[go: up one dir, main page]

JPH09266253A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09266253A
JPH09266253A JP8073727A JP7372796A JPH09266253A JP H09266253 A JPH09266253 A JP H09266253A JP 8073727 A JP8073727 A JP 8073727A JP 7372796 A JP7372796 A JP 7372796A JP H09266253 A JPH09266253 A JP H09266253A
Authority
JP
Japan
Prior art keywords
metal wiring
writing
layer
connection hole
connecting hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073727A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kato
義彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8073727A priority Critical patent/JPH09266253A/en
Publication of JPH09266253A publication Critical patent/JPH09266253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability upon the part in lower writing-in voltage in the state before writing-in a high resistance thin film layer by reducing the dispersion in the writing-in voltage induced by the underneath stepped part shape, in a non-volatile semiconductor memory using an anti-fuse. SOLUTION: This device is composed of an insulator layer 102 provided at least on a substrate 101, a lower part metallic wiring 103 on the insulator layer 102, insulating layers 104, 106 insulating the lower metallic wiring 103 and upper part metallic wirings 105, 109, a connecting hole 7 connecting the upper and lower part metallic wirings formed by isotropic etching step, a high resistant a-Si layer 108 formed in the connecting hole 107 and the upper part metallic wirings 105, 109. In such a constitution, the connecting part of on the connecting hole bottom can be minimized by forming the connecting hole using the isotropic etching step thereby enabling the writing-in part onto the high resistance a-Si layer to be limited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関す
る。
TECHNICAL FIELD The present invention relates to a semiconductor device.

【0002】[0002]

【従来の技術】不揮発性半導体記憶装置としてアンチヒ
ューズをもちいたデバイスがある。図2は従来の金属配
線間に形成されたa−Siを用いたアンチヒューズを有
する半導体装置の断面図である。以下図2に従って従来
技術でのアンチヒューズを有する半導体装置の構造を説
明する。201は基板であり、例えばシリコン基板をも
ちいる。202は第1絶縁層である。205は第2金属
配線であり、206は第2絶縁層206である。接続孔
207は従来技術であるウェットエッチング、ドライエ
ッチング法の組み合わせで形成する。接続孔207は回
路設計の自由度を高める為にも、第2金属配線205上
であれば、素子分離領域202、ゲート電極203によ
る下地段差によらず形成されることが望ましい。208
はアンチヒューズ部で例えば高抵抗a−Si層を用い、
第2、第3金属配線層205、209ではさみこむ構造
となる。上記従来技術の詳細は特開平03−15305
6参照のこと。
2. Description of the Related Art There is a device using an antifuse as a nonvolatile semiconductor memory device. FIG. 2 is a cross-sectional view of a conventional semiconductor device having an anti-fuse using a-Si formed between metal wirings. The structure of a semiconductor device having an antifuse according to the related art will be described below with reference to FIG. 201 is a substrate, for example, a silicon substrate is used. 202 is a first insulating layer. Reference numeral 205 is a second metal wiring, and 206 is a second insulating layer 206. The connection hole 207 is formed by a combination of conventional wet etching and dry etching methods. In order to increase the degree of freedom in circuit design, it is desirable that the connection hole 207 be formed on the second metal wiring 205 regardless of the step difference between the element isolation region 202 and the gate electrode 203. 208
Is a high resistance a-Si layer in the antifuse part,
The second and third metal wiring layers 205 and 209 have a sandwiching structure. Details of the above-mentioned prior art are described in JP-A-03-15305.
See 6.

【0003】[0003]

【発明が解決しようとする課題】従来技術での半導体装
置では、a−Siを有すべき接続孔がウェット・ドライ
法で形成され、接続孔がある面積、例えば直径0.8μ
mの円形を持っている構造であり、下地段差に対し制限
を持たずに形成することが望ましい点から、書き込み電
圧のばらつきやそれにともなう書き込み後抵抗のばらつ
きを引き起こす問題がある。以下に前記問題の詳細な原
因について説明する。
In the semiconductor device of the prior art, the connection hole which should have a-Si is formed by the wet / dry method, and the area having the connection hole, for example, 0.8 μm in diameter.
Since it is a structure having a circle of m, and it is desirable to form it without limitation on the step difference of the underlying layer, there is a problem of causing variations in the write voltage and variations in the post-writing resistance. The detailed causes of the above problems will be described below.

【0004】a−Siを用いたアンチヒューズの書き込
みは高抵抗a−Siをはさむ一方の金属配線層に電圧を
印加することにより発生する熱でa−Siと金属配線層
のシリサイド反応を起こさせ、導通状態にすることをい
う。従って、ある一定以上の電界強度により書き込みが
行われ、一般的には接続孔エッジ部分のみのごく小さい
面積で書き込みが起こる。図2に示すような平面上に形
成されるアンチヒューズと下地段差による斜面上で形成
されるアンチヒューズを比較してみる。平面上に形成さ
れるアンチヒューズでは接続孔壁面と接続孔底の金属配
線層のなす角度はおよそ直角であるのに対し、斜面上に
形成されるアンチヒューズでその角度は傾斜下側部分で
は鋭角となり、斜面上側部分では反対に鈍角となる。こ
の場合、斜面上に形成されたアンチヒューズの斜面下側
部分は、a−Siにかかる実効的な電界強度が他の下地
段差上に形成されるアンチヒューズの場合と比較して高
くなり、書き込みに要する電圧が低くなる。しかし、外
部から印可する書き込み電圧は簡便のため、下地形状に
依存せず一定であり、書き込み電圧の高いパターンを基
準に設定することから、斜面上に形成されるアンチヒュ
ーズでは実効的に高い電界強度がかかり、書き込み電圧
が低くなる。さらに、シリサイド反応を起こす面積が大
きくなり書き込み後抵抗が他のパターンより低くなる。
このようにして書き込み電圧、書き込み後抵抗のばらつ
きが起こる。書き込み電圧のばらつきの問題点は、低い
書き込み電圧となるアンチヒューズ部分では、電源電圧
でも、a−Siにかかる実効電界強度が高く、ストレス
が大きくなり、書き込み前の絶縁状態での信頼性を劣化
させることにある。
Writing of an anti-fuse using a-Si causes a silicide reaction between a-Si and the metal wiring layer by heat generated by applying a voltage to one metal wiring layer sandwiching a high resistance a-Si. , Refers to bringing into conduction. Therefore, writing is performed with an electric field strength higher than a certain level, and generally writing occurs in a very small area only at the edge portion of the connection hole. A comparison will be made between an antifuse formed on a plane as shown in FIG. 2 and an antifuse formed on a slope due to a step difference in the base. In the case of an antifuse formed on a flat surface, the angle between the wall surface of the contact hole and the metal wiring layer at the bottom of the contact hole is approximately a right angle, whereas in the case of an antifuse formed on a slope, the angle is an acute angle in the lower part of the slope. Therefore, the upper side of the slope has an obtuse angle. In this case, in the lower portion of the slope of the antifuse formed on the slope, the effective electric field strength applied to a-Si is higher than that of the antifuse formed on another underlying step, and writing The voltage required for However, since the write voltage applied from the outside is simple and constant, it does not depend on the underlying shape, and since the pattern with a high write voltage is set as a reference, the antifuse formed on the slope effectively has a high electric field. The strength is increased and the writing voltage is lowered. Furthermore, the area in which the silicide reaction occurs is large and the resistance after writing is lower than that of other patterns.
In this way, the writing voltage and the resistance after writing vary. The problem of variation in write voltage is that in the antifuse part where the write voltage is low, the effective electric field strength applied to a-Si is high and the stress is large even at the power supply voltage, and the reliability in the insulation state before writing is deteriorated. Is to let.

【0005】本発明はこのような課題を解決するもので
あり、目的とするところは書き込み電圧のばらつきを、
接続孔形成場所の下地段差に制限されないままで、低減
でき、a−Si膜書き込み前の絶縁状態での信頼性を向
上させた半導体装置を提供することである。
The present invention is intended to solve such a problem, and an object of the present invention is to prevent variations in write voltage.
It is an object of the present invention to provide a semiconductor device which can be reduced without being restricted by the underlying step at the place where a connection hole is formed and which has improved reliability in an insulating state before writing an a-Si film.

【0006】[0006]

【課題を解決するための手段】少なくとも基板上に設け
られた絶縁体層、前記絶縁体層上の下部金属配線層、上
下2層の金属配線層間の接続について、前記金属配線間
接点は極小化され、点状で接触する構造を有する接続
孔、接続孔内に形成された高抵抗薄膜層、上部金属配線
層から成ることを特徴とした半導体装置。
At least for an insulating layer provided on a substrate, a lower metal wiring layer on the insulating layer, and a connection between upper and lower two metal wiring layers, the metal wiring indirect points are minimized. A semiconductor device comprising a contact hole having a point-like contact structure, a high resistance thin film layer formed in the contact hole, and an upper metal wiring layer.

【0007】[0007]

【発明の実施の形態】以下に、本発明の実施例を図面に
基づいて説明する。図1は本発明による半導体装置の断
面図を示す。シリコン基板からなる基板101上に素子
分離領域102を熱酸化により形成する。第1金属配線
103をたとえばポリSiを用いて形成する。図1に示
すような素子分離領域102上に第1金属配線103が
配置されると、基板101に対し、段差がおよそ500
0Åの高さとなる。104は第1絶縁層で、例えば酸化
シリコンで形成される。105は第2金属配線であり、
おもにスパッタ法で例えばAl−Cu、前記Al−Cu
の上層に例えばTiNを用いて形成される。106は第
2絶縁層でおもに、化学的気相法を用いて二酸化シリコ
ンで形成される。107は第2金属配線105と第3金
属配線109を接続するための接続孔であり、等方性エ
ッチングのみを用いて形成し、第2金属配線105表面
が露出するまでエッチングを行う。したがって接続孔1
07形状はすりばち上になり、露出する第2金属配線1
05は点状で例えば直径0.2μmの極小接点が形成さ
れる。前記手段で接続孔107を形成することにより、
第2金属配線105段差が平面でも、斜面の場合でも上
記極小接点が同様に形成される。接続孔107の形成方
法は例えばフッ酸水溶液を用いたウェットエッチング
法、CF4ガスを用いたドライエッチング法、あるいは
上記ドライエッチングとウェットエッチングの組み合わ
せを用いる。第2絶縁層106の膜厚は下地段差形状に
より異なる場合があるが、例えば5000Åから800
0Åでばらつく。この場合は等方性エッチングを行った
場合、第2絶縁層106の膜厚の薄い部分でエッチング
が過剰にかかり、膜厚の厚い部分と比較して、接続孔径
を大きくする可能性がある。この課題に対しては例えば
素子分離領域102、第1金属配線103段差による第
2金属配線205斜面上に形成される第2絶縁層が薄い
ところの接続孔107については、従来のフォト工程の
パターニングの際に用いるマスク寸法を、接続孔径、例
えば通常0.8μmであるところを0.6μmと縮小す
る。エッチングレートはエッチング化学種の被エッチン
グ物質への供給速度、反応速度、表面からの脱着速度に
より決まるものであり、被エッチング面積を下げること
でエッチレートを下げることができ、前記マスクサイズ
の変更でエッチング量をコントロールして、接続孔径を
一定にできる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a sectional view of a semiconductor device according to the present invention. An element isolation region 102 is formed on a substrate 101 made of a silicon substrate by thermal oxidation. The first metal wiring 103 is formed by using, for example, poly Si. When the first metal wiring 103 is arranged on the element isolation region 102 as shown in FIG. 1, a step difference with respect to the substrate 101 is about 500.
The height is 0Å. A first insulating layer 104 is formed of, for example, silicon oxide. 105 is a second metal wiring,
Mainly by sputtering, for example, Al-Cu, the above Al-Cu
The upper layer is formed by using, for example, TiN. Reference numeral 106 denotes a second insulating layer, which is mainly made of silicon dioxide by using a chemical vapor deposition method. Reference numeral 107 denotes a connection hole for connecting the second metal wiring 105 and the third metal wiring 109, which is formed using only isotropic etching, and etching is performed until the surface of the second metal wiring 105 is exposed. Therefore, the connection hole 1
The second metal wiring 1 in which the 07 shape is on the ridge and is exposed
Reference numeral 05 is a dot shape, and a minimum contact having a diameter of 0.2 μm, for example, is formed. By forming the connection hole 107 by the above means,
Even if the step of the second metal wiring 105 is flat or sloped, the above-mentioned minimum contact is formed in the same manner. As a method of forming the connection hole 107, for example, a wet etching method using a hydrofluoric acid aqueous solution, a dry etching method using a CF 4 gas, or a combination of the above dry etching and wet etching is used. The film thickness of the second insulating layer 106 may vary depending on the shape of the underlying step, for example, 5000 Å to 800
It varies with 0Å. In this case, when the isotropic etching is performed, the etching is excessively performed on the thin portion of the second insulating layer 106, which may increase the diameter of the connection hole as compared with the thick portion. To solve this problem, for example, for the connection hole 107 where the second insulating layer formed on the slope of the second metal wiring 205 due to the step difference between the element isolation region 102 and the first metal wiring 103 is thin, patterning in the conventional photo process is performed. The mask size used in this case is reduced to 0.6 μm at the connection hole diameter, which is usually 0.8 μm. The etching rate is determined by the supply rate of the etching chemical species to the material to be etched, the reaction rate, and the rate of desorption from the surface.By decreasing the area to be etched, the etch rate can be lowered. The connection hole diameter can be made constant by controlling the etching amount.

【0008】108はアンチヒューズを構成する高抵抗
a−Si層であり、例えば化学気相法により形成され
る。109は第3金属配線であり、例えばスパッタ法で
形成され下層にTiN、上層にAl−Cuとする。以
上、本発明の半導体装置の構造を説明した。
Reference numeral 108 is a high resistance a-Si layer which constitutes an antifuse, and is formed by, for example, a chemical vapor deposition method. Reference numeral 109 denotes a third metal wiring, which is formed by, for example, a sputtering method and has TiN as a lower layer and Al—Cu as an upper layer. The structure of the semiconductor device of the present invention has been described above.

【0009】[0009]

【発明の効果】本発明の半導体装置について接続孔の開
口部を極小化し、点状にすることにより、アンチヒュー
ズ書き込みの際のシリサイドの起こる場所を限定でき
る。これにより書き込み電圧の下地段差依存をなくし、
従来書き込み電圧の低い部分での高抵抗a−Si膜の書
き込み前状態での信頼性向上に有用となる。あわせて、
接続孔形成に等方性エッチングを用いることで上部金属
配線のつきまわりが良好となり、金属配線および接続孔
コンタクト信頼性の向上に寄与する。
In the semiconductor device of the present invention, by minimizing the opening of the connection hole and forming it into a dot shape, the place where silicide occurs during antifuse writing can be limited. This eliminates the dependency of the write voltage on the underlying step,
This is useful for improving the reliability of the high resistance a-Si film in the state before the writing in the portion where the conventional writing voltage is low. In addition,
By using the isotropic etching for forming the contact hole, the throwing power of the upper metal wiring becomes good, which contributes to the improvement of the reliability of the metal wiring and the contact of the contact hole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device of the present invention.

【図2】従来の半導体装置の断面図である。FIG. 2 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

101、201 基板 102、202 素子分離領域 103、203 第1金属配線 104、204 第1絶縁層 105、205 第2金属配線 106、206 第2絶縁層 107、207 接続孔 108、208 高抵抗a−Si層 109、209 第3金属配線 101, 201 Substrate 102, 202 Element isolation region 103, 203 First metal wiring 104, 204 First insulating layer 105, 205 Second metal wiring 106, 206 Second insulating layer 107, 207 Connection hole 108, 208 High resistance a- Si layer 109, 209 Third metal wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも基板上に設けられた絶縁体層、
前記絶縁体層上の下部金属配線、前記下部金属配線と上
部金属配線間を絶縁する絶縁層、等方性エッチングより
形成した上部、下部金属配線間を接続する接続孔、接続
孔内に形成した高抵抗薄膜層、前記上部金属配線からな
ることを特徴とした半導体装置。
1. An insulator layer provided on at least a substrate,
A lower metal wiring on the insulator layer, an insulating layer for insulating between the lower metal wiring and the upper metal wiring, an upper portion formed by isotropic etching, a connection hole for connecting the lower metal wiring, and a connection hole formed in the connection hole. A semiconductor device comprising a high resistance thin film layer and the upper metal wiring.
JP8073727A 1996-03-28 1996-03-28 Semiconductor device Pending JPH09266253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073727A JPH09266253A (en) 1996-03-28 1996-03-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073727A JPH09266253A (en) 1996-03-28 1996-03-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09266253A true JPH09266253A (en) 1997-10-07

Family

ID=13526558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073727A Pending JPH09266253A (en) 1996-03-28 1996-03-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09266253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258689A (en) * 2006-02-23 2007-10-04 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2013016817A (en) * 2006-02-23 2013-01-24 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258689A (en) * 2006-02-23 2007-10-04 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2013016817A (en) * 2006-02-23 2013-01-24 Semiconductor Energy Lab Co Ltd Semiconductor device
KR101350204B1 (en) * 2006-02-23 2014-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8642987B2 (en) 2006-02-23 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101420606B1 (en) * 2006-02-23 2014-07-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device

Similar Documents

Publication Publication Date Title
KR930005949B1 (en) Process for fabricating semiconductor device
US5585662A (en) Semiconductor integrated circuit device with breakable fuse element covered with exactly controlled insulating film
US6794757B1 (en) Structure and method of forming an enlarged head on a plug to eliminate the enclosure requirement
US20090212345A1 (en) Semiconductor Device and Method for Manufacturing the Same
KR900002084B1 (en) Semiconductor device
US5502336A (en) Semiconductor device and manufacturing method thereof
JPH09266253A (en) Semiconductor device
JP2633815B2 (en) Semiconductor element manufacturing method
KR20030009126A (en) Semiconductor device and production method thereof
KR100243280B1 (en) Gate pattern of semiconductor device &fabrication method thereof
JPH10289951A (en) Semiconductor device and manufacture thereof
JP2000049160A (en) Semiconductor device wiring and method of manufacturing the same
KR100461335B1 (en) Contact formation method of semiconductor device
KR100333539B1 (en) Micro contact hole formation method of semiconductor device
KR960011250B1 (en) Semiconductor contact device manufacturing method
US20020000634A1 (en) Connection element
KR100242468B1 (en) Semiconductor device and manufacturing method thereof
JP2755263B2 (en) Method for manufacturing semiconductor device
KR19990055173A (en) Capacitor Formation Method for Semiconductor Devices
KR19990057324A (en) Method of forming fine contact hole in semiconductor device
JPH01144671A (en) Manufacture of semiconductor memory device
JPH1032242A (en) Manufacture of semiconductor device
JPH09172089A (en) Nonvolatile semiconductor memory device
JPH03203321A (en) Manufacture of semiconductor integrated circuit
JPS63244647A (en) Manufacture of semiconductor device containing electric fuse