JPH09270527A - Semiconductor photodetector - Google Patents
Semiconductor photodetectorInfo
- Publication number
- JPH09270527A JPH09270527A JP8103821A JP10382196A JPH09270527A JP H09270527 A JPH09270527 A JP H09270527A JP 8103821 A JP8103821 A JP 8103821A JP 10382196 A JP10382196 A JP 10382196A JP H09270527 A JPH09270527 A JP H09270527A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- conductivity type
- ingaas
- light
- inp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 19
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000010521 absorption reaction Methods 0.000 claims abstract description 10
- 230000031700 light absorption Effects 0.000 claims description 51
- 240000002329 Inga feuillei Species 0.000 claims 2
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 6
- 230000010748 Photoabsorption Effects 0.000 abstract 7
- 238000000034 method Methods 0.000 description 19
- 239000000969 carrier Substances 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000005684 electric field Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 6
- 238000001947 vapour-phase growth Methods 0.000 description 5
- 229910000673 Indium arsenide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 4
- 238000000253 optical time-domain reflectometry Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体受光素子に
関し、特に光計測や光通信に用いて好適な半導体受光素
子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element, and more particularly to a semiconductor light receiving element suitable for use in optical measurement and optical communication.
【0002】[0002]
【従来の技術】この種の従来の半導体受光素子が、例え
ば特開平4−92479号公報、特開平5−28373
0号公報、特開昭62−296481号公報等に提案さ
れている。2. Description of the Related Art A conventional semiconductor light receiving element of this type is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 4-92479 and 5-28373.
No. 0, JP-A-62-296481 and the like are proposed.
【0003】現在光通信用路線として光ファイバが用い
られている。光通信用路線として敷設されている光ファ
イバ網の保守管理方法として、OTDR(Optical Time
Domain Reflectometer)がある。OTDRとは、敷設
されている光ファイバの破断点を調べる装置であり、そ
の基本原理は、ファイバ内に入射されたパルス光がファ
イバ内を伝搬するときに生じるレーリー散乱光をモニタ
ーし、もしファイバ内で破断点が生じている場合にはレ
ーリー散乱光は戻らなくなる。このため、このレーリー
散乱光がなくなるまでの時間を距離に換算することで破
断点の位置を正確に知ることができる。但し、この場
合、通信回線をOTDR装置に接続しなければならな
く、そのために通信回線が一時遮断されるという問題が
ある。Optical fibers are currently used as routes for optical communication. The OTDR (Optical Time) is used as a maintenance management method for an optical fiber network laid as an optical communication line.
Domain Reflectometer). The OTDR is a device for investigating the breaking point of the installed optical fiber, and its basic principle is to monitor the Rayleigh scattered light generated when the pulsed light injected into the fiber propagates in the fiber, If there is a breaking point inside, Rayleigh scattered light will not return. Therefore, the position of the break point can be accurately known by converting the time until the Rayleigh scattered light disappears into a distance. However, in this case, there is a problem that the communication line must be connected to the OTDR device, and thus the communication line is temporarily cut off.
【0004】そこで、この問題を解決するために、光通
信の送信波長1.3μmあるいは1.5μmとは異なる
波長1.65μm帯の光を用い、通信回線を使用しなが
ら、同時に回線の監視を常時行う方法が考えられてい
る。In order to solve this problem, therefore, light in the wavelength range of 1.65 μm, which is different from the transmission wavelength of 1.3 μm or 1.5 μm in optical communication, is used, and the line is monitored at the same time while using the communication line. A method of doing it all the time is being considered.
【0005】図4に、1.65μmの波長に対して感度
を持つ受光素子の従来例を示す。図4は、上記特開平5
−283730号公報に提案される受光素子の構成を示
した図であり、格子不整合緩和層44として歪格子層5
4と歪超格子層55とを組み合わせ、格子不整合緩和層
44を介して基板上にその基板材料とは格子整合しない
光吸収層45を設けた受光素子における暗電流特性を改
善したものである。FIG. 4 shows a conventional example of a light receiving element having sensitivity to a wavelength of 1.65 μm. FIG. 4 shows the above-mentioned Japanese Patent Laid-Open No.
FIG. 3 is a diagram showing a configuration of a light receiving element proposed in Japanese Patent Laid-Open No. 283730/1983, in which a strained lattice layer 5 is used as a lattice mismatch relaxation layer 44.
4 and the strained superlattice layer 55 are combined to improve the dark current characteristic in the light receiving element in which the light absorption layer 45 which is not lattice-matched to the substrate material is provided on the substrate via the lattice mismatch relaxation layer 44. .
【0006】すなわち、図4を参照して、この受光素子
は、InP基板1上にInPバッファ層2、GaInA
sバッファ層26、歪格子層24、InP/GaInA
s歪超格子層25を順次エピタキシャル成長させ、その
上にGaInAs光吸収層4を成長させ、InPキャッ
プ層7を順次成長させた構造からなる。この受光素子の
場合、光吸収層4に歪GaInAsを用いることで、
1.65μmの光に対し感度を持つことができる。但
し、素子自体にキャリアの増幅機能を持っていないた
め、微弱な散乱光を検出するOTDRへの使用には適し
ていない。That is, referring to FIG. 4, this light receiving element comprises an InP substrate 1, an InP buffer layer 2, and a GaInA layer.
s buffer layer 26, strained lattice layer 24, InP / GaInA
The s strained superlattice layer 25 is sequentially epitaxially grown, the GaInAs light absorption layer 4 is grown thereon, and the InP cap layer 7 is sequentially grown. In the case of this light receiving element, by using strained GaInAs for the light absorption layer 4,
It can have sensitivity to light of 1.65 μm. However, since the element itself does not have a carrier amplification function, it is not suitable for use in an OTDR that detects weak scattered light.
【0007】この種の受光素子の第2の従来例を図5に
示す。図5を参照して、n+−Inp基板1上にn+−I
nP緩衝層2を成長させた後、厚さ1.5〜2μmのn
-−InAs/GaAs超格子光吸収層27、厚さ0.
1μmのn-−InGaAsP層5、厚さ1.5μmの
n+−InP増倍層6、厚さ1μmのp−InP層9を
順次成長させた結晶に、メサエッチングを施したあと、
p側電極12としてTiPtAu、n側電極14として
AuGeNiを蒸着して受光素子を形成している。この
ように、光吸収層27をInAsとGaAsの超格子層
構造とすることにより、吸収端の波長を3.2μmまで
拡大することができる。A second conventional example of this type of light receiving element is shown in FIG. Referring to FIG. 5, n + -I on n + -InP substrate 1
After growing the nP buffer layer 2, n having a thickness of 1.5 to 2 μm is formed.
--INAS / GaAs superlattice light absorbing layer 27, a thickness of 0.
Mesa etching was performed on a crystal in which a 1 μm-thickness n − -InGaAsP layer 5, a 1.5 μm-thick n + -InP multiplication layer 6 and a 1 μm-thick p-InP layer 9 were sequentially grown.
A light receiving element is formed by depositing TiPtAu as the p-side electrode 12 and AuGeNi as the n-side electrode 14. As described above, the light absorption layer 27 has a superlattice layer structure of InAs and GaAs, so that the wavelength at the absorption edge can be increased to 3.2 μm.
【0008】但し、ここで問題となることは、上記第2
の従来例の場合、InP上にInAsとGaAsの超格
子を形成する都合上、その界面に格子不整合が生じるこ
ととなり、その格子欠陥より暗電流が発生する。この暗
電流によってノイズが生じるために感度が低下する。However, the problem here is that the second
In the case of the conventional example, due to the formation of a superlattice of InAs and GaAs on InP, a lattice mismatch occurs at the interface, and a dark current occurs due to the lattice defect. The dark current causes noise, which lowers the sensitivity.
【0009】[0009]
【発明が解決しようとする課題】このように、上記した
従来技術は下記記載の問題点を有している。As described above, the above-mentioned prior art has the following problems.
【0010】図4を参照して説明した上記第1の従来技
術においては、感度が低く微弱な散乱光を検出するOT
DRへの使用には適していないという問題点を有してい
る。In the first prior art described with reference to FIG. 4, the OT which has low sensitivity and detects weak scattered light.
It has a problem that it is not suitable for use in DR.
【0011】その理由は、素子自体にキャリアの増幅機
能を持っていないためである。The reason is that the element itself does not have a carrier amplifying function.
【0012】また、図5を参照して説明した上記第2の
従来技術のAPD(アバランシェ・フォトダイオード)
においては、格子欠陥より暗電流が発生し、その暗電流
によってノイズが生じるために感度が低下するという問
題点がある。The second prior art APD (avalanche photodiode) described with reference to FIG.
In the above, there is a problem that a dark current is generated due to a lattice defect and noise is generated by the dark current, so that the sensitivity is lowered.
【0013】その理由は、InP上にInAsとGaA
sの超格子を形成する都合上、その界面に格子不整合が
生じることとなり、その格子欠陥より暗電流が発生する
ためである。The reason is that InAs and GaA are formed on InP.
This is because a lattice mismatch occurs at the interface due to the formation of the superlattice of s, and a dark current is generated due to the lattice defect.
【0014】従って、本発明は、上記従来技術の問題点
を解消し、例えば光通信用ファイバ網の回線監視用の受
光素子に用いた場合に好適な、波長1.65μmの光に
対し、高い量子効率と低い暗電流と、高い電流増倍率と
を得ることを可能とした半導体受光素子を提供すること
を目的とする。Therefore, the present invention solves the above-mentioned problems of the prior art, and is suitable for light having a wavelength of 1.65 μm, which is suitable for use as a light receiving element for line monitoring of an optical communication fiber network, for example. It is an object of the present invention to provide a semiconductor light receiving element capable of obtaining quantum efficiency, low dark current, and high current multiplication factor.
【0015】[0015]
【課題を解決するための手段】前記目的を達成するた
め、本発明は、第1導電型InP基板上に、第1導電型
歪InGaAs層と、第1導電型InGaAs層と、第
1導電型InP増倍層と、第1導電型InP窓層と、が
順次形成されてなるヘテロエピタキシャル層構造を備
え、前記窓層内及び/又は前記増倍層内に部分的に第2
導電型InP領域を設け、更に、前記窓層内の前記第2
導電型InP領域上に設けられた第2導電型電極と、前
記第1導電型InP基板に設けられた第1導電型電極
と、を備えてなることを特徴とする半導体受光素子を提
供する。To achieve the above object, the present invention provides a first conductivity type InP substrate, a first conductivity type strained InGaAs layer, a first conductivity type InGaAs layer, and a first conductivity type. A heteroepitaxial layer structure in which an InP multiplication layer and a first-conductivity-type InP window layer are sequentially formed is provided, and a second epitaxial layer is partially formed in the window layer and / or the multiplication layer.
A conductive InP region is provided, and the second InP region is further provided.
There is provided a semiconductor light receiving element comprising a second conductivity type electrode provided on a conductivity type InP region and a first conductivity type electrode provided on the first conductivity type InP substrate.
【0016】[0016]
【発明の実施の形態】本発明の実施の形態を図面を参照
して以下に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0017】まず、図1を参照して、本発明の実施の形
態は、n+−(第1導電型)InP基板1上に、この第
1導電型歪InGaAs層(吸収端波長λ=1.85μ
m)3と、第1導電型InGaAs層(吸収端波長λ=
1.65μm)4と、第1導電型InP増倍層6と、第
1導電型InP窓層7と、が順次構成されたヘテロエピ
タキシャル層構造を備え、窓層7内及び/又は増倍層6
内に部分的に、p−(第2導電型)InP領域9を設
け、窓層7内に設けた第2導電型InP領域9上に設け
たp側(第2導電型)電極12と、第1導電型InP基
板1上に設けたn側(第1導電型)電極14と、を備え
たものである。First, referring to FIG. 1, according to the embodiment of the present invention, a strained InGaAs layer of the first conductivity type (absorption edge wavelength λ = 1) is formed on an n + -(first conductivity type) InP substrate 1. .85μ
m) 3 and the first conductivity type InGaAs layer (absorption edge wavelength λ =
1.65 μm) 4, a first-conductivity-type InP multiplication layer 6, and a first-conductivity-type InP window layer 7 are sequentially formed, and the heteroepitaxial layer structure is provided in the window layer 7 and / or the multiplication layer. 6
A p- (second conductivity type) InP region 9 is partially provided therein, and a p-side (second conductivity type) electrode 12 provided on the second conductivity type InP region 9 provided in the window layer 7; An n-side (first conductivity type) electrode 14 provided on the first conductivity type InP substrate 1 is provided.
【0018】本発明の実施の形態の原理を以下に説明す
る。歪InGaAsとInGaAsの2つの光吸収層を
持つAPD(アバランシェフォトダイオード)に、1.
65μmの光を入射すると、光は窓層7側からp+拡散
領域9内に入射され、増倍層6、中間層5、InGaA
s光吸収層4を透過した後、歪n−InGaAs光吸収
層3にて吸収される。ここで吸収された光によって生成
されたキャリアは、p側電極12とn電極14間に印加
された電界により加速されp側電極12に流れ、外部回
路へと吐き出され光電流となる。The principle of the embodiment of the present invention will be described below. In an APD (avalanche photodiode) having two light absorption layers of strained InGaAs and InGaAs, 1.
When 65 μm light is incident, the light is incident from the window layer 7 side into the p + diffusion region 9, and the multiplication layer 6, the intermediate layer 5, and the InGaA
After passing through the s light absorption layer 4, it is absorbed by the strained n-InGaAs light absorption layer 3. The carriers generated by the light absorbed here are accelerated by the electric field applied between the p-side electrode 12 and the n-electrode 14, flow into the p-side electrode 12, and are discharged to an external circuit to become a photocurrent.
【0019】一方、1.55μm或いは1.3μmの光
を入射すると、光は窓層7側からp+拡散領域9内に入
射され、増倍層6、中間層5を透過した後、InGaA
s光吸収層4にて吸収される。ここで吸収された光によ
って生成されたキャリアは、p側電極12とn電極14
間に印加された電界により加速されp側電極12に流
れ、外部回路へと吐き出され光電流となる。On the other hand, when a light of 1.55 μm or 1.3 μm is incident, the light is incident on the p + diffusion region 9 from the window layer 7 side, passes through the multiplication layer 6 and the intermediate layer 5, and then InGaA.
It is absorbed by the light absorption layer 4. The carriers generated by the light absorbed here are the p-side electrode 12 and the n-electrode 14
It is accelerated by an electric field applied between them, flows into the p-side electrode 12, and is discharged to an external circuit to become a photocurrent.
【0020】すなわち、1.55/1.3μmの光は上
層側の光吸収層4で、1.65μmの光は下層側の歪光
吸収層3でそれぞれ吸収後、光電変換されることとな
る。That is, the light of 1.55 / 1.3 μm is absorbed by the light absorption layer 4 on the upper layer side, and the light of 1.65 μm is absorbed by the strained light absorption layer 3 on the lower layer, and then photoelectrically converted. .
【0021】このような構造としたことにより、後述す
るように、1.65μmの光を例えば0.85A/W以
上の高い効率で吸収することができる。With such a structure, as will be described later, it is possible to absorb light of 1.65 μm with a high efficiency of 0.85 A / W or more, for example.
【0022】また、InGaAs光吸収層4とInP基
板1との間に歪n-−InGaAs光吸収層3を挟むこ
とで、格子不整合を抑えることができるため、20nA
以下の低い暗電流特性が得られる。さらに、歪n−In
GaAs光吸収層3或いはInGaAs光吸収層4にて
光吸収によって生成されたキャリアは、n+−InP増
倍層6に印加された電界によりアバランシェ増倍を引き
起こすことで、例えば30倍以上の高い増倍率が得られ
る。Further, distortion n between the InGaAs light absorbing layer 4 and the InP substrate 1 - By sandwiching the -InGaAs light-absorbing layer 3, it is possible to suppress the lattice mismatch, 20 nA
The following low dark current characteristics can be obtained. Furthermore, strain n-In
The carriers generated by the light absorption in the GaAs light absorption layer 3 or the InGaAs light absorption layer 4 cause avalanche multiplication by the electric field applied to the n + -InP multiplication layer 6, so that the carriers are high, for example, 30 times or more. Gain is obtained.
【0023】[0023]
【実施例】上記した本発明の実施形態をより詳細に説明
すべく本発明の実施例を以下に図面を参照して説明す
る。EXAMPLES Examples of the present invention will be described below with reference to the drawings in order to describe the above-described embodiments of the present invention in more detail.
【0024】図1は、本発明に係る半導体受光素子の一
実施例の構成を断面図にて模式的に示したものである。FIG. 1 is a sectional view schematically showing the structure of an embodiment of a semiconductor light receiving element according to the present invention.
【0025】図1を参照して、n+−InP基板1上
に、気相成長法により、好ましくはキャリア濃度1015
〜2×1016cm-3、層厚1〜3μmとされるn−In
P緩衝層2と、1.65μmの光を吸収するために好ま
しくは吸収端波長λ=1.85μm、キャリア濃度10
15〜2×1016cm-3、層厚1〜3μmの歪n−InG
aAs光吸収層3と、1.55μmあるいは1.3μm
の光を吸収するためのn-−InGaAs光吸収層とし
て、好ましくはキャリア濃度1015〜5×1015c
m-3、層厚3〜4μmのn-−InGaAs光吸収層4
を成長した後、好ましくは、キャリア濃度3×1015〜
1016cm-3、層厚0.03〜0.5μmのn−InG
aAsP中間層5を成長させ、その後増倍層層として、
好ましくはキャリア濃度1016〜4×1016cm-3、層
厚0.5〜3μmのn+−InP増倍層6を成長する。
最後に窓層として、好ましくはキャリア濃度2×1015
〜6×1015cm-3層厚1〜2μmのn-−InP窓層
7を成長する。Referring to FIG. 1, a carrier concentration of 10 15 is preferably formed on the n + -InP substrate 1 by a vapor phase growth method.
N-In having a thickness of 2 × 10 16 cm −3 and a layer thickness of 1 to 3 μm
In order to absorb light of 1.65 μm, the P buffer layer 2 preferably has an absorption edge wavelength λ = 1.85 μm and a carrier concentration of 10
Strained n-InG having a thickness of 15 to 2 × 10 16 cm -3 and a layer thickness of 1 to 3 μm
aAs light absorption layer 3 and 1.55 μm or 1.3 μm
As the n − -InGaAs light absorption layer for absorbing the light of, the carrier concentration is preferably 10 15 to 5 × 10 15 c
m −3 , n − -InGaAs light absorption layer 4 having a layer thickness of 3 to 4 μm
After growing, the carrier concentration is preferably 3 × 10 15 to
10 16 cm −3 , n-InG having a layer thickness of 0.03 to 0.5 μm
An aAsP intermediate layer 5 is grown, and then, as a multiplication layer layer,
Preferably, the n + -InP multiplication layer 6 having a carrier concentration of 10 16 to 4 × 10 16 cm -3 and a layer thickness of 0.5 to 3 μm is grown.
Finally, the window layer preferably has a carrier concentration of 2 × 10 15.
The n − -InP window layer 7 having a layer thickness of 6 × 10 15 cm −3 and a layer thickness of 1 to 2 μm is grown.
【0026】本実施例では、一例として、n+−InP
基板1上に、気相成長法により、上記したn−InP緩
衝層2は、キャリア濃度を1015cm-3、層厚を2μ
m、歪n−InGaAs光吸収層3は、キャリア濃度を
1015cm-3、層厚を2μm、n-−InGaAs光吸
収層4は、キャリア濃度を3×1015cm-3、層厚を4
μmとして成長させ、n−InGaAsP中間層5は、
キャリア濃度を1016cm-3、層厚を0.5μmとし、
n+−InP増倍層6は、キャリア濃度を3×1016c
m-3、層厚を1.4μmとし、n-−InP窓層7は、
キャリア濃度を5×1015cm-3、層厚を1.4μmと
して成長させた。In the present embodiment, as an example, n + -InP
The n-InP buffer layer 2 described above is formed on the substrate 1 by vapor phase growth so that the carrier concentration is 10 15 cm −3 and the layer thickness is 2 μm.
m, the strained n-InGaAs light absorption layer 3 has a carrier concentration of 10 15 cm -3 and a layer thickness of 2 μm, and the n − -InGaAs light absorption layer 4 has a carrier concentration of 3 × 10 15 cm -3 and a layer thickness of Four
The n-InGaAsP intermediate layer 5 is grown as
The carrier concentration is 10 16 cm −3 , the layer thickness is 0.5 μm,
The n + -InP multiplication layer 6 has a carrier concentration of 3 × 10 16 c
m −3 , the layer thickness is 1.4 μm, and the n − -InP window layer 7 is
It was grown with a carrier concentration of 5 × 10 15 cm −3 and a layer thickness of 1.4 μm.
【0027】このように成長を行ったエピタキシャルウ
ェハーの表面にマスクをCVD(化学気相成長)法によ
り成長し、ガードリング8を例えばBeのイオン注入法
により形成する。A mask is grown on the surface of the epitaxial wafer thus grown by the CVD (Chemical Vapor Deposition) method, and the guard ring 8 is formed by the ion implantation method of Be, for example.
【0028】次に、ガードリング8に重なるように拡散
マスクの窓開けを行い、例えばZnの封止拡散により受
光部分に相当する1017〜1020cm-3のp+領域9を
選択的に形成する。Next, a window of a diffusion mask is opened so as to overlap the guard ring 8 and the p + region 9 of 10 17 to 10 20 cm -3 corresponding to the light receiving portion is selectively formed by sealing diffusion of Zn, for example. Form.
【0029】その後、表面側に通常の方法で絶縁膜11
を成長した後、p+領域9上の絶縁膜10の一部に穴開
けを行いp側コンタクト電極11をたとえば蒸着法によ
り形成したのち、加熱処理を行う。そして、p側コンタ
クト電極11を覆うようにp側電極12を形成する。After that, the insulating film 11 is formed on the surface side by a usual method.
After the growth, a part of the insulating film 10 on the p + region 9 is perforated to form a p-side contact electrode 11 by, for example, a vapor deposition method, and then a heat treatment is performed. Then, the p-side electrode 12 is formed so as to cover the p-side contact electrode 11.
【0030】続いて、n−InP基板1の裏面にn側コ
ンタクト電極13をたとえば蒸着法により形成した後、
加熱処理を行い、最後にn側コンタクト電極13を覆う
ようにn側電極14を形成する。Subsequently, after the n-side contact electrode 13 is formed on the back surface of the n-InP substrate 1 by, for example, the vapor deposition method,
A heat treatment is performed, and finally, the n-side electrode 14 is formed so as to cover the n-side contact electrode 13.
【0031】このようにして製作した、歪InGaAs
とInGaAsの2つの光吸収層3、4を持つAPDの
分光感度特性を図2に示す(横軸は波長、縦軸は感
度)。Strained InGaAs manufactured in this way
FIG. 2 shows the spectral sensitivity characteristics of the APD having the two light absorption layers 3 and 4 of InGaAs and InGaAs (horizontal axis represents wavelength, vertical axis represents sensitivity).
【0032】このAPDに、1.65μmの光を入射す
ると、光はInP窓層7側からp+拡散領域9内に入射
され、増倍層6、中間層5を透過した後、InGaAs
光吸収層4および歪n−InGaAs光吸収層3にて吸
収される。ここで吸収された光によって生成されたキャ
リアは、p側電極12とn電極14間に印加された電界
により加速され、p側電極12に流れ、外部回路へと吐
き出され光電流となる。When light of 1.65 μm is incident on the APD, the light is incident on the p + diffusion region 9 from the side of the InP window layer 7, transmitted through the multiplication layer 6 and the intermediate layer 5, and then InGaAs.
The light is absorbed by the light absorption layer 4 and the strained n-InGaAs light absorption layer 3. The carriers generated by the light absorbed here are accelerated by the electric field applied between the p-side electrode 12 and the n-electrode 14, flow into the p-side electrode 12, and are discharged to an external circuit to become a photocurrent.
【0033】一方、1.55μm或いは1.3μmの光
を入射すると、光は窓層7側からp+拡散領域9内に入
射され、増倍層6、中間層5を透過した後、InGaA
s光吸収層4にて吸収される。ここで吸収された光によ
って生成されたキャリアは、p側電極12とn電極14
間に印加された電界により加速されp側電極12に流
れ、外部回路へと吐き出され光電流となる。On the other hand, when a light of 1.55 μm or 1.3 μm is incident, the light is incident on the p + diffusion region 9 from the window layer 7 side, transmitted through the multiplication layer 6 and the intermediate layer 5, and then InGaA.
It is absorbed by the light absorption layer 4. The carriers generated by the light absorbed here are the p-side electrode 12 and the n-electrode 14
It is accelerated by an electric field applied between them, flows into the p-side electrode 12, and is discharged to an external circuit to become a photocurrent.
【0034】すなわち、1.55/1.3μmの光は上
側の光吸収層4で、1.65μmの光は下側の歪光吸収
層3で、それぞれ吸収後、光電変換されることとなる。That is, the light of 1.55 / 1.3 μm is absorbed by the upper light absorbing layer 4 and the light of 1.65 μm is absorbed by the lower strained light absorbing layer 3, and photoelectrically converted. .
【0035】このような構造を採ることにより、1.6
5μmの光を0.85A/W以上の高い効率で吸収する
ことができ、かつ1.55/1.3μmの光に対しては
高速応答が可能となる。By adopting such a structure, 1.6
Light of 5 μm can be absorbed with high efficiency of 0.85 A / W or more, and high-speed response is possible to light of 1.55 / 1.3 μm.
【0036】また、InGaAs光吸収層4とInP基
板1との間に、歪n-−InGaAs光吸収層3を挟む
ことで、格子不整合を抑えることができるため、20n
A以下の低い暗電流特性が得られる。Further, between the InGaAs light absorbing layer 4 and the InP substrate 1, strain n - By sandwiching the -InGaAs light-absorbing layer 3, it is possible to suppress the lattice mismatch, 20n
A low dark current characteristic of A or less can be obtained.
【0037】また、上記した本実施例の作用効果によ
り、歪n−InGaAs光吸収層3或いはInGaAs
光吸収層4にて生成されたキャリアはn+−InP増倍
層6に印加された電界によりアバランシェ増倍を引き起
こし、30倍以上の高い増倍率が得られる。Further, the strained n-InGaAs light absorption layer 3 or InGaAs is obtained by the effects of the above-described embodiment.
The carriers generated in the light absorption layer 4 cause avalanche multiplication by the electric field applied to the n + -InP multiplication layer 6, and a high multiplication factor of 30 times or more is obtained.
【0038】上記効果は、気相成長法によるエピタキシ
ャルウェハー以外に、CVD法、MOCVD(有機金属
CVD)法、MBE(分子線エピタキシャル成長)法、
ALE(原子層エピタキシャル成長)法等によるエピタ
キシャルウェハーにおいても同じ効果が得られる。The above effects are obtained by the CVD method, the MOCVD (organic metal CVD) method, the MBE (molecular beam epitaxial growth) method, in addition to the epitaxial wafer by the vapor phase growth method.
The same effect can be obtained in an epitaxial wafer by the ALE (atomic layer epitaxial growth) method or the like.
【0039】本発明の第2の実施例について図面を参照
して説明する。図3は本発明に係る半導体受光素子の第
2の実施例の構成を断面図にて示したものである。な
お、図3では、基板裏面を上側として図示されている。A second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a sectional view showing the configuration of the second embodiment of the semiconductor light receiving element according to the present invention. In addition, in FIG. 3, the back surface of the substrate is illustrated as the upper side.
【0040】図3を参照して、n+−InP基板1上
に、気相成長法により、好ましくは、キャリア濃度10
15〜2×1016cm-3、層厚1〜3μmのn−InP緩
衝層2と、1.65μmの光を吸収するために、好まし
くは、吸収端波長λ=1.85μm、キャリア濃度10
15〜2×1016cm-3、層厚1〜3μmの歪n−InG
aAs光吸収層3と、1.55μmあるいは1.3μm
の光を吸収するためのn-−InGaAs光吸収層とし
て、好ましくはキャリア濃度1015〜5×1015c
m-3、層厚3〜4μmのn-−InGaAs光吸収層4
を成長した後、好ましくは、キャリア濃度3×1015〜
1016cm-3、層厚0.03〜0.5μmのn−InG
aAsP中間層5を成長させ、その後、増倍層層とし
て、好ましくはキャリア濃度1016〜4×1016c
m-3、層厚0.5〜3μmのn+−InP増倍層6を成
長する。最後に、窓層として、好ましくは、キャリア濃
度2×1015〜6×1015cm-3、層厚1〜2μm(今
回はキャリア濃度5E15cm−3層厚1.4μm)の
n-−InP窓層7を成長する。Referring to FIG. 3, on n + -InP substrate 1, the carrier concentration is preferably 10 by the vapor phase growth method.
In order to absorb the n-InP buffer layer 2 having a thickness of 15 to 2 × 10 16 cm −3 and a layer thickness of 1 to 3 μm and light of 1.65 μm, the absorption edge wavelength λ = 1.85 μm and the carrier concentration 10 are preferable.
Strained n-InG having a thickness of 15 to 2 × 10 16 cm -3 and a layer thickness of 1 to 3 μm
aAs light absorption layer 3 and 1.55 μm or 1.3 μm
As the n − -InGaAs light absorption layer for absorbing the light of, the carrier concentration is preferably 10 15 to 5 × 10 15 c
m −3 , n − -InGaAs light absorption layer 4 having a layer thickness of 3 to 4 μm
After growing, the carrier concentration is preferably 3 × 10 15 to
10 16 cm −3 , n-InG having a layer thickness of 0.03 to 0.5 μm
An aAsP intermediate layer 5 is grown, and then, as a multiplication layer layer, carrier concentration is preferably 10 16 to 4 × 10 16 c.
An n + -InP multiplication layer 6 having a thickness of m −3 and a layer thickness of 0.5 to 3 μm is grown. Finally, the window layer is preferably an n − -InP window having a carrier concentration of 2 × 10 15 to 6 × 10 15 cm −3 and a layer thickness of 1 to 2 μm (this time, carrier concentration 5E15 cm −3 layer thickness 1.4 μm). Grow layer 7.
【0041】本実施例では、n−InP緩衝層2は、キ
ャリア濃度1015cm-3、層厚2μm、歪n−InGa
As光吸収層3は、キャリア濃度1015cm-3、層厚2
μm、n-−InGaAs光吸収層4は、キャリア濃度
3×1015cm-3、層厚4μm、n−InGaAsP中
間層5は、キャリア濃度1016cm-3、層厚0.5μ
m、n+−InP増倍層6は、キャリア濃度3×1016
cm-3、層厚1.4μm、n-−InP窓層7は、キャ
リア濃度5×1015cm-3、層厚1.4μm、として成
長させた。In this embodiment, the n-InP buffer layer 2 has a carrier concentration of 10 15 cm -3 , a layer thickness of 2 μm, and a strained n-InGa.
The As light absorption layer 3 has a carrier concentration of 10 15 cm −3 and a layer thickness of 2
μm, n − -InGaAs light absorption layer 4 has a carrier concentration of 3 × 10 15 cm −3 and a layer thickness of 4 μm, and the n-InGaAsP intermediate layer 5 has a carrier concentration of 10 16 cm −3 and a layer thickness of 0.5 μm.
The m, n + -InP multiplication layer 6 has a carrier concentration of 3 × 10 16
cm −3 , layer thickness 1.4 μm, and the n − -InP window layer 7 was grown at a carrier concentration of 5 × 10 15 cm −3 and layer thickness 1.4 μm.
【0042】このように成長を行ったエピタキシャルウ
ェハーの表面に、マスクをCVD法により成長し、ガー
ドリング8を例えばBeのイオン注入法により形成す
る。A mask is grown by the CVD method on the surface of the epitaxial wafer thus grown, and the guard ring 8 is formed by, for example, the ion implantation method of Be.
【0043】次に、ガードリング8に重なるように拡散
マスクの窓開けを行い、例えばZnの封止拡散により受
光部分に相当する1017〜1020cm-3のp+領域(p
−InP)9を選択的に形成する。Next, a window of a diffusion mask is opened so as to overlap the guard ring 8, and a p + region (p of 10 17 to 10 20 cm -3 corresponding to a light receiving portion is formed by, for example, Zn diffusion and diffusion.
-InP) 9 is selectively formed.
【0044】その後、表面側に通常の方法で絶縁膜10
を成長した後、p+領域9上の絶縁膜10に穴開けを行
いp側コンタクト電極11をたとえば蒸着法により形成
したのち、加熱処理を行う。p側コンタクト電極11を
覆うようにp側電極12を形成する。After that, the insulating film 10 is formed on the front surface side by a usual method.
After growing, the insulating film 10 on the p + region 9 is perforated to form a p-side contact electrode 11 by, for example, a vapor deposition method, and then heat treatment is performed. A p-side electrode 12 is formed so as to cover the p-side contact electrode 11.
【0045】続いてn−InP基板1の裏面に化学的方
法にてエッチングを行い、半径120μmないし150
μm程の凸型形状を形成し、レンズとする。Subsequently, the back surface of the n-InP substrate 1 is chemically etched to form a radius of 120 μm to 150 μm.
A convex shape of about μm is formed to form a lens.
【0046】このレンズの表面に反射防止膜15(AR
付きレンズ)を形成する。レンズを囲むようにn+−I
nP基板1の裏面にn側コンタクト電極13をたとえば
蒸着法により形成した後、加熱処理を行い、最後にnコ
ンタクト電極13を覆うようにn側電極14を形成す
る。An antireflection film 15 (AR
Lens). N + -I to surround the lens
After forming the n-side contact electrode 13 on the back surface of the nP substrate 1 by, for example, an evaporation method, heat treatment is performed, and finally the n-side electrode 14 is formed so as to cover the n-contact electrode 13.
【0047】このようにして製作した、歪InGaAs
とInGaAsの2つの光吸収層3、4を持つ裏面入射
型APDに1.65μmの光を入射すると、光は裏面の
レンズ15側からInP基板1、InP緩衝層2を透過
した後、歪n−InGaAs光吸収層3にて吸収され
る。ここで吸収された光によって生成されたキャリア
は、p側電極12とn電極14間に印加された電界によ
り加速されp側電極12に流れ、外部回路へと吐き出さ
れ光電流となる。Strained InGaAs manufactured in this way
When light of 1.65 μm is incident on the back-illuminated APD having two light absorption layers 3 and 4 of InGaAs and InGaAs, the light passes through the InP substrate 1 and the InP buffer layer 2 from the lens 15 side on the back surface, and then the strain n -It is absorbed by the InGaAs light absorption layer 3. The carriers generated by the light absorbed here are accelerated by the electric field applied between the p-side electrode 12 and the n-electrode 14, flow into the p-side electrode 12, and are discharged to an external circuit to become a photocurrent.
【0048】一方、1.55μm或いは1.3μmの光
を入射すると、光は裏面のレンズ15側からInP基板
1、InP緩衝層2を透過した後、歪n−InGaAs
光吸収層3およびInGaAs光吸収層4にて吸収され
る。ここで吸収された光によって生成されたキャリア
は、p側電極12とn電極14間に印加された電界によ
り加速されp側電極12に流れ、外部回路へと吐き出さ
れ光電流となる。つまり1.55/1.3μmの光は歪
n−InGaAs光吸収層3およびInGaAs光吸収
層4で、1.65μmの光は歪光吸収層3でそれぞれ吸
収後、光電変換されることとなる。On the other hand, when light of 1.55 μm or 1.3 μm is incident, the light passes through the InP substrate 1 and the InP buffer layer 2 from the lens 15 side on the back surface and then is strained n-InGaAs.
The light is absorbed by the light absorption layer 3 and the InGaAs light absorption layer 4. The carriers generated by the light absorbed here are accelerated by the electric field applied between the p-side electrode 12 and the n-electrode 14, flow into the p-side electrode 12, and are discharged to an external circuit to become a photocurrent. That is, the light of 1.55 / 1.3 μm is absorbed by the strained n-InGaAs light absorption layer 3 and the InGaAs light absorption layer 4, and the light of 1.65 μm is absorbed by the strained light absorption layer 3, and then photoelectrically converted. .
【0049】このような構造を採ることにより、1.6
5μmの光を0.85A/W以上の高い効率で吸収する
ことが可能となり、かつ1.55/1.3μmの光に対
しては高速応答が可能となる。また、InGaAs光吸
収層5とInP基板1との間に歪n−InGaAs光吸
収層3を挟むことで、格子不整合を抑えることができる
ため、20nA以下の低い暗電流特性が得られる。By adopting such a structure, 1.6
It becomes possible to absorb the light of 5 μm with high efficiency of 0.85 A / W or more, and to achieve high-speed response to the light of 1.55 / 1.3 μm. Further, since the lattice mismatch can be suppressed by sandwiching the strained n-InGaAs light absorption layer 3 between the InGaAs light absorption layer 5 and the InP substrate 1, a low dark current characteristic of 20 nA or less can be obtained.
【0050】また、本実施例の上記作用効果により、歪
n−InGaAs光吸収層3或いはInGaAs光吸収
層4にて生成されたキャリアはn+−InP増倍層6に
印加された電界により30倍以上の高い増倍率が得られ
る。Due to the above-described effects of this embodiment, the carriers generated in the strained n-InGaAs light absorption layer 3 or the InGaAs light absorption layer 4 are 30 by the electric field applied to the n + -InP multiplication layer 6. A high multiplication factor of more than twice can be obtained.
【0051】また、本実施例の上記効果は、気相成長法
によるエピタキシャルウェハー以外に、CVD法、MO
CVD法、MBE法、ALE法によるエピタキシャルウ
ェハーにおいても同様な作用効果が得られる。Further, the above-mentioned effects of this embodiment are obtained by the CVD method, the MO method, and the like in addition to the epitaxial wafer by the vapor phase growth method.
Similar effects can be obtained in epitaxial wafers formed by the CVD method, MBE method, and ALE method.
【0052】[0052]
【発明の効果】以上説明したように、本発明によれば、
下記記載の各種効果を奏するものである。As described above, according to the present invention,
It has various effects described below.
【0053】その第1の効果は、1.65μmの光を例
えば0.85A/W以上の高い効率で吸収することがで
きるということである。これは、本発明においては、
1.65μmの光に対しては、InGaAs光吸収層お
よび歪光吸収層の2つの層にて吸収されるため、高い受
光感度が得られることによる。The first effect is that the light of 1.65 μm can be absorbed with a high efficiency of, for example, 0.85 A / W or more. This is, in the present invention,
Light of 1.65 μm is absorbed by the two layers of the InGaAs light absorption layer and the strained light absorption layer, so that high light receiving sensitivity can be obtained.
【0054】本発明の第2の効果として、例えば20n
A以下の低い暗電流特性が得られるということである。
これは、本発明によれば、InGaAs光吸収層とIn
P基板との間に歪n-−InGaAs光吸収層を挟むこ
とで、格子不整合を抑えることができるためである。The second effect of the present invention is, for example, 20n.
This means that low dark current characteristics of A or less can be obtained.
According to the present invention, this is the InGaAs light absorption layer and In
This is because the lattice mismatch can be suppressed by sandwiching the strained n − -InGaAs light absorption layer with the P substrate.
【0055】本発明の第3の効果は、30倍以上の高い
増倍率が得られるということである。これは、歪n−I
nGaAs光吸収層或いはInGaAs光吸収層にて生
成されたキャリアはn+−InP増倍層に印加された電
界によりアバランシェ増倍を引き起こすからである。The third effect of the present invention is that a high multiplication factor of 30 times or more can be obtained. This is the distortion n-I
This is because the carriers generated in the nGaAs light absorbing layer or the InGaAs light absorbing layer cause avalanche multiplication by the electric field applied to the n + -InP multiplication layer.
【図1】本発明に係る半導体受光素子の一実施例の断面
を示す図である。FIG. 1 is a diagram showing a cross section of an embodiment of a semiconductor light receiving element according to the present invention.
【図2】本発明に係る半導体受光素子の一実施例の感度
分布を示す図である。FIG. 2 is a diagram showing a sensitivity distribution of an example of a semiconductor light receiving element according to the present invention.
【図3】本発明に係る半導体受光素子の第2の実施例の
断面を示す図である。FIG. 3 is a diagram showing a cross section of a second embodiment of a semiconductor light receiving element according to the present invention.
【図4】従来の半導体受光素子の断面を示す図である。FIG. 4 is a view showing a cross section of a conventional semiconductor light receiving element.
【図5】別の従来の半導体受光素子の断面を示す図であ
る。FIG. 5 is a view showing a cross section of another conventional semiconductor light receiving element.
1 n+−InP基板 2 n−InP緩衝層 3 歪n−InGaAs光吸収層 4 n−InGaAs光吸収層 5 n−InGaAsP中間層 6 n+−InP増倍層 7 n-−InP窓層 8 ガードリング 9 p+領域 10 絶縁膜 11 p側コンタクト電極 12 p側電極 13 n側コンタクト電極 14 n側電極 15 AR付きレンズ 16 Zn拡散領域 17 ポリイミド 18 Si3N4膜 19 SiO2膜 20 Au/Zn電極 21 Au/Cr電極 22 Au/Sn電極 23 緩和層 24 歪格子層 25 歪超格子層 26 InGaAsバッファ層 27 InAs/GaAs超格子光吸収層1 n + -InP substrate 2 n-InP buffer layer 3 strained n-InGaAs light absorption layer 4 n-InGaAs light absorption layer 5 n-InGaAsP intermediate layer 6 n + -InP multiplication layer 7 n -- InP window layer 8 guard Ring 9 p + region 10 Insulating film 11 p-side contact electrode 12 p-side electrode 13 n-side contact electrode 14 n-side electrode 15 lens with AR 16 Zn diffusion region 17 polyimide 18 Si 3 N 4 film 19 SiO 2 film 20 Au / Zn Electrode 21 Au / Cr electrode 22 Au / Sn electrode 23 Relaxation layer 24 Strained lattice layer 25 Strained superlattice layer 26 InGaAs buffer layer 27 InAs / GaAs superlattice light absorption layer
Claims (6)
InGaAs層と、第1導電型InGaAs層と、第1
導電型InP増倍層と、第1導電型InP窓層と、が順
次形成されてなるヘテロエピタキシャル層構造を備え、
更に、 前記窓層内及び/又は前記増倍層内に部分的に第2導電
型InP領域を設け、 前記窓層内の前記第2導電型InP領域上に設けられた
第2導電型電極と、 前記第1導電型InP基板に設けられた第1導電型電極
と、 を備えてなることを特徴とする半導体受光素子。1. A first conductivity type strained InGaAs layer, a first conductivity type InGaAs layer, and a first conductivity type InP substrate on a first conductivity type InP substrate.
A heteroepitaxial layer structure in which a conductivity type InP multiplication layer and a first conductivity type InP window layer are sequentially formed,
Furthermore, a second conductivity type InP region is partially provided in the window layer and / or the multiplication layer, and a second conductivity type electrode is provided on the second conductivity type InP region in the window layer. A semiconductor light receiving element comprising: a first conductivity type electrode provided on the first conductivity type InP substrate;
波長λが1.85μmとされ、前記第1導電型InGa
As層の吸収端波長λが1.65μmとされたことを特
徴とする請求項1記載の半導体受光素子。2. The first conductivity type InGa layer has an absorption edge wavelength λ of 1.85 μm, and the first conductivity type InGa layer has an absorption edge wavelength λ of 1.85 μm.
2. The semiconductor light receiving element according to claim 1, wherein the absorption edge wavelength λ of the As layer is 1.65 μm.
1μmないし5μmからなることを特徴とする請求項1
又は2記載の半導体受光素子。3. The first conductive strained InGaAs layer has a layer thickness of 1 μm to 5 μm.
Alternatively, the semiconductor light receiving element according to item 2.
1μmないし3μmからなることを特徴とする請求項1
又は2記載の半導体受光素子。4. The first conductivity type strained InGaAs layer has a layer thickness of 1 μm to 3 μm.
Alternatively, the semiconductor light receiving element according to item 2.
μmないし5μmからなることを特徴とする請求項1〜
3のいずれか一に記載の半導体受光素子。5. The layer thickness of the first conductivity type InGaAs layer is 2
It consists of μm to 5 μm.
3. The semiconductor light receiving element according to any one of 3 above.
aAs光吸収層との間に第1導電型歪InGaAs光吸
収層を挿入し、 導入された第1の波長の入射光については、前記第1導
電型InGaAs歪光吸収層で吸収し、前記第1の波長
の入射光よりも波長の短い第2の波長の入射光は、前記
第1導電型InGaAs光吸収層で吸収することを特徴
とする半導体受光素子。6. A first conductivity type InP substrate and a first conductivity type InG.
The first conductivity type strained InGaAs light absorption layer is inserted between the aAs light absorption layer and the introduced incident light of the first wavelength is absorbed by the first conductivity type InGaAs strained light absorption layer, and A semiconductor light receiving element characterized in that the incident light of a second wavelength, which is shorter than the incident light of the first wavelength, is absorbed by the first conductivity type InGaAs light absorption layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8103821A JP3031238B2 (en) | 1996-03-29 | 1996-03-29 | Semiconductor light receiving element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8103821A JP3031238B2 (en) | 1996-03-29 | 1996-03-29 | Semiconductor light receiving element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09270527A true JPH09270527A (en) | 1997-10-14 |
JP3031238B2 JP3031238B2 (en) | 2000-04-10 |
Family
ID=14364083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8103821A Expired - Fee Related JP3031238B2 (en) | 1996-03-29 | 1996-03-29 | Semiconductor light receiving element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3031238B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100464367B1 (en) * | 2002-01-08 | 2005-01-03 | 삼성전자주식회사 | Photodiode detector and fabrication method thereof |
JP2019075479A (en) * | 2017-10-17 | 2019-05-16 | 日本オクラロ株式会社 | Back illuminated semiconductor light receiving element, semiconductor light receiving device and manufacturing methods ot the same |
WO2022026638A3 (en) * | 2020-07-31 | 2022-03-10 | Apple Inc. | Wideband back-illuminated electromagnetic radiation detectors |
CN114823947A (en) * | 2022-03-28 | 2022-07-29 | 上海科技大学 | A kind of InP-based ultra-wide spectrum photodetector and preparation method thereof |
US12094986B1 (en) | 2021-08-25 | 2024-09-17 | Apple Inc. | Quantum-efficiency enhanced optical detector pixel having one or more optical scattering structures |
US12125865B2 (en) | 2021-03-31 | 2024-10-22 | Apple Inc. | Electromagnetic radiation detectors integrated with immersion lenses |
-
1996
- 1996-03-29 JP JP8103821A patent/JP3031238B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100464367B1 (en) * | 2002-01-08 | 2005-01-03 | 삼성전자주식회사 | Photodiode detector and fabrication method thereof |
JP2019075479A (en) * | 2017-10-17 | 2019-05-16 | 日本オクラロ株式会社 | Back illuminated semiconductor light receiving element, semiconductor light receiving device and manufacturing methods ot the same |
WO2022026638A3 (en) * | 2020-07-31 | 2022-03-10 | Apple Inc. | Wideband back-illuminated electromagnetic radiation detectors |
US12206032B2 (en) | 2020-07-31 | 2025-01-21 | Apple Inc. | Wideband back-illuminated electromagnetic radiation detectors |
US12125865B2 (en) | 2021-03-31 | 2024-10-22 | Apple Inc. | Electromagnetic radiation detectors integrated with immersion lenses |
US12094986B1 (en) | 2021-08-25 | 2024-09-17 | Apple Inc. | Quantum-efficiency enhanced optical detector pixel having one or more optical scattering structures |
CN114823947A (en) * | 2022-03-28 | 2022-07-29 | 上海科技大学 | A kind of InP-based ultra-wide spectrum photodetector and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3031238B2 (en) | 2000-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2601231B2 (en) | Superlattice avalanche photodiode | |
JP2762939B2 (en) | Superlattice avalanche photodiode | |
US8659053B2 (en) | Semiconductor light detecting element | |
Kagawa et al. | InGaAsP/InAlAs superlattice avalanche photodiode | |
JPH05160426A (en) | Semiconductor light receiving element | |
US5942771A (en) | Semiconductor photodetector | |
JP6542732B2 (en) | Evaluation method of light receiving element and element for evaluation | |
JPH08111541A (en) | Semiconductor device | |
Kagawa et al. | A wide-bandwidth low-noise InGaAsP-InAlAs superlattice avalanche photodiode with a flip-chip structure for wavelengths of 1.3 and 1.55 mu m | |
Jang et al. | Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction PiIN photodiodes | |
JP3031238B2 (en) | Semiconductor light receiving element | |
JP2000323746A (en) | Avalanche photodiode and its manufacture | |
JPH08274366A (en) | Semiconductor light receiving element | |
WO2000019544A1 (en) | Highly-doped p-type contact for high-speed, front-side illuminated photodiode | |
WO2006080153A1 (en) | Semiconductor light-receiving device and method for manufacturing same | |
JPH06232442A (en) | Semiconductor photodetector | |
JP2751846B2 (en) | Semiconductor light receiving element | |
JP2730472B2 (en) | Semiconductor light receiving element | |
Kim et al. | Improvement of dark current using InP/InGaAsP transition layer in large-area InGaAs MSM photodetectors | |
Jang et al. | The impact of a large bandgap drift region in long-wavelength metamorphic photodiodes | |
JPH051629B2 (en) | ||
JPH0964407A (en) | Semiconductor light receiving element | |
Wei et al. | Lateral high-speed metal-semiconductor-metal photodiodes on high-resistivity InGaAs | |
JPH10326907A (en) | Light reception element and its manufacture | |
JP2962069B2 (en) | Waveguide structure semiconductor photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000111 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |