]

JPH09281051A - Inspection apparatus - Google Patents

Inspection apparatus

Info

Publication number
JPH09281051A
JPH09281051A JP8095747A JP9574796A JPH09281051A JP H09281051 A JPH09281051 A JP H09281051A JP 8095747 A JP8095747 A JP 8095747A JP 9574796 A JP9574796 A JP 9574796A JP H09281051 A JPH09281051 A JP H09281051A
Authority
JP
Japan
Prior art keywords
signal
image
intensity
transmission
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8095747A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Hagiwara
恒幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8095747A priority Critical patent/JPH09281051A/en
Publication of JPH09281051A publication Critical patent/JPH09281051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inspection apparatus for a reticle, by which the defect of the phase difference amount of a shifter in all regions inside a binary reticle is inspected in a short time and a contamination such as a dust particle, a low-step foreign body or the like impeding an exposure operation is inspected simultaneously, and which can be used as an inspection apparatus for a foreign body with reference to a reticle without a shifter. SOLUTION: The inspection apparatus is provided with a first microscope means by which at least one out of a transmission amplitude differential image, a transmission intensity differential image and a reflection intensity differential image can be changed into an image, a first signalization means and a photoelectric transaction means which generate a transmission amplitude differential signal, a transmission intensity differential signal and a reflection intensity differential signal which express the transmission amplitude differential image, the transmission intensity differential image and the reflection intensity differential image so as to be photoelectrically transduced independently, and a signal-intensity adjusting means which can adjust the relative intensity ratio of the transmission amplitude differential signal, the transmission intensity differential signal and the reflection intensity differential signal. The relative intensity ratio is adjusted by the intensity adjusting means, and an error signal is computed on the basis of the signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】基板の欠陥検査装置に関する
ものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate defect inspection apparatus.

【0002】[0002]

【従来の技術】従来の2値レチクルのシフターの位相差
量欠陥検査装置はたとえばSPEI, Proceedings series V
olume 2254, "Photomask and X-Ray Mask technology,
" p.294~301 に記載されているように位相シフターの
位相量を測定する装置であって、レチクル内の検査対象
となる位相シフター部分を光学顕微鏡の視野内に位置さ
せ、その視野内のサンプリングされた1点の位相量を計
る、位相シフター付きレチクルの位相シフト量測定装置
である。
2. Description of the Related Art A conventional binary reticle shifter phase difference amount defect inspection apparatus is, for example, SPEI, Proceedings series V.
olume 2254, "Photomask and X-Ray Mask technology,
As described in p.294-301, it is a device for measuring the phase amount of a phase shifter. The phase shifter part to be inspected in the reticle is placed in the visual field of the optical microscope, and the It is a phase shift amount measuring device for a reticle with a phase shifter, which measures the phase amount of one sampled point.

【0003】したがって従来のこの種装置装置は、1回
の検査ごとに、サンプリングされた1点ごとの検査結果
しか得られず、レチクル内のすべての欠陥を検査するこ
とには不適当であった。また位相差量欠陥と塵埃、低段
差異物などの汚染物を同時に検出するという発想は全く
無い。
Therefore, the conventional apparatus of this kind can obtain only the inspection result for each sampled point for each inspection, and is not suitable for inspecting all the defects in the reticle. . Further, there is no idea of simultaneously detecting a phase difference amount defect and a contaminant such as dust or a low step foreign material.

【0004】[0004]

【発明が解決しようとする課題】本発明ではこのような
事情に鑑み、短時間で2値レチクル内のすべての領域の
シフターの位相差量の欠陥を検査し、加えて異物などの
露光に支障を来たす、塵埃、低段差異物などの汚染物の
検出も同時に行え、またシフターなしレチクルに対して
は異物検査装置として使用できる、レチクルの欠陥検査
装置を得ることを目的とする。
In view of such a situation, the present invention inspects defects of the phase difference amount of the shifter in all the areas in the binary reticle in a short time, and additionally interferes with the exposure of foreign matters and the like. An object of the present invention is to provide a reticle defect inspection apparatus that can simultaneously detect contaminants such as dust and low step foreign matter, and can be used as a foreign matter inspection apparatus for a reticle without a shifter.

【0005】[0005]

【課題を解決するための手段】本発明では上記課題の達
成のために、たとえば、基板の欠陥を検査する欠陥検査
装置であって、透過振幅微分像、透過強度微分像、反射
強度微分像の内少なくとも1つの像を画像化し得る第1
の顕微鏡手段と、透過振幅微分像、透過強度微分像、反
射強度微分像を表す独立に光電変換された透過振幅微分
信号、透過強度微分信号、反射強度微分信号を生成す
る、第1の信号化手段光電変換手段と、透過振幅微分信
号、透過強度微分信号、反射強度微分信号の相対的な強
度比を調整し得る信号強度調整手段を有し、強度調整手
段によって相対的な強度を調整した後に、これらの信号
強度に基ずいて誤差信号を算出し、該誤差信号に基ずい
て主に低段差の異物を検出する低段差異物検出手段と、
さらに、透過暗視野像、反射暗視野像の少なくとも一方
を画像化し得る第2の顕微鏡手段と、透過暗視野像、反
射暗視野像を表す透過暗視野信号、反射暗視野信号を生
成する、第2の信号化手段を有し、透過暗視野信号、反
射暗視野信号の少なくとも一方を用いて主に塵埃異物を
検出し、低段差の異物と塵埃異物の両方を検出可能とし
In order to achieve the above object, the present invention provides, for example, a defect inspection apparatus for inspecting a defect of a substrate, which includes a transmission amplitude differential image, a transmission intensity differential image, and a reflection intensity differential image. First capable of imaging at least one of the images
And a microscope means for producing a transmission amplitude differential image, a transmission intensity differential image, and a transmission amplitude differential signal, a transmission intensity differential signal, and a reflection intensity differential signal, which are independently photoelectrically converted and represent a differential signal. After having adjusted the relative intensity by the intensity adjustment means, the photoelectric conversion means and the signal intensity adjustment means capable of adjusting the relative intensity ratio of the transmission amplitude differential signal, the transmission intensity differential signal, and the reflection intensity differential signal. A low step foreign matter detecting means for calculating an error signal based on these signal intensities and mainly detecting a low step foreign matter based on the error signal,
Further, a second microscope means capable of imaging at least one of a transmission dark field image and a reflection dark field image, and a transmission dark field image, a transmission dark field signal representing the reflection dark field image, and a reflection dark field signal, It has two signalizing means, mainly detects the dust foreign matter by using at least one of the transmitted dark field signal and the reflected dark field signal, and made it possible to detect both the foreign matter with the low step and the dust foreign matter.

【0006】[0006]

【発明の実施の形態】図1に本発明の実施の一形態であ
る検査装置の特徴を示す。従来の異物検査装置は例えば
暗視野光学系のみに依存するものが多かった。このため
塵埃などの異物で、形状に突起物的な特徴のあるものは
容易に検出されるが、みず染みや、半透明性の有機物の
残留物などの形状に突起物的な特徴のない平坦な異物は
検出できなかった。またこのようなは平坦上の異物を検
出するためには、単なる明視野光学系では不十分であ
り、位相物体のコントラストを向上させる技術が必要で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the features of an inspection apparatus according to an embodiment of the present invention. Many of the conventional foreign matter inspection devices depend on, for example, only the dark field optical system. For this reason, foreign matter such as dust that has a prominent feature in its shape is easily detected, but it is flat without any prominent feature in the shape such as a stain or a semi-transparent organic residue. No foreign material could be detected. Further, such a simple bright-field optical system is not sufficient for detecting foreign matter on a flat surface, and a technique for improving the contrast of a phase object is required.

【0007】本発明の低段差異物検出部は図1に示すよ
うに回路パターンを検出しない光学系を用いて、容易に
低段差異物を検出可能である。また同時に、暗視野の顕
微鏡技術や、本発明に特異な、透過暗視野画像、落射暗
視野像の組み合わせ技術によって、回路パターンを検出
しない光学系を用いて容易に塵埃性の異物を検出可能で
ある。
The low step foreign matter detecting section of the present invention can easily detect the low step foreign matter by using an optical system which does not detect the circuit pattern as shown in FIG. At the same time, it is possible to easily detect dusty foreign substances by using an optical system that does not detect a circuit pattern, by dark field microscope technology and combination technology of transmitted dark field image and episcopic dark field image, which is unique to the present invention. is there.

【0008】図1には低段差異物の検出に微分干渉像、
強度微分像が用いられ、塵埃性の異物の検出にはは反射
暗視野像、透過暗視野像が用いられることを示す。また
本発明の検査装置の機能上の特徴として塵埃性の異物、
半透明性の異物を検出した検出系を調べることによって
簡単に自動分別出来ることにある。また自動分別が不要
な場合、総合的な結果を表示することは容易である。
FIG. 1 shows a differential interference image for detecting a low step foreign matter,
It is shown that the intensity differential image is used, and the reflection dark field image and the transmission dark field image are used to detect dusty foreign matter. Further, as a functional feature of the inspection device of the present invention, dusty foreign matter,
It is to be able to easily and automatically sort by examining a detection system that detects a semitransparent foreign substance. Also, if automatic classification is not required, it is easy to display the comprehensive result.

【0009】図2は、本発明の実施の一形態である検査
装置に好適な光学系の概略図である。レーザーを出射す
る光ビームは走査手段によって偏向され、ノマルスキプ
リズムによって微小角度だけ分離し対物レンズによっ
て、微小距離だけ分離した2つの光線となって、2つの
微小光スポットに絞り込まれる。2つのビームスポット
は微小距離だけ分離しているので事実上1つのスポット
と見做せる。
FIG. 2 is a schematic view of an optical system suitable for the inspection apparatus according to the embodiment of the present invention. The light beam emitted from the laser is deflected by the scanning means, separated by the Nomarski prism by a minute angle, and by the objective lens, it becomes two light beams separated by a minute distance and narrowed down into two minute light spots. Since the two beam spots are separated by a very small distance, they can be regarded as one spot in fact.

【0010】この微小光スポットはさきの走査手段の偏
向作用によって、レチクル上の被検査面上を光走査す
る。レチクルは一定速度で移動可能なステージ上に置載
され、光走査の方向と直角方向にステージによって搬送
され、微小光スポットは被検査面全体をラスタースキャ
ンする。微小光スポットから発生する、散乱光成分、直
接反射光、直接透過光は以下に説明するように、検出器
によって光電変換される。
The minute light spot optically scans the surface to be inspected on the reticle by the deflecting action of the scanning means. The reticle is placed on a stage that can move at a constant speed, and is conveyed by the stage in the direction perpendicular to the optical scanning direction, and the minute light spot raster-scans the entire surface to be inspected. The scattered light component, the direct reflected light, and the direct transmitted light generated from the minute light spot are photoelectrically converted by the detector as described below.

【0011】透過、反射ともに振幅微分像検出系は偏光
ビームスプリッタによって分離された光線を独立に光電
変換する2つの微分干渉像検出器が設置される。これら
二つの検出器は透過、反射の微分干渉像1、微分干渉像
2を出力する。同様にして、透過、反射ともに強度微分
検出系は偏光ビームスプリッタによって分離された光線
を独立に光電変換する2つの明視野像検出器が設置され
る。これら二つの検出器は透過、反射の明視野像1、明
視野像2を出力する。
In the differential amplitude image detection system for both transmission and reflection, two differential interference image detectors for independently photoelectrically converting the rays separated by the polarization beam splitter are installed. These two detectors output a differential interference image 1 and a differential interference image 2 of transmission and reflection. Similarly, the intensity differential detection system for both transmission and reflection is provided with two bright-field image detectors that independently photoelectrically convert the rays separated by the polarization beam splitter. These two detectors output a bright field image 1 and a bright field image 2 which are transmitted and reflected.

【0012】また透過、反射の暗視野像検出器は単独の
検出器で示されているが、衆知の空間周波数フィルタリ
ング技術を応用する場合、複数の受光素子をレチクルを
挟んで上下対称に配置する。これらの検出器には明視
野、暗視野の散乱光成分、直接反射光、直接透過光が入
射し、それぞれ光電変換される。
Although the transmission and reflection dark-field image detector is shown as a single detector, when applying the well-known spatial frequency filtering technique, a plurality of light receiving elements are arranged vertically symmetrically with the reticle in between. . Bright field, dark field scattered light components, direct reflected light, and direct transmitted light are incident on these detectors, and are photoelectrically converted.

【0013】次に図12によって信号処理回路の説明を
する。透過微分干渉像1、2はそれぞれノマルスキプリ
ズムによって所定距離だけ視野分割された2波面の干渉
像であって、干渉する際の2波面の位相差が異なる像で
ある。とくに位相差が180度を境にして1任意のαにつ
いて180度+α度、180度-α度の位相差の干渉像が入力
されるとき差動増幅器A1は透過振幅微分信号を出力す
る。反射微分干渉像1、2も全く同様の条件のときに、
差動増幅器A2は反射振幅微分信号を出力する。
Next, the signal processing circuit will be described with reference to FIG. The transmission differential interference interference images 1 and 2 are two wavefront interference images divided by the Nomarski prism by a predetermined distance, and the two wavefronts have different phase differences when they interfere with each other. In particular, the differential amplifier A1 outputs a transmission amplitude differential signal when an interference image with a phase difference of 180 ° + α ° and 180 ° −α ° for one arbitrary α with a phase difference of 180 ° as a boundary is input. When the reflected differential interference contrast images 1 and 2 have exactly the same conditions,
The differential amplifier A2 outputs a reflected amplitude differential signal.

【0014】透過明視野像1、2はそれぞれノマルスキ
プリズムによって所定距離だけ分離した、1つの波面に
よる明視野像であって、これらは差動増幅器A3によっ
て透過強度微分信号となる。反射明視野像1、2も差動
増幅器A4によって反射強度微分信号となる。以上、4
つの微分信号は無欠陥回路パターン除去回路1によっ
て、無欠陥の回路パターンの像が除去されて、主に低段
差異物の情報を有する。低段差異物信号となる。
The transmitted bright-field images 1 and 2 are bright-field images with one wavefront separated by a predetermined distance by a Nomarski prism, and these are a transmission intensity differential signal by a differential amplifier A3. The reflected bright-field images 1 and 2 are also reflected intensity differential signals by the differential amplifier A4. Above 4
The image of the defect-free circuit pattern of the two differential signals is removed by the defect-free circuit pattern removal circuit 1, and mainly has information of a low step foreign material. It becomes a low step foreign matter signal.

【0015】反射暗視野像と透過暗視野像はこれらを表
す電気信号として無欠陥回路パターン除去回路2に入力
され、これは主に塵埃性の異物の情報を有する塵埃異物
信号となる。低段差異物信号、塵埃異物信号は塵埃異
物、低段差異物分別回路内のウィンドウコンパレータに
よって2値化され、異物有りの検出信号に変換され、異
物有りのとき、低段差異物信号、塵埃異物信号の信号強
度と存在位置の情報を検査結果格納庫内の塵埃異物用検
査結果格納庫、低段差異物検査結果格納庫に収納する。
検査が終了した後で、これらのデータは読み出され、検
査結果表示装置内の塵埃異物検査結果表示装置、低段差
異物検査結果表示装置または総合結果表示装置のうちの
いずれか最適な場所に表示される。また、表示の仕方は
オペレータが選択できる様にすることは容易である。
The reflected dark-field image and the transmitted dark-field image are input to the defect-free circuit pattern removal circuit 2 as electric signals representing them, which mainly serve as a dust particle signal having information of dust particles. The low step foreign matter signal and the dust foreign matter signal are binarized by a window comparator in the dust foreign matter / low step foreign matter sorting circuit and converted into a detection signal with the foreign matter. When the foreign matter is present, the low step foreign matter signal and the dust foreign matter signal are detected. Information on the signal strength and the existing position is stored in the inspection result storage for dust and foreign matters and the low step foreign matter inspection result storage in the inspection result storage.
After the inspection is completed, these data are read and displayed in the inspection result display device, whichever is the most suitable one of the dust foreign material inspection result display device, the low step foreign material inspection result display device or the total result display device. To be done. Further, it is easy for the operator to select the display method.

【0016】次に塵埃検出に好適な光学系を説明する。
図4の様に暗視野検出系は、照明光の直接透過光、直接
反射光が入射しない位置に配置されている。図4のよう
に明視野透過振幅像は明視野反射振幅像の逆位相の像と
直流成分の加算結果と見做せるため、明視野透過振幅像
と明視野反射振幅像野交流成分を表す0次光以外の散乱
光成分(回折像)は相似形であり図2のように上下で対
称配置した暗視野光学系には、回路パターンの散乱光に
ついて上下で強度比が一定となる。したがって、これら
の強度比を監視するか、強度比が1となるように上下で
ゲイン調節をしてから、信号強度差を表す信号を作り、
これを監視することで、回路パターン以外から発生する
上下での信号強度比が回路パターンと異なる、つまり異
物に起因する散乱光の発生を検出できる。
Next, an optical system suitable for dust detection will be described.
As shown in FIG. 4, the dark field detection system is arranged at a position where the direct transmitted light and the direct reflected light of the illumination light do not enter. As shown in FIG. 4, since the bright-field transmission amplitude image can be regarded as the addition result of the DC component and the image in the opposite phase of the bright-field reflection amplitude image, the bright-field transmission amplitude image and the bright-field reflection amplitude image field AC component 0 Scattered light components (diffraction images) other than the next light have similar shapes, and in the dark field optical system symmetrically arranged in the vertical direction as shown in FIG. 2, the intensity ratio of the scattered light of the circuit pattern is constant in the vertical direction. Therefore, either monitor these intensity ratios or make gain adjustments up and down so that the intensity ratio becomes 1, and then create a signal representing the signal intensity difference,
By monitoring this, it is possible to detect the occurrence of scattered light caused by a foreign substance, in which the signal intensity ratios of the upper and lower sides generated from other than the circuit pattern are different from the circuit pattern.

【0017】本方式による異物の検出に関する計算結果
を図5に示す。これから透過像と反射像では異物と回路
パターンで著しく信号強度比が異なり、強度比を監視す
れば異物の検出が可能で、また電気系のゲイン調整によ
って、回路パターン信号の強度比を反射透過で1対1に
しておけばその差はゼロとなり(パターン差画像)、異
物のみが残留する、像(異物差画像)が得られる。図6
は透過反射干渉像による低段差異物検出の例を示す。
FIG. 5 shows the calculation result regarding the detection of foreign matter by this method. From this, the signal intensity ratio between the foreign object and the circuit pattern is significantly different between the transmitted image and the reflected image, and the foreign object can be detected by monitoring the intensity ratio, and the intensity ratio of the circuit pattern signal can be reflected and transmitted by adjusting the gain of the electrical system. If it is set to 1: 1, the difference becomes zero (pattern difference image), and an image in which only foreign matter remains (foreign matter difference image) is obtained. FIG.
Shows an example of low step foreign matter detection by a transmission / reflection interference image.

【0018】この図6はノマルスキプリズムによって
横ずれした透過光線による可干渉な2つの光学像で有
る。これらの波面の間でπの奇数倍の位相差が有ると
き、図6の干渉像となりエッジのみが明るくなった像
である。図6はノマルスキプリズムによって横ずれし
た反射光線による可干渉な2つの光学像で有る。これら
の波面の間でπの奇数倍の位相差が有るとき、図6と
相似な、図6の干渉像となりエッジのみが明るくなっ
た像である。これらの干渉像の強度の値は一般に異な
る。これは透過像はマスク基板の透過率、反射像は回路
パターンの透過率に依存するためである。これらの像は
相対強度を1:1に調整してから差を示す誤差信号を作
れば、いずれの回路デザインにおいても誤差信号は異物
などの欠陥が無い限りゼロとなる。これは反射干渉像と
透過干渉像が相似であるため強度の比は常に一定値であ
るからである。誤差信号の変化を監視すれば異物の発
見、位相シフターの位相量の異常を発見できる。また反
射干渉像と透過干渉像の強度比の変化を直接監視しても
よいことは言うまでもない。図7は明視野像、干渉像に
よる低段差異物検出の例を示す。
FIG. 6 shows two coherent optical images due to transmitted rays laterally displaced by the Nomarski prism. When there is a phase difference of an odd multiple of π between these wavefronts, the interference image shown in FIG. 6 is obtained and only the edges are brightened. FIG. 6 shows two coherent optical images due to reflected rays laterally displaced by the Nomarski prism. When there is a phase difference of an odd multiple of π between these wavefronts, the interference image of FIG. 6 becomes similar to that of FIG. 6, and only the edges are brightened. The intensity values of these interference images are generally different. This is because the transmission image depends on the transmittance of the mask substrate and the reflection image depends on the transmittance of the circuit pattern. If the relative intensity of these images is adjusted to 1: 1 and then an error signal indicating a difference is created, the error signal becomes zero in any circuit design unless there is a defect such as a foreign substance. This is because the reflection interference image and the transmission interference image are similar and the intensity ratio is always a constant value. By monitoring the change in the error signal, it is possible to detect a foreign substance and an abnormality in the phase amount of the phase shifter. It goes without saying that the change in the intensity ratio between the reflection interference image and the transmission interference image may be directly monitored. FIG. 7 shows an example of low step foreign matter detection based on a bright field image and an interference image.

【0019】図7はノマルスキプリズムによって横ず
れした2つの明視野反射像(強度像)でこれらは別々に
光電変換される。これらの強度像の強度の差は図7に
示される。エッジの立ち上がり立ち下がりで極性が反転
する反射強度微分像となる。図7はノマルスキプリズ
ムによって横ずれし、なおかつ二つの波面の位相差がπ
/2の奇数倍のときの干渉像である。
FIG. 7 shows two bright-field reflection images (intensity images) laterally displaced by the Nomarski prism, which are photoelectrically converted separately. The difference in intensity of these intensity images is shown in FIG. The reflected intensity differential image has the polarity reversed at the rising and falling edges. Fig. 7 shows lateral shift due to the Nomarski prism, and the phase difference between the two wavefronts is π.
It is an interference image at an odd multiple of / 2.

【0020】図7はノマルスキプリズムによって横ず
れし、なおかつ二つの波面の位相差がの場合に対しπ
の奇数倍だけ異なっている場合の干渉像である。と
の干渉像は別々に光電変換され、これらの強度の差の反
射振幅微分像が求められる。これはのような像であっ
て、図7とほとんど相似の像となる。これらの微分像
の強度の値は一般に異なる。これは反射強度微分像はマ
スク基板の反射率、振幅微分像は回路パターンの反射率
やパターンの厚さに依存するためである。これらの像は
相対強度を1:1に調整してから差を示す誤差信号を作
れば、いずれの回路デザインにおいても誤差信号は異物
などの欠陥が無い限りほとんどゼロとなる。(厳密には
2次微分成分が残留する。)これは反射干渉像と透過干
渉像がほぼ相似であるため強度の比は常にほぼ一定値で
あるからである。誤差信号の変化を監視すれば異物の発
見、位相シフターの位相量の異常を発見できる。また反
射干渉像と透過干渉像の強度比の変化を直接監視しても
よいことは言うまでもない。
FIG. 7 shows π for the case where the light is laterally displaced by the Nomarski prism and the phase difference between the two wavefronts is
It is an interference image when the difference is an odd multiple of. The interference images with and are separately photoelectrically converted, and the differential image of the reflection amplitude of the difference in these intensities is obtained. This is an image like that, and is an image almost similar to that in FIG. 7. The intensity values of these differential images are generally different. This is because the differential reflection intensity image depends on the reflectance of the mask substrate, and the amplitude differential image depends on the reflectance of the circuit pattern and the pattern thickness. By adjusting the relative intensity of these images to 1: 1 and then generating an error signal indicating the difference, the error signal becomes almost zero in any circuit design unless there is a defect such as a foreign substance. (Strictly speaking, the second-order differential component remains.) This is because the reflection interference image and the transmission interference image are substantially similar to each other, so that the intensity ratio is always a substantially constant value. By monitoring the change in the error signal, it is possible to detect a foreign substance and an abnormality in the phase amount of the phase shifter. It goes without saying that the change in the intensity ratio between the reflection interference image and the transmission interference image may be directly monitored.

【0021】図8で示すようなブラシカス(洗浄過程の
ナイロンブラッシのカスであって、レチクル上に発見さ
れる典型的な低段差の半透明な異物である。)の付着し
たレチクル(低反射率クロム膜による回路パターン、最
小線幅=2μm)の反射明視野像である。これを試料と
し同一位置にて本発明の検査装置によって検査結果表示
部に表示される誤差信号つまりパターンの像が除去され
た異物像を図9、10、11に示す。図9は図3、4、
5によって説明した塵埃異物検出方式による異物像であ
る。図10は、図7によって説明した低段差異物検出方
式による異物像である。
A reticle (low reflectivity) with brush residue (a nylon brush residue in the cleaning process, which is a typical low step translucent foreign material found on a reticle) as shown in FIG. It is a reflected brightfield image of a circuit pattern made of a chrome film and having a minimum line width of 2 μm. FIGS. 9, 10 and 11 show foreign object images in which the error signal, that is, the image of the pattern, which is displayed on the inspection result display section by the inspection apparatus of the present invention as the sample, is removed at the same position. FIG. 9 shows FIGS.
5 is a foreign matter image by the dust foreign matter detection method described in 5. FIG. 10 is an image of a foreign substance by the low step foreign substance detection method described with reference to FIG.

【0022】図11は、図6によって説明した低段差異
物検出方式による異物像である。これらの異物像を信号
強度で2値化してパターンの影響を受けずに異物を検出
可能なことは容易に想像されよう。その様な場合、特定
の検査方式によってのみ検出可能な異物が多く存在する
ことも想像される。
FIG. 11 shows a foreign substance image obtained by the low step foreign substance detecting method described with reference to FIG. It can be easily imagined that these foreign substance images can be binarized by the signal intensity and the foreign substances can be detected without being affected by the pattern. In such a case, it can be imagined that there are many foreign substances that can be detected only by a specific inspection method.

【0023】本発明ではこれらの異なる異物像を検査結
果表示部に表示できる。またこれらの検査結果により異
物が突起状の部分を有する塵埃性のものか、あるいは平
坦な形状の低段差異物かの自動的な分類が可能である。
またこれらの検出結果を総合することで、単独で検査す
るよりも多くの異物を検出可能である。また特定のレチ
クルたとえばレベンソンタイプの位相シフター附きのレ
チクルではこの検査に適した透過の振幅微分像を用いる
検査方式の誤差信号のゲインを選択的に増加させ、パタ
ーンがシフター部分で完全には消去されない検査方式の
誤差信号のゲインを減少させることも容易であり、いず
れのレチクル品種に対しても最高の感度で異物の検出を
行うことが可能である。
In the present invention, these different foreign matter images can be displayed on the inspection result display section. Further, it is possible to automatically classify the foreign matter as a dusty one having a projecting portion or a flat low-step foreign matter based on these inspection results.
Further, by summing up these detection results, it is possible to detect a larger amount of foreign matter than in the case of inspecting alone. Further, in a specific reticle, for example, a reticle with a phase shifter of the Levenson type, the gain of the error signal of the inspection method using the amplitude differential image of the transmission suitable for this inspection is selectively increased, and the pattern is not completely erased in the shifter portion. It is also easy to reduce the gain of the error signal of the inspection method, and it is possible to detect foreign matter with the highest sensitivity for any reticle type.

【0024】[0024]

【発明の効果】このように本発明によれば、クロム遮光
膜による回路パターンのコンベンショナルなレチクル、
光透過性の薄膜による位相シフターのみで回路パターン
が描画されたハーフトーンレチクルに対応可能な、位相
シフター部分の位相シフト量の異常や、光透過性の位相
物体の異物の付着の有無を同時に検査の行える検査装置
を提供可能である。
As described above, according to the present invention, a conventional reticle having a circuit pattern using a chrome light-shielding film,
Simultaneously inspecting for halftone reticles with a circuit pattern drawn only by the phase shifter made of a light-transmissive thin film, for abnormal phase shift in the phase shifter and for the presence of foreign matter on the light-transmissive phase object. It is possible to provide an inspection device capable of performing the above.

【0025】本発明では複数の異なる検査方式によって
同時に異物検出を行うため、異物の検出漏れを防止でき
る。また塵埃異物検出に適した検査方式と、低段差異物
検出煮て気した検査方式によって同時に検査が行えるた
め、検出された異物が塵埃性のものか低段差異物かの分
類が自動で行える。本発明ではこれらの異なる検査方式
による異物像を検査結果表示部に別々にあるいは重ねて
表示でき、良好に異物の観察が行える。。
According to the present invention, since foreign substances are detected simultaneously by a plurality of different inspection methods, it is possible to prevent the detection omission of foreign substances. Further, since the inspection can be performed at the same time by the inspection method suitable for detecting dust foreign matter and the inspection method for detecting low step foreign matter, the detected foreign matter can be automatically classified as dusty or low step foreign matter. In the present invention, the foreign matter images obtained by these different inspection methods can be displayed separately or in an overlapping manner on the inspection result display portion, and the foreign matter can be satisfactorily observed. .

【0026】また特定のレチクルたとえばレベンソンタ
イプの位相シフター附きのレチクルではこの検査に適し
た透過の振幅微分像を用いる検査方式の誤差信号のゲイ
ンを選択的に増加させ、パターンがシフター部分で完全
には消去されない検査方式の誤差信号のゲインを減少さ
せることも容易であり、いずれのレチクル品種に対して
も最高の感度で異物の検出を行うことが可能である。
Further, in a specific reticle, for example, a reticle with a phase shifter of the Levenson type, the gain of the error signal of the inspection system using the amplitude differential image of the transmission suitable for this inspection is selectively increased so that the pattern is completely in the shifter portion. It is easy to reduce the gain of the error signal of the inspection method that is not erased, and it is possible to detect foreign matter with the highest sensitivity for any reticle type.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の検査装置の特徴FIG. 1 is a feature of the inspection apparatus of the present invention

【図2】は本発明の実施の一形態の光学系の構成図FIG. 2 is a configuration diagram of an optical system according to an embodiment of the present invention.

【図3】は本発明の実施の一形態の塵埃検出光学系の構
成図
FIG. 3 is a configuration diagram of a dust detection optical system according to an embodiment of the present invention.

【図4】は本発明の実施の形態における塵埃検出の原理
の説明図
FIG. 4 is an explanatory diagram of the principle of dust detection in the embodiment of the present invention.

【図5】は本発明の実施の形態における塵埃検出のシュ
ミレーション結果の説明図
FIG. 5 is an explanatory diagram of a simulation result of dust detection according to the embodiment of the present invention.

【図6】は本発明の実施の形態における透過、反射干渉
像による低段差異物検出の原理説明図
FIG. 6 is an explanatory view of the principle of detecting a foreign matter with a low step by a transmission / reflection interference image in the embodiment of the present invention.

【図7】は本発明の実施の形態における強度微分像、振
幅微分像による低段差異物検出の原理説明図
FIG. 7 is an explanatory diagram of the principle of low step foreign matter detection by an intensity differential image and an amplitude differential image in the embodiment of the present invention.

【図8】はブラシカス付きレチクルの明視野像FIG. 8 is a bright-field image of a reticle with brush residue.

【図9】は本発明の塵埃検出方式によるブラシカス検出
結果
FIG. 9 is a brush residue detection result by the dust detection method of the present invention.

【図10】は本発明の実施の形態における強度微分像、
振幅微分像による低段差異物検出方式によるブラシカス
検出結果
FIG. 10 is an intensity differential image in the embodiment of the present invention,
Brush dust detection result by low step foreign matter detection method by differential amplitude image

【図11】は本発明の実施の形態における透過、反射干
渉像による低段差異物検出方式によるブラシカス検出結
FIG. 11 is a result of brush dregs detection by a low step foreign matter detection method based on transmission / reflection interference images in the embodiment of the present invention.

【図12】は、本発明の実施の形態における信号処理系
の概念構成図である
FIG. 12 is a conceptual configuration diagram of a signal processing system in the embodiment of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板の欠陥を検査する欠陥検査装置であっ
て、 透過振幅微分像、透過強度微分像、反射強度微分像の内
少なくとも1つの像を画像化し得る第1の顕微鏡手段
と、 前記透過振幅微分像、前記透過強度微分像、前記反射強
度微分像を表す独立に光電変換された透過振幅微分信
号、透過強度微分信号、反射強度微分信号を生成する、
第1の信号化手段光電変換手段と、 前記透過振幅微分信号、前記透過強度微分信号、前記反
射強度微分信号の相対的な強度比を調整し得る信号強度
調整手段を有し、 前記強度調整手段によって相対的な強度を調整した後
に、これらの信号強度に基ずいて誤差信号を算出し、該
誤差信号に基ずいて主に低段差の異物を検出し、 さらに、前記透過暗視野像、前記反射暗視野像の少なく
とも一方を画像化し得る第2の顕微鏡手段と、 前記透過暗視野像、前記反射暗視野像を表す透過暗視野
信号、反射暗視野信号を生成する、第2の信号化手段を
有し、 前記透過暗視野信号、反射暗視野信号の少なくとも一方
を用いて主に塵埃異物を検出し、 低段差の異物と塵埃異物の両方を検出可能としたことを
特徴とする検査装置
1. A defect inspecting apparatus for inspecting a defect of a substrate, comprising first microscope means capable of imaging at least one of a transmission amplitude differential image, a transmission intensity differential image and a reflection intensity differential image, A transmission amplitude differential image, the transmission intensity differential image, an independently photoelectrically converted transmission amplitude differential signal representing the reflection intensity differential image, a transmission intensity differential signal, and a reflection intensity differential signal are generated.
A first signal converting unit, a photoelectric converting unit, and a signal strength adjusting unit capable of adjusting a relative intensity ratio of the transmission amplitude differential signal, the transmission intensity differential signal, and the reflection intensity differential signal, the intensity adjusting unit After adjusting the relative intensity by, the error signal is calculated based on these signal intensities, and the foreign matter with a low step is mainly detected based on the error signal. Second microscope means capable of imaging at least one of the reflected dark field images, and second signal conversion means for generating the transmitted dark field image, the transmitted dark field signal representing the reflected dark field image, and the reflected dark field signal. An inspection apparatus characterized in that it mainly detects a dust foreign matter by using at least one of the transmitted darkfield signal and the reflected darkfield signal, and can detect both a foreign matter with a low step and a dust foreign matter.
【請求項2】 基板の欠陥を検査する欠陥検査装置であ
って、 反射振幅微分像、反射強度微分像、透過強度微分像の内
少なくとも1つの像を画像化し得る第1の顕微鏡手段
と、 前記反射振幅微分像、反射強度微分像、透過強度微分像
を表す独立に光電変換された、反射振幅微分信号、反射
強度微分信号、透過強度微分信号を生成する第1の信号
化手段光電変換手段と、 前記反射振幅微分信号、前記反射強度微分信号、前記透
過強度微分信号の相対的な強度比を調整し得る信号強度
調整手段を有し、 前記強度調整手段によって相対的な強度を調整した後
に、これらの信号強度に基ずいて誤差信号を算出し、該
誤差信号に基ずいて主に低段差の異物を検出するし、低
段差異物検出手段と、 さらに、透過暗視野像、反射暗視野像の少なくとも一方
を画像化し得る第2の顕微鏡手段と、 前記透過暗視野像、前記反射暗視野像を表す透過暗視野
信号、反射暗視野信号を生成する、第2の信号化手段を
有し、 前記透過暗視野信号、反射暗視野信号の少なくとも一方
を用いて主に塵埃異物を検出し、 低段差の異物と塵埃異物の両方を検出可能としたことを
特徴とする検査装置
2. A defect inspecting apparatus for inspecting a defect of a substrate, comprising: first microscope means capable of imaging at least one of a reflection amplitude differential image, a reflection intensity differential image and a transmission intensity differential image; A first signal conversion unit photoelectric conversion unit that generates a reflection amplitude differential signal, a reflection intensity differential signal, and a transmission intensity differential signal that have been independently photoelectrically converted to represent a reflection amplitude differential image, a reflection intensity differential image, and a transmission intensity differential image; , The reflection amplitude differential signal, the reflection intensity differential signal, having a signal intensity adjusting means capable of adjusting the relative intensity ratio of the transmission intensity differential signal, after adjusting the relative intensity by the intensity adjusting means, An error signal is calculated based on these signal intensities, and a foreign substance with a low step is mainly detected based on the error signal. At least one of A second microscope means capable of imaging, and a second signalization means for generating the transmitted dark field image, the transmitted dark field signal representing the reflected dark field image, and the reflected dark field signal, wherein the transmitted dark field An inspection apparatus characterized by mainly detecting dust foreign matter by using at least one of a signal and a reflected dark field signal, and capable of detecting both low-step foreign matter and dust foreign matter.
【請求項3】 基板の欠陥を検査する欠陥検査装置であ
って、 反射振幅微分像、反射強度微分像、透過振幅微分像、透
過強度微分像の内少なくとも1つの像を画像化し得る第
1の顕微鏡手段と、 反射振幅微分像、反射強度微分像、透過振幅微分像、透
過強度微分像を表す独立に光電変換された反射振幅微分
信号、反射強度微分信号、透過振幅微分信号、透過強度
微分信号を生成する第1の信号化手段光電変換手段と、 前記反射振幅微分信号、前記反射強度微分信号、前記透
過振幅微分信号、前記透過強度微分信号の相対的な強度
比を調整し得る信号強度調整手段を有し、 前記強度調整手段によって相対的な強度を調整した後
に、これらの信号強度に基ずいて誤差信号を算出し、該
誤差信号に基ずいて主に低段差の異物を検出する低段差
異物検出手段と、 さらに、透過暗視野像、反射暗視野像の少なくとも一方
を画像化し得る第2の顕微鏡手段と、 前記透過暗視野像、前記反射暗視野像を表す透過暗視野
信号、反射暗視野信号を生成する、第2の信号化手段を
有し、 前記透過暗視野信号、前記反射暗視野信号の少なくとも
一方を用いて主に塵埃異物を検出し、 低段差の異物と塵埃異物の両方を検出可能としたことを
特徴とする検査装置
3. A defect inspection apparatus for inspecting a defect of a substrate, which is capable of imaging at least one of a reflection amplitude differential image, a reflection intensity differential image, a transmission amplitude differential image, and a transmission intensity differential image. Independently photoelectrically converted reflection amplitude differential signal, reflection intensity differential signal, transmission intensity differential signal, transmission intensity differential signal that represents the microscope means and reflection amplitude differential image, reflection intensity differential image, transmission amplitude differential image, transmission intensity differential image And a signal intensity adjustment capable of adjusting a relative intensity ratio of the reflection amplitude differential signal, the reflection intensity differential signal, the transmission amplitude differential signal, and the transmission intensity differential signal. Means for adjusting relative intensity by the intensity adjusting means, calculating an error signal based on these signal intensities, and detecting a foreign matter mainly having a low step based on the error signal. Foreign material Output means, further second microscope means capable of imaging at least one of the transmission dark field image and the reflection dark field image, the transmission dark field image, the transmission dark field signal representing the reflection dark field image, and the reflection dark field A second signal converting means for generating a signal is provided, and dust foreign matter is mainly detected by using at least one of the transmitted dark field signal and the reflected dark field signal, and both the low step foreign matter and the dust foreign matter are detected. Inspection device characterized by being detectable
【請求項4】 異物検査によって、検出された異物を観
察するために画像化する際に、異物検査次と同じ光学系
を用い、パターン像が除去され、異物のみを観察可能
な、誤差信号に比例した輝度信号の画像を表示可能であ
る、表示装置を有することを特徴とする、請求項1、2
または3記載の検査装置
4. When an image is formed by observing a detected foreign substance by the foreign substance inspection, the same optical system as that used for the foreign substance inspection is used to remove the pattern image and to generate an error signal that allows only the foreign substance to be observed. 3. A display device capable of displaying an image of a proportional luminance signal.
Or the inspection device described in 3.
【請求項5】 検査対象によって複数の検査方式の使用
状態が自動で変化することを特徴とする請求項1、2ま
たは3記載の検査装置。
5. The inspection device according to claim 1, 2 or 3, wherein the use states of a plurality of inspection methods are automatically changed depending on the inspection target.
JP8095747A 1996-04-17 1996-04-17 Inspection apparatus Pending JPH09281051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8095747A JPH09281051A (en) 1996-04-17 1996-04-17 Inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8095747A JPH09281051A (en) 1996-04-17 1996-04-17 Inspection apparatus

Publications (1)

Publication Number Publication Date
JPH09281051A true JPH09281051A (en) 1997-10-31

Family

ID=14146095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8095747A Pending JPH09281051A (en) 1996-04-17 1996-04-17 Inspection apparatus

Country Status (1)

Country Link
JP (1) JPH09281051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027611A (en) * 1999-07-13 2001-01-30 Lasertec Corp Flow inspecting apparatus
JP2008002843A (en) * 2006-06-20 2008-01-10 Nec Corp Flaw detection method of pattern shape and flaw detector of pattern shape
JP2011523711A (en) * 2008-06-03 2011-08-18 ファン ジェイ. ジーオン, Interference defect detection and classification
JP2012068201A (en) * 2010-09-27 2012-04-05 Lasertec Corp Defect inspection method and inspection device
WO2021199340A1 (en) * 2020-03-31 2021-10-07 株式会社日立ハイテク Defect inspection device and defect inspection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027611A (en) * 1999-07-13 2001-01-30 Lasertec Corp Flow inspecting apparatus
JP2008002843A (en) * 2006-06-20 2008-01-10 Nec Corp Flaw detection method of pattern shape and flaw detector of pattern shape
JP2011523711A (en) * 2008-06-03 2011-08-18 ファン ジェイ. ジーオン, Interference defect detection and classification
JP2012068201A (en) * 2010-09-27 2012-04-05 Lasertec Corp Defect inspection method and inspection device
WO2021199340A1 (en) * 2020-03-31 2021-10-07 株式会社日立ハイテク Defect inspection device and defect inspection method
US12196673B2 (en) 2020-03-31 2025-01-14 Hitachi High-Tech Corporation Defect inspection apparatus and defect inspection method

Similar Documents

Publication Publication Date Title
US7295301B2 (en) Dual stage defect region identification and defect detection method and apparatus
US7511806B2 (en) Apparatus and method for inspecting defects
JP3314440B2 (en) Defect inspection apparatus and method
JP4500641B2 (en) Defect inspection method and apparatus
US8416292B2 (en) Defect inspection apparatus and method
KR920007196B1 (en) Method and apparatus for detecting foreign matter
KR970000780B1 (en) Foreign particle inspection apparatus
JP2004177284A (en) Defect inspecting apparatus and defect inspection method
KR102295295B1 (en) Defect inspection method, defect inspection system, selection method, and manufacturing method of photomask blank
US8228497B2 (en) Method and system for evaluating an object that has a repetitive pattern
JP2004093252A (en) Defect inspection apparatus and defect inspection method
KR20010021381A (en) Defect inspection method and device thereof
JPH10221267A (en) Micro-defect inspection method and apparatus, exposure method and semiconductor substrate manufacturing method
JPH06294749A (en) Flaw inspection method for plat glass
JPH05100413A (en) Foreign matter detecting device
JP2947513B1 (en) Pattern inspection equipment
JPH09281051A (en) Inspection apparatus
JPH0518889A (en) Method and device for inspecting foreign matter
JP2009109263A (en) Apparatus and method for inspection
JPH10282007A (en) Method and apparatus for inspecting defects such as foreign matter
JP3362033B2 (en) Foreign matter inspection device
JP3280401B2 (en) Defect inspection device and defect inspection method
JP2022047966A (en) Photomask blank, method for producing photomask blank, learning method and method for inspecting photomask blank
US7457454B1 (en) Detailed grey scale inspection method and apparatus
JP3241403B2 (en) Foreign matter inspection apparatus and method