JPH09271903A - Mold for continuously casing steel - Google Patents
Mold for continuously casing steelInfo
- Publication number
- JPH09271903A JPH09271903A JP10610996A JP10610996A JPH09271903A JP H09271903 A JPH09271903 A JP H09271903A JP 10610996 A JP10610996 A JP 10610996A JP 10610996 A JP10610996 A JP 10610996A JP H09271903 A JPH09271903 A JP H09271903A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- continuous casting
- steel
- pressure gas
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 46
- 239000010959 steel Substances 0.000 title claims abstract description 44
- 238000009749 continuous casting Methods 0.000 claims abstract description 36
- 239000011148 porous material Substances 0.000 claims abstract description 21
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000007711 solidification Methods 0.000 abstract description 21
- 230000008023 solidification Effects 0.000 abstract description 21
- 230000001603 reducing effect Effects 0.000 abstract description 6
- 239000000112 cooling gas Substances 0.000 abstract description 3
- 238000005728 strengthening Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000005499 meniscus Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
(57)【要約】
【課題】 鋳型と凝固シェル間の摩擦力を低減させると
共に、凝固シェル表面の冷却を強化することにより、均
一で十分な厚みのある凝固シェルを形成することによ
り、健全な表面性状の鋳片が製造可能な連続鋳造用鋳型
を提供する。
【解決手段】 鋳型の溶鋼と接する側を鋳型上部と鋳型
下部で構成される異なる構造とし、鋳型下部の長辺面と
短辺面に開孔する細孔を介して、凝固シェルの表面に向
けて冷却用ガスを高圧で噴射させる。
(57) Abstract: By reducing the frictional force between a mold and a solidification shell and strengthening the cooling of the surface of the solidification shell, a solidification shell having a uniform and sufficient thickness is formed, thereby ensuring soundness. Provided is a continuous casting mold capable of producing a slab having a surface texture. SOLUTION: The side of the mold in contact with molten steel has a different structure composed of an upper part and a lower part of the mold, and is directed toward the surface of the solidification shell through pores formed in the long side surface and the short side surface of the lower part of the mold. The cooling gas at high pressure.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼の連続鋳造用鋳
型に関する。TECHNICAL FIELD The present invention relates to a mold for continuous casting of steel.
【0002】[0002]
【従来の技術】鋼の連続鋳造ではタンディッシュと呼ば
れる中間容器から、水冷された鋳型の中に溶鋼が注入さ
れる。鋳型内での溶鋼の再酸化防止の目的で、連鋳用パ
ウダーが鋳型内の溶鋼面に添加される。このパウダーは
鋳型内の溶鋼面で溶融し、一部が鋳型と凝固シェルとの
間に流入することにより、鋳型のオシレーションおよび
鋳片の引き抜きの際の摩擦力低減に寄与している。さら
に、鋳型と凝固シェルの間隙に流入した連鋳パウダーは
凝固シェル表面から鋳型側への伝熱を制御している。
生産性を向上させるために鋳片の引き抜き速度を上げて
鋳造速度を上昇させると、鋳型内での凝固シェル厚が不
足することにより、ブレークアウト等の操業上のトラブ
ルや鋳片の表面割れ等の品質上のトラブルを引き起こし
ていた。2. Description of the Related Art In continuous casting of steel, molten steel is poured into a water-cooled mold from an intermediate container called a tundish. Continuous casting powder is added to the molten steel surface in the mold for the purpose of preventing reoxidation of the molten steel in the mold. This powder is melted on the molten steel surface in the mold, and a part of the powder flows between the mold and the solidified shell, thereby contributing to the reduction of the frictional force during the oscillation of the mold and the withdrawal of the slab. Furthermore, the continuous casting powder flowing into the gap between the mold and the solidified shell controls the heat transfer from the surface of the solidified shell to the mold side.
When the withdrawal speed of the slab is increased to increase productivity and the casting speed is increased, the thickness of the solidified shell in the mold becomes insufficient, causing operational problems such as breakout and surface cracking of the slab. Was causing quality problems.
【0003】これに対して、特開平2−211948号
公報では鋳型の長さ方向中部のメニスカス以下の部位
で、1000℃以下の液体を鋳型表面から圧入させるこ
とにより、潤滑を向上させると共に熱伝達を向上させる
技術が開示されている。On the other hand, in Japanese Patent Laid-Open No. 2-111948, by injecting a liquid of 1000 ° C. or less from the surface of the mold at a position below the meniscus in the middle of the length of the mold, lubrication is improved and heat transfer is performed. A technique for improving the above is disclosed.
【0004】また、特公平7−83918号公報では、
鋳片を取り囲むように二次冷却用の装置を配設し、冷却
用流体を、鋳片表面を下方へ押し出すように排出させる
技術が開示されている。Further, in Japanese Patent Publication No. 7-83918,
A technique is disclosed in which a device for secondary cooling is arranged so as to surround the slab and the cooling fluid is discharged so as to push the slab surface downward.
【0005】一方、特開昭56−19957号公報で
は、不活性ガスを鋳型表面の微細孔から噴出させ、メニ
スカス部から凝固終了点までの潤滑並びに冷却を兼用さ
せる技術が開示されている。On the other hand, Japanese Patent Application Laid-Open No. 56-19957 discloses a technique in which an inert gas is jetted from fine holes on the surface of a mold to perform both lubrication and cooling from the meniscus portion to the solidification end point.
【0006】[0006]
【発明が解決しようする課題】しかしながら、特開平2
−211948号公報の方法では、鋳型の深さ方向の中
央部で1000℃以下の流体を鋳型に設けた細管から圧
入するために、鋳型内冷却水配管との関係で鋳型内の温
度管理が困難であり、鋳型構造が複雑となる問題点を有
している。[Patent Document 1] Japanese Unexamined Patent Application Publication No.
In the method of Japanese Patent No. 211,948, since a fluid of 1000 ° C. or less is press-fitted from a thin tube provided in the mold at the center in the depth direction of the mold, it is difficult to control the temperature in the mold in relation to the cooling water pipe in the mold. Therefore, there is a problem that the template structure becomes complicated.
【0007】また、特公平7−83918号公報の方法
では、該公報には明示されてはいなが、冷却水を使うこ
とを前提として技術が構築されており、安全性の観点か
ら初期の冷却を強化したい鋳型内への適用は極めて困難
であり、また、冷却用装置は流体を下方へ流すために下
広としており、装置製作上の困難性を有している。Further, in the method of Japanese Patent Publication No. 7-83918, although not explicitly stated in the publication, the technique is constructed on the assumption that cooling water is used, and from the viewpoint of safety, the initial cooling is performed. It is extremely difficult to apply it to the mold where it is desired to strengthen, and the cooling device has a wide space to allow the fluid to flow downward, which makes it difficult to manufacture the device.
【0008】特開昭56−19957号公報の方法は、
鋳造初期の溶融金属を不活性ガスのガス膜で保持するこ
とが事実上不可能であることと、凝固終了時点までをガ
ス膜で保持するためのガス噴出装置の精度が異常に高く
要求され、装置製作が困難であることから実用化には至
っていない。The method disclosed in Japanese Patent Laid-Open No. 56-19957 is as follows.
It is virtually impossible to hold the molten metal in the early stage of casting with a gas film of an inert gas, and the precision of the gas ejection device for holding the gas film until the end of solidification is required to be abnormally high. Since it is difficult to manufacture the device, it has not been put to practical use.
【0009】本発明は以上述べた問題点を鑑みなされた
もので、鋳片(凝固シェル)と鋳型間の摩擦を低減させ
ながら、十分な冷却能を与える鋳型構造に関する。すな
わち、本発明の目的は、鋳型を上部鋳型と下部鋳型で構
成される異なる構造とし、下部鋳型の長辺面に開孔する
細孔を通し凝固シェルの表面に向けて冷却用ガスを高圧
で噴射させることにより摩擦力を低減すると共に、鋳片
表面からの抜熱を強化することにより、凝固シェルの厚
い、健全な表面状態の鋳片を製造可能な、鋼の連続鋳造
用鋳型を提供することである。The present invention has been made in view of the above-mentioned problems, and relates to a mold structure that provides sufficient cooling capacity while reducing friction between a cast piece (solidified shell) and the mold. That is, the object of the present invention is that the mold has a different structure composed of an upper mold and a lower mold, the cooling gas at a high pressure toward the surface of the solidification shell through the pores opened in the long side surface of the lower mold. Provide a mold for continuous casting of steel capable of producing a slab with a thick solidified shell and a sound surface condition by reducing frictional force by injection and strengthening heat removal from the slab surface That is.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
の、本発明の鋳型は以下の通りである。The mold of the present invention for solving the above-mentioned problems is as follows.
【0011】(1)鋼の連続鋳造に用いる鋳型1であっ
て、当該鋳型1の溶鋼と接する側は鋳型上部2と鋳型下
部3で異なる構造とし、鋳型下部3の長辺面ならびに短
辺面に開孔する細孔9を介して、凝固シェル8の表面に
向けて高圧ガスを噴射できることを特徴とする、鋼の連
続鋳造用鋳型である。(1) A mold 1 used for continuous casting of steel, in which the side of the mold 1 in contact with molten steel is different between the upper mold part 2 and the lower mold part 3, and the long side surface and the short side surface of the lower mold part 3 It is a mold for continuous casting of steel, characterized in that high-pressure gas can be injected toward the surface of the solidified shell 8 through the pores 9 that are opened in the.
【0012】(2)上記(1)に記載の鋼の連続鋳造用
鋳型において、鋳型全体の長さをLとした時に、下端よ
り0.2L以上で0.7L以下の範囲を鋳型下部3とし
たことを特徴とする、鋼の連続鋳造用鋳型である。(2) In the steel continuous casting mold described in (1) above, when the length of the entire mold is L, a range of 0.2 L or more and 0.7 L or less from the lower end is defined as the mold lower part 3. It is a mold for continuous casting of steel, characterized in that
【0013】(3)上記(1)または(2)に記載の鋼
の連続鋳造用鋳型において、鋳型下部に設けた高圧ガス
噴射用の細孔9の直径を1.0mm以下としたことを特
徴とする、鋼の連続鋳造用鋳型である。(3) In the steel continuous casting mold according to (1) or (2) above, the diameter of the high-pressure gas injection pores 9 provided in the lower part of the mold is 1.0 mm or less. Is a mold for continuous casting of steel.
【0014】(4)上記(1)〜(3)の内のいずれか
1つに記載の鋼の連続鋳造用鋳型において、高圧ガス噴
射用の細孔9の分布密度を1平方センチメートル当たり
0.2〜10個としたことを特徴とする、鋼の連続鋳造
用鋳型である。(4) In the mold for continuous casting of steel according to any one of the above (1) to (3), the distribution density of the high-pressure gas injection pores 9 is 0.2 per square centimeter. It is a mold for continuous casting of steel, characterized in that the number is 10 or less.
【0015】(5)上記(1)〜(4)の内のいずれか
1つに記載の鋼の連続鋳造に用いる鋳型において、当該
鋳型1の溶鋼と接する側の鋳型下部3には、高圧ガス用
ヘッダー20、高圧ガス噴射用の細孔9を施し、かつ、
中間の銅板15には水冷用のスリット16があり、従来
通りの鋳型冷却ができることを特徴とする、鋼の連続鋳
造用鋳型である。(5) In the mold used for continuous casting of steel according to any one of (1) to (4) above, a high pressure gas is provided in the lower part 3 of the mold 1 on the side in contact with the molten steel. Header 20, a high-pressure gas injection fine hole 9 are provided, and
The copper plate 15 in the middle has a slit 16 for water cooling, and the mold can be cooled as usual, which is a mold for continuous casting of steel.
【0016】[0016]
【発明の実施の形態】本発明の鋼の連続鋳造用鋳型につ
いて第1図に基づいて詳述すると以下のようになる。す
なわち、鋳型1の溶鋼と接する側は鋳型上部2と鋳型下
部3で構成される異なる構造とし、鋳型上部2は通常の
連続鋳造で使用されるのと同じ構造の鋳型とする。連鋳
用パウダー6を使用し、溶融した液状のパウダーが鋳型
1と凝固シェル8との間隙に流入して凝固シェル8(鋳
片12)が鋳型から引き抜かれる時の摩擦を減少させる
ことにより連続鋳造を可能としたものである。鋳型下部
3の長辺面並びに短辺面には直径が1.0mm以下の細
孔9を分布させ、この細孔9を通して凝固シェル8の表
面に向けて高圧ガスを噴射させることにより凝固シェル
8を支持すると共に、シェル表面の冷却を強化すること
が可能である。ここで、鋳型上部2と鋳型下部3との間
には不可避的に上方へ噴出した流体の逃げ場として隙間
10を設けてもよい。また、鋳型下部3の溶鋼と接する
側のは、図3の(b)に示すように、高圧ガス用ヘッダ
ー20を設けることが、細孔9からの噴出を均一化する
ために必要である。BEST MODE FOR CARRYING OUT THE INVENTION The mold for continuous casting of steel according to the present invention will be described in detail with reference to FIG. That is, the side of the mold 1 in contact with the molten steel has a different structure composed of a mold upper part 2 and a mold lower part 3, and the mold upper part 2 has the same structure as that used in normal continuous casting. The continuous casting powder 6 is used, and the molten liquid powder flows into the gap between the mold 1 and the solidification shell 8 to reduce the friction when the solidification shell 8 (cast slab 12) is pulled out of the mold. It enabled casting. Pores 9 having a diameter of 1.0 mm or less are distributed on the long side surface and the short side surface of the lower part 3 of the mold, and high-pressure gas is jetted toward the surface of the solidification shell 8 through the pores 9 to solidify the solidification shell 8 It is possible to support and to enhance the cooling of the shell surface. Here, a gap 10 may be inevitably provided between the upper mold part 2 and the lower mold part 3 as an escape area for the fluid ejected upward. Further, as shown in FIG. 3B, it is necessary to provide a high pressure gas header 20 on the side of the lower part 3 of the mold that comes into contact with the molten steel in order to make the ejection from the pores 9 uniform.
【0017】ここで鋳型1全体の長さをLとした時に、
冷却用高圧ガスを噴射させる鋳型下部3の領域を下端か
ら0.2L以上としたのは、これ以下であると冷却効果
および鋳片支持の摩擦低減効果が見られなくなるためで
ある。また、0.7L以下としたのはこれ以上であれ
ば、メニスカスのパウダー流入部に影響を及ぼし、初期
凝固が不安定となるために表面疵が発生することがある
からである。When the length of the entire mold 1 is L,
The region of the lower part 3 of the mold for injecting the high-pressure gas for cooling is set to 0.2 L or more from the lower end because if it is less than this, the cooling effect and the friction reducing effect of supporting the slab cannot be seen. Further, the reason why the amount is 0.7 L or less is that if it is more than this, the powder inflow portion of the meniscus is affected and the initial solidification becomes unstable, so that surface defects may occur.
【0018】また、高圧ガス噴射用の細孔9の直径を1
mm以下としたのは、1mm以上であれば鋳造スタート
時の最ボトム部(鋳片の最先端部)で、溶鋼が細孔9に
差し込む可能性があるためである。Further, the diameter of the high-pressure gas injection fine hole 9 is set to 1
The reason why it is set to not more than mm is that if it is not less than 1 mm, the molten steel may be inserted into the pores 9 at the bottommost portion (the most distal end portion of the slab) at the start of casting.
【0019】また、高圧ガス噴射用の細孔9の分布密度
は1平方センチメートルあたり0.2個〜10個とした
のは、0.2個以下であれば鋳片支持が困難になるから
であり、10個以下としたのはこれ以上の密度とすると
細孔9と高圧ガス用ヘッダー20の加工に困難性を伴
い、経済的な問題が生じることと、鋳型自体の強度が低
下して、鋳型寿命が短くなってしまうからである。The distribution density of the high-pressure gas injection pores 9 is set to 0.2 to 10 per square centimeter because it is difficult to support the slab if 0.2 or less. If the density is 10 or less, it is difficult to process the pores 9 and the high-pressure gas header 20 when the density is higher than this, an economic problem is caused, and the strength of the mold itself is lowered. This is because the life will be shortened.
【0020】本発明の鋳型を用いることにより、鋳型と
凝固シェル間の摩擦係数を減少させながら全体としての
鋳型冷却を強化できる理由は以下の通りである。すなわ
ち、高圧ガス用ヘッダー20を設けて細孔9を鋳型表面
に向けて開孔した構造で均一噴射できるので、鋳型下部
3と凝固シェル8とは非接触あるいは軟接触状態とな
り、鋳型下部3と凝固シェル8間の摩擦力は非常に小さ
くなる。高圧ガスを均一噴射し、それが凝固シェル表面
を流動することから、伝熱は従来の鋳型を用いた場合の
ように、鋳型1と凝固シェル8の間にエアギャップが生
成した場合よりも促進される。また、当然のことながら
鋳型下部3は従来鋳型と同様にその背面では水冷却され
ているので、本発明の方法はこの点からも冷却強化の方
向である。The reason why the use of the mold of the present invention makes it possible to enhance the mold cooling as a whole while reducing the coefficient of friction between the mold and the solidified shell is as follows. That is, since the high-pressure gas header 20 is provided and uniform injection can be performed with the structure in which the pores 9 are opened toward the mold surface, the lower mold part 3 and the solidification shell 8 are in a non-contact or soft contact state, and the lower mold part 3 The frictional force between the solidified shells 8 becomes very small. Since high-pressure gas is sprayed uniformly and it flows on the surface of the solidification shell, heat transfer is promoted more than when an air gap is created between the mold 1 and the solidification shell 8 as in the case of using a conventional mold. To be done. Further, as a matter of course, since the lower part 3 of the mold is water-cooled on its back surface like the conventional mold, the method of the present invention is also in the direction of strengthening cooling from this point.
【0021】使用する高圧ガスは、空気、窒素、アルゴ
ン、ヘリウム等が上げられる。The high pressure gas used may be air, nitrogen, argon, helium or the like.
【0022】なお、溶鋼と接する銅板13は、一枚の銅
板を鋳型上部2と鋳型下部3のそれぞれ異なる構造に切
削加工したものであるが、この方法にこだわるものでは
なく、鋳型上部2と鋳型下部3を別々の銅板から加工し
てもかまわない。The copper plate 13 in contact with the molten steel is formed by cutting one copper plate into different structures of the upper mold part 2 and the lower mold part 3. However, this is not the only method, and the upper mold part 2 and the mold part The lower part 3 may be machined from a separate copper plate.
【0023】[0023]
【実施例】本発明による連続鋳造用鋳型を用いて極低炭
素鋼、低炭素鋼、中炭素鋼の鋳造実験を行なった。その
結果を表1にまとめる。アルゴンガスを導入した例、ヘ
リウムガスを導入した例を示すが、いずれの場合もサル
ファ添加による凝固シェル厚を比較しているが、従来タ
イプの比較材と比べてシェル厚が厚くなっていることが
判る。また、均一度も向上し、不均一凝固起因の縦割れ
も減少していることが判る。EXAMPLE A casting experiment of ultra-low carbon steel, low carbon steel and medium carbon steel was carried out using the continuous casting mold according to the present invention. Table 1 summarizes the results. An example in which argon gas is introduced and an example in which helium gas is introduced are shown.In both cases, the solidified shell thickness due to the addition of sulfur is compared, but the shell thickness is thicker than the conventional type comparative material. I understand. Further, it can be seen that the uniformity is improved and the vertical cracks due to the non-uniform solidification are reduced.
【0024】なお、鋳型下部3を本発明以上に大きくし
た場合には、メニスカスから高圧ガスが噴出するトラブ
ルが発生し、鋳造の続行が不能になる。また、本発明以
下に小さくすると効果が現れなくなる。また、細孔9の
径が過大であると、効果が現れなくなるだけでなく、細
孔に溶鋼が差し込むことがあり、逆に表面欠陥を増大さ
せる。さらに、細孔9の密度が本発明の場合よりも小さ
いと、効果が現れない。逆に密度が高過ぎると、効果は
現れるものの向上代が小さくなるだけでなく、加工コス
トが過大になるという問題が生じる。When the lower part 3 of the mold is made larger than that of the present invention, a trouble occurs in which high-pressure gas is ejected from the meniscus, making it impossible to continue casting. Further, if the size is smaller than that of the present invention, the effect will not be exhibited. Further, if the diameter of the pores 9 is too large, not only the effect does not appear, but molten steel may be inserted into the pores, which conversely increases surface defects. Further, if the density of the pores 9 is smaller than that of the present invention, the effect is not exhibited. On the other hand, if the density is too high, there is a problem that not only the improvement margin is reduced but the processing cost becomes excessive although the effect is exhibited.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【発明の効果】鋳型を鋳型上部2と鋳型下部3で構成さ
れる二分割構造とし、鋳型下部3の長辺面と短辺面に設
けた細孔を介して、凝固シェル8の表面に向けて高圧の
冷却ガスを噴射させる構造としたことから、鋳型1と凝
固シェル8の間に発生する摩擦力を低減しなながら凝固
シェル8の冷却を強化することが可能となり、均一で十
分な厚みの凝固シェル8が形成がされる。[Effect of the Invention] The mold has a two-part structure composed of the upper mold part 2 and the lower mold part 3, and is directed toward the surface of the solidification shell 8 through the pores provided in the long side face and the short side face of the lower mold part 3. Since it has a structure of injecting a high-pressure cooling gas with high temperature, it is possible to enhance the cooling of the solidification shell 8 while reducing the frictional force generated between the mold 1 and the solidification shell 8, and to provide a uniform and sufficient thickness. The solidified shell 8 is formed.
【0027】従って、ブレークアウトの起こらない安定
した連続鋳造が可能となる。また鋳型内の不均一凝固に
起因する鋳片縦割れも減少し、表面疵のきわめて少ない
高品質の鋳片を製造することができる。Therefore, stable continuous casting without breakout is possible. Further, vertical cracks of the slab due to non-uniform solidification in the mold are reduced, and a high quality slab with extremely few surface defects can be manufactured.
【0028】さらに、鋳型下部3での凝固シェル8と鋳
型1との接触を完全に防止できるので鋳型表面に発生す
る引っかき疵の生成を防止できることから、鋳型寿命の
延長効果もある。Further, since the contact between the solidified shell 8 and the mold 1 in the lower part 3 of the mold can be completely prevented, the generation of scratches generated on the surface of the mold can be prevented, so that the life of the mold can be extended.
【図1】本発明の鋼の連続鋳造用鋳型を用いて連続鋳造
する概要図である。FIG. 1 is a schematic view of continuous casting using a steel continuous casting mold of the present invention.
【図2】本発明の鋼の連続鋳造用鋳型内の構造を示す概
念図である。FIG. 2 is a conceptual diagram showing the structure in a mold for continuous casting of steel according to the present invention.
【図3】本発明の鋼の連続鋳造用鋳型内の構造を示す概
念図であり、(a)は鋳型の長辺面側の斜視図であり、
(b)は(a)のA−A’断面図であり、鋳型の断面構
造を示す概要図である。FIG. 3 is a conceptual view showing a structure in a mold for continuous casting of steel of the present invention, (a) is a perspective view of a long side surface side of the mold,
(B) is an AA 'cross section figure of (a), and is a schematic diagram showing the section structure of a mold.
1 鋳型 2 鋳型上部 3 鋳型下部 4 タンディッシュ 5 浸漬ノズル 6 連続鋳造用パウダー 7 溶鋼 8 凝固シェル 9 細孔 10 鋳型上部と鋳型下部間の隙間 11 サポートロール 12 鋳片 13 溶鋼と接する銅板 14 鋳型下部の最表層 15 中間の銅板 16 冷却水用スリット 17 バックプレート 18 鋳型長辺 19 鋳型短辺 20 高圧ガス用ヘッダー 1 Mold 2 Upper part of mold 3 Lower part of mold 4 Tundish 5 Immersion nozzle 6 Powder for continuous casting 7 Molten steel 8 Solidification shell 9 Pore 10 Gap between upper mold part and lower mold part 11 Support roll 12 Cast slab 13 Copper plate in contact with molten steel 14 Lower part of mold Outermost layer 15 Intermediate copper plate 16 Cooling water slit 17 Back plate 18 Mold long side 19 Mold short side 20 High pressure gas header
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 寛 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 宮沢 憲一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Harada 20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Kenichi Miyazawa 20-1 Shintomi Futtsu City Nippon Steel Co., Ltd. Technology Development Division
Claims (5)
当該鋳型1の溶鋼と接する側は鋳型上部2と鋳型下部3
で異なる構造とし、鋳型下部3の長辺面ならびに短辺面
に開孔する細孔9を介して、凝固シェル8の表面に向け
て高圧ガスを噴射できることを特徴とする、鋼の連続鋳
造用鋳型。1. A mold 1 used for continuous casting of steel, comprising:
The side of the mold 1 that contacts molten steel is the upper part 2 and the lower part 3 of the mold.
For continuous casting of steel, characterized in that the high pressure gas can be injected toward the surface of the solidified shell 8 through the pores 9 formed in the long side surface and the short side surface of the lower part 3 of the mold. template.
おいて、鋳型全体の長さをLとした時に、下端より0.
2L以上で0.7L以下の範囲を鋳型下部3としたこと
を特徴とする、鋼の連続鋳造用鋳型。2. The continuous casting mold for steel according to claim 1, wherein when the length of the entire mold is L, a value of 0.
A mold for continuous casting of steel, characterized in that a range of 2 L or more and 0.7 L or less is a lower part 3 of the mold.
続鋳造用鋳型において、鋳型下部に設けた高圧ガス噴射
用の細孔9の直径を1.0mm以下としたことを特徴と
する、鋼の連続鋳造用鋳型。3. The continuous casting mold for steel according to claim 1 or 2, wherein the diameter of the high-pressure gas injection pores 9 provided in the lower part of the mold is 1.0 mm or less. , Molds for continuous casting of steel.
の鋼の連続鋳造用鋳型において、高圧ガス噴射用の細孔
9の分布密度を1平方センチメートル当たり0.2〜1
0個としたことを特徴とする、鋼の連続鋳造用鋳型。4. The continuous casting mold for steel according to claim 1, wherein the distribution density of the high pressure gas injection pores 9 is 0.2 to 1 per 1 cm 2.
A mold for continuous casting of steel, characterized in that the number is zero.
の鋼の連続鋳造に用いる鋳型において、当該鋳型1の溶
鋼と接する側の鋳型下部3には、高圧ガス用ヘッダー2
0、高圧ガス噴射用の細孔9を施し、かつ、中間の銅板
15には水冷用のスリット16があり、従来通りの鋳型
冷却ができることを特徴とする、鋼の連続鋳造用鋳型。5. A mold used for continuous casting of steel according to any one of claims 1 to 4, wherein a high pressure gas header 2 is provided on a lower part 3 of the mold 1 on the side in contact with molten steel.
0, a mold for continuous casting of steel, characterized in that it has pores 9 for high-pressure gas injection, and has an intermediate copper plate 15 with a slit 16 for water cooling, which enables conventional mold cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10610996A JPH09271903A (en) | 1996-04-01 | 1996-04-01 | Mold for continuously casing steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10610996A JPH09271903A (en) | 1996-04-01 | 1996-04-01 | Mold for continuously casing steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09271903A true JPH09271903A (en) | 1997-10-21 |
Family
ID=14425320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10610996A Withdrawn JPH09271903A (en) | 1996-04-01 | 1996-04-01 | Mold for continuously casing steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09271903A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100418667C (en) * | 2006-05-19 | 2008-09-17 | 苏州有色金属加工研究院 | Aluminum and aluminum alloy semi-continuous casting continuous lubrication mold |
CN111036869A (en) * | 2019-12-30 | 2020-04-21 | 西南铝业(集团)有限责任公司 | Casting process and casting system |
CN112808955A (en) * | 2020-12-31 | 2021-05-18 | 湖南文昌新材科技股份有限公司 | Casting crystallizer of high-silicon aluminum alloy semi-solid casting rod and preparation method thereof |
-
1996
- 1996-04-01 JP JP10610996A patent/JPH09271903A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100418667C (en) * | 2006-05-19 | 2008-09-17 | 苏州有色金属加工研究院 | Aluminum and aluminum alloy semi-continuous casting continuous lubrication mold |
CN111036869A (en) * | 2019-12-30 | 2020-04-21 | 西南铝业(集团)有限责任公司 | Casting process and casting system |
CN112808955A (en) * | 2020-12-31 | 2021-05-18 | 湖南文昌新材科技股份有限公司 | Casting crystallizer of high-silicon aluminum alloy semi-solid casting rod and preparation method thereof |
CN112808955B (en) * | 2020-12-31 | 2021-10-22 | 湖南文昌新材科技股份有限公司 | Casting crystallizer of high-silicon aluminum alloy semi-solid casting rod and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0570751A1 (en) | Cooling method and apparatus for continuous casting and its mold | |
JP2001105102A (en) | Mold for continuous casting and continuous casting method | |
JP4337565B2 (en) | Steel slab continuous casting method | |
JPH09271903A (en) | Mold for continuously casing steel | |
US4678719A (en) | Method and apparatus for continuous casting of crystalline strip | |
JPS606254A (en) | Continuous casting method | |
JPS6192756A (en) | Continuous casting method and mold to prevent slab surface cracking | |
JPH09220645A (en) | Method for lubricating wall of continuous casting metal mold and mold for implementing it | |
JP3727354B2 (en) | Mold for vertical hot top continuous casting of metal | |
JP3380412B2 (en) | Mold for continuous casting of molten steel | |
JPH0819842A (en) | Continuous casting method and device | |
CA1233618A (en) | Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere | |
JPH06339754A (en) | Continuous casting method for thin plates | |
JPH1080752A (en) | Mold for continuous casting | |
KR102179558B1 (en) | Mold, apparatus and method for casting | |
JP2770691B2 (en) | Steel continuous casting method | |
JPH0994635A (en) | Continuous casting method for steel | |
JPH04224050A (en) | Method for preventing solidification of end parts in strip casting | |
JPS58205662A (en) | Metal semi-continuous casting method | |
JPH0347660A (en) | Method for preventing vertical cracking of slabs during high-speed casting | |
JP2662467B2 (en) | Injection method of belt type continuous casting | |
JP3344070B2 (en) | Aluminum square ingot semi-continuous casting pedestal and method of manufacturing square ingot | |
JPS60250864A (en) | Top treatment of slab when casting in continuous casting ends | |
JPH09253801A (en) | Continuous casting mold | |
JPH0531561A (en) | Extraction method in under-solidification continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030603 |