JPH09266005A - Solid high polymer fuel cell system - Google Patents
Solid high polymer fuel cell systemInfo
- Publication number
- JPH09266005A JPH09266005A JP8076203A JP7620396A JPH09266005A JP H09266005 A JPH09266005 A JP H09266005A JP 8076203 A JP8076203 A JP 8076203A JP 7620396 A JP7620396 A JP 7620396A JP H09266005 A JPH09266005 A JP H09266005A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- catalyst
- fuel cell
- electrode
- carbon monoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 100
- 239000007787 solid Substances 0.000 title claims abstract description 17
- 229920000642 polymer Polymers 0.000 title claims description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 84
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 74
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 73
- 230000001590 oxidative effect Effects 0.000 claims abstract description 26
- 239000007800 oxidant agent Substances 0.000 claims abstract description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000002407 reforming Methods 0.000 claims abstract description 15
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 9
- 239000003792 electrolyte Substances 0.000 claims abstract description 8
- 239000002737 fuel gas Substances 0.000 claims abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001260 Pt alloy Inorganic materials 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 36
- 239000005518 polymer electrolyte Substances 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 3
- 229920005597 polymer membrane Polymers 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 3
- 229920006254 polymer film Polymers 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 42
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 238000007254 oxidation reaction Methods 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 14
- 210000005056 cell body Anatomy 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910001066 Pu alloy Inorganic materials 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は固体高分子燃料電池
システムにおいて、特に電極触媒として白金合金を用い
た燃料極に供給される改質ガスを改良して炭化水素ある
いはアルコール系燃料に適するようにした固体高分子燃
料電池システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell system, and more particularly, to improve a reformed gas supplied to a fuel electrode using a platinum alloy as an electrode catalyst so as to be suitable for a hydrocarbon or alcohol fuel. The present invention relates to a solid polymer fuel cell system.
【0002】[0002]
【従来の技術】従来、燃料に有する化学エネルギーを直
接電気エネルギーに変換するシステムとして、燃料電池
が知られている。この燃料電池は、通常電解質の種類に
よって種々の方式が試みられている。2. Description of the Related Art Conventionally, a fuel cell is known as a system for directly converting chemical energy contained in fuel into electric energy. For this fuel cell, various systems are usually tried depending on the type of electrolyte.
【0003】ところで、固体高分子燃料電池は、ナフィ
オン等の固体高分子を電解質として、その電解質層を挟
んで燃料極と酸化剤極とからなる一対の多孔質電極を対
向させて燃料電池を形成し、燃料極の背面には空気等の
酸化剤を接触させることにより、このときに生じる電気
化学反応を利用して化学エネルギーを電気エネルギーに
変換するものである。By the way, in a solid polymer fuel cell, a solid polymer such as Nafion is used as an electrolyte, and a pair of porous electrodes composed of a fuel electrode and an oxidizer electrode are opposed to each other with the electrolyte layer sandwiched therebetween to form a fuel cell. However, by bringing an oxidizer such as air into contact with the back surface of the fuel electrode, the electrochemical energy generated at this time is used to convert chemical energy into electric energy.
【0004】この固体高分子燃料電池は電解質が固体高
分子で構成されているため、構造がシンプルで、かつ高
電流密度化が達成できる。従って、システム全体をコン
パクトにできることから、車載用電源として期待でき、
盛んに実用化のための研究がなされている。Since the electrolyte of this solid polymer fuel cell is composed of a solid polymer, the structure is simple and a high current density can be achieved. Therefore, because the entire system can be made compact, it can be expected as an in-vehicle power supply,
Research for practical use is being actively conducted.
【0005】また、燃料極、酸化剤極共に白金等の貴金
属が電極触媒として使用されており、上述の電気化学反
応の速度を大きくするように工夫されている。この場
合、作動温度は通常100℃程度以下で比較的マイルド
な条件で高い電流密度が実現されている。Noble metals such as platinum are used as electrode catalysts for both the fuel electrode and the oxidizer electrode, and they are devised to increase the rate of the above-mentioned electrochemical reaction. In this case, the operating temperature is usually about 100 ° C. or less, and a high current density is realized under a relatively mild condition.
【0006】このような固体高分子燃料電池は、上述の
燃料極の電極触媒が改質燃料ガス中の極微量(ppmオ
ーダ)の一酸化炭素によっても被毒され、たちまち性能
が低下し、使用に耐えられなくなる。[0006] In such a polymer electrolyte fuel cell, the electrode catalyst of the fuel electrode is poisoned by a very small amount (ppm order) of carbon monoxide in the reformed fuel gas, and the performance immediately deteriorates. Can not stand.
【0007】このため、電極触媒に改良が加えられ、例
えば白金ールテニウム合金を用いれば耐CO被毒性が幾
分向上することが知られているが、それでも数百ppm
程度の一酸化炭素が存在すると性能低下が起こり、実用
化が困難である。[0007] Therefore, it is known that the electrode catalyst is improved, and if, for example, a platinum ruthenium alloy is used, the CO poisoning resistance is somewhat improved, but it is still several hundred ppm.
When carbon monoxide is present to some extent, the performance is deteriorated and it is difficult to put it into practical use.
【0008】従って、このままでは純水素を燃料とする
特殊な用途にしか実用化されていないのが現状である。
一方、汎用性のある燃料電池としては、燃料に天然ガ
ス、都市ガス等の炭化水素燃料、あるいはメタノール等
のアルコール燃料が適用できることが必要で、この種の
原燃料は水蒸気改質することにより水素を主成分とする
改質燃料ガスに変換して燃料電池に供給される。Therefore, under the present circumstances, it has been practically used only for a special purpose using pure hydrogen as a fuel.
On the other hand, as a versatile fuel cell, it is necessary that a hydrocarbon fuel such as natural gas or city gas, or an alcohol fuel such as methanol can be applied to the fuel, and this kind of raw fuel is hydrogenated by steam reforming. Is converted into reformed fuel gas containing as a main component and supplied to the fuel cell.
【0009】[0009]
【発明が解決しようとする課題】従来広く行われている
水蒸気改質技術をメタノールを原燃料とする場合を例に
して説明すると次の通りである。Cu−ZnO等の触媒
存在下で300〜350℃にてメタノールと水蒸気を反
応させて水素を主成分とする改質ガスに変換するが、更
にCu系等の触媒を用いて200〜250℃で反応させ
て一酸化炭素を低下させている。これを反応式で示せば
(1),(2)のようになる。The steam reforming technology that has been widely used in the past will be described below by taking the case of using methanol as a raw fuel as an example. In the presence of a catalyst such as Cu-ZnO or the like, methanol and water vapor are reacted at 300 to 350 ° C to convert it into a reformed gas containing hydrogen as a main component. Further, a Cu-based catalyst or the like is used at 200 to 250 ° C. It reacts to reduce carbon monoxide. If this is expressed by a reaction formula, it becomes like (1) and (2).
【0010】[0010]
【数1】 [Equation 1]
【0011】上記(2)式の反応は発熱反応であり、低
温にすれば平衡は右辺に移行し、一酸化炭素濃度を下げ
ることができるが、低温にすれば反応は遅くなり、現状
では200℃程度が限度である。この結果、一酸化炭素
濃度は0.1%〜0.5%程度が実現できるが、上述の
数百ppm程度さえ達成できない。The reaction of the above equation (2) is an exothermic reaction, and the equilibrium shifts to the right side when the temperature is low, and the carbon monoxide concentration can be lowered, but the reaction becomes slow when the temperature is low, and at present, 200 The limit is about ℃. As a result, a carbon monoxide concentration of about 0.1% to 0.5% can be achieved, but even the above-mentioned several hundreds of ppm cannot be achieved.
【0012】このため、極低濃度まで一酸化炭素を下げ
るためには特別な精製工程が必要になる。純度の良い水
素を多量に必要とする化学工業では、例えばPSA(圧
力スウィング吸着法)等により一酸化炭素がppmオー
ダまで除去されているが、大規模な場合にのみ経済的に
役立つ。また、経済性を重視しない場合は例えば実験室
的には膜分離等により除去することが可能である。Therefore, a special refining step is required to reduce carbon monoxide to an extremely low concentration. In the chemical industry that requires a large amount of high-purity hydrogen, carbon monoxide is removed to the ppm order by PSA (pressure swing adsorption method) or the like, but it is economically useful only in a large scale. Further, when economic efficiency is not important, for example, in a laboratory, it can be removed by membrane separation or the like.
【0013】他方、固体高分子燃料電池の場合、規模的
には数百kW程度であり、200kWを例にとれば必要
水素は200Nm3 /H程度であり、コストパーフォー
マンスの良い精製法がなく、炭化水素、アルコール等を
燃料とする固体高分子燃料電池システムはなかなか実現
し難い。On the other hand, in the case of a solid polymer fuel cell, the scale is about several hundred kW, and if 200 kW is taken as an example, the required hydrogen is about 200 Nm 3 / H, and there is no purification method with good cost performance. It is difficult to realize a polymer electrolyte fuel cell system using hydrocarbons, alcohols, etc. as fuel.
【0014】本発明は上記の問題点を解決すべくなされ
たもので、電池燃料極に供給される改質燃料ガスの一酸
化炭素濃度を実用レベルまで下げることにより、小型で
経済的かつ長時間安定に運転できる固体高分子燃料電池
システムを提供することを目的とする。The present invention has been made to solve the above-mentioned problems, and by reducing the carbon monoxide concentration of the reformed fuel gas supplied to the cell fuel electrode to a practical level, it is compact, economical and for a long time. An object is to provide a polymer electrolyte fuel cell system that can be stably operated.
【0015】[0015]
【課題を解決するための手段】本発明は上記の目的を達
成するため次のような手段により固体高分子燃料電池シ
ステムを構成するものである。請求項1に対応する発明
は、炭化水素或いはアルコール系燃料を改質する燃料改
質系とこの燃料改質系で改質された改質燃料ガスが導入
される電池燃料極の電極触媒として白金合金、酸化剤が
導入される電池酸化剤極の触媒として白金及び電解質と
して固体高分子膜を用いた燃料電池本体とから構成され
る固体高分子燃料電池システムにおいて、前記燃料改質
系に一酸化炭素を選択的に酸化するための触媒層を設け
る。In order to achieve the above object, the present invention constitutes a solid polymer fuel cell system by the following means. The invention corresponding to claim 1 is a fuel reforming system for reforming a hydrocarbon or alcohol fuel, and platinum as an electrode catalyst of a cell fuel electrode into which reformed fuel gas reformed by this fuel reforming system is introduced. In a solid polymer fuel cell system comprising an alloy, platinum as a catalyst of a battery oxidizer electrode into which an oxidant is introduced, and a fuel cell main body using a solid polymer membrane as an electrolyte, monoxide is added to the fuel reforming system. A catalyst layer for selectively oxidizing carbon is provided.
【0016】請求項2に対応する発明は、請求項1に対
応する発明の一酸化炭素を選択的に酸化する触媒層を白
金担持触媒から構成する。請求項3に対応する発明は、
請求項1に対応する発明の一酸化炭素を選択的に酸化す
る触媒層をルテニウム担持触媒から構成する。The invention according to claim 2 is such that the catalyst layer for selectively oxidizing carbon monoxide according to the invention according to claim 1 comprises a platinum-supported catalyst. The invention corresponding to claim 3 is
The catalyst layer for selectively oxidizing carbon monoxide of the invention according to claim 1 is composed of a ruthenium-supported catalyst.
【0017】請求項4に対応する発明は、請求項1に対
応する発明の一酸化炭素を選択的に酸化する触媒層を白
金担持触媒とルテニウム担持触媒の混合物から構成す
る。請求項5に対応する発明は、請求項1に対応する発
明の一酸化炭素を選択的に酸化する触媒層を白金担持触
媒、ルテニウム担持触媒、白金担持触媒とルテニウム担
持触媒の混合物の何ずれかの触媒と銅ー酸化銅触媒とか
ら構成する。The invention according to claim 4 comprises a catalyst layer for selectively oxidizing carbon monoxide according to the invention according to claim 1, which is composed of a mixture of a platinum-supported catalyst and a ruthenium-supported catalyst. In the invention corresponding to claim 5, the catalyst layer for selectively oxidizing carbon monoxide of the invention according to claim 1 is formed of platinum-supported catalyst, ruthenium-supported catalyst, or a mixture of platinum-supported catalyst and ruthenium-supported catalyst. And a copper-copper oxide catalyst.
【0018】請求項6に対応する発明は、請求項1に対
応する発明の一酸化炭素を選択的に酸化する触媒層の温
度を100℃〜250℃とする。請求項7に対応する発
明は、請求項1に対応する発明の一酸化炭素を酸化する
ための空気又は酸素をO2 /CO=0.5〜3.0の範
囲で供給する。According to the invention of claim 6, the temperature of the catalyst layer for selectively oxidizing carbon monoxide of the invention of claim 1 is 100 ° C. to 250 ° C. Invention corresponding to claim 7 supplies air or oxygen for the oxidation of carbon monoxide invention corresponding to claim 1 in the range of O 2 /CO=0.5~3.0.
【0019】請求項8に対応する発明は、請求項1に対
応する発明の触媒層へ供給する空気又は酸素源として電
池酸化剤極の排ガスを用いる。従って、上記請求項1乃
至請求項8に対応する発明の固体高分子燃料電池システ
ムにあっては、電池入口のCO濃度が50ppm 以下にで
きるので、燃料電池本体の性能及び耐久性が大幅に向上
し、さらに触媒によるCO選択酸化方式はシステムをコ
ンパパクトにすると共に、他の方法と比較してエネルギ
ーの有効利用を図ることが可能である。The invention according to claim 8 uses the exhaust gas of the battery oxidizer electrode as the air or oxygen source supplied to the catalyst layer of the invention according to claim 1. Therefore, in the polymer electrolyte fuel cell system of the invention according to any one of claims 1 to 8, since the CO concentration at the cell inlet can be 50 ppm or less, the performance and durability of the fuel cell body are significantly improved. In addition, the CO selective oxidation method using a catalyst can make the system compact and make effective use of energy as compared with other methods.
【0020】[0020]
【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1はメタノールを燃料とする固体
高分子燃料電池システムの構成例を示す系統図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing a configuration example of a polymer electrolyte fuel cell system using methanol as a fuel.
【0021】図1において、1は電解質を固体固体高分
子として燃料極触媒として白金合金を用いた電池燃料極
2及び酸化剤極触媒として白金を用いた電池酸化剤極3
を有する燃料電池本体で、この燃料電池本体1には発熱
部を冷却する水冷却部4が形成され、この水冷却部4に
水処理装置5を通して冷却水が供給される。6は水冷却
部4で燃料電池本体1の発熱部を冷却した水が補給水と
して供給される蒸気発生器である。In FIG. 1, reference numeral 1 is a battery fuel electrode 2 using an electrolyte as a solid polymer and a platinum alloy as a fuel electrode catalyst, and a battery oxidizer electrode 3 using platinum as an oxidizer electrode catalyst.
In the fuel cell body having the above, a water cooling unit 4 for cooling the heat generating portion is formed in the fuel cell body 1, and cooling water is supplied to the water cooling unit 4 through a water treatment device 5. Reference numeral 6 is a steam generator to which water for cooling the heat generating portion of the fuel cell body 1 by the water cooling portion 4 is supplied as makeup water.
【0022】また、7はメタノール燃料Mが供給され、
このメタノール燃料Mを加熱して気化する加熱蒸発器、
8はこの加熱蒸発器7で気化したメタノール気体に蒸気
発生器6で発生した水蒸気Sを適当な比で混合して供給
される改質器で、この改質器8はメタノール気体及び水
蒸気の混合気体を改質触媒層で反応させて水素を主成分
とする改質ガスGに変換するものである。Further, 7 is supplied with methanol fuel M,
A heating evaporator that heats and vaporizes this methanol fuel M,
Reference numeral 8 is a reformer that is supplied by mixing the vaporized methanol gas in the heating evaporator 7 with the steam S generated in the steam generator 6 at an appropriate ratio. The reformer 8 mixes methanol gas and steam. The gas is reacted in the reforming catalyst layer to be converted into the reformed gas G containing hydrogen as a main component.
【0023】さらに、9は改質器8より改質ガスGが供
給され、この改質ガスGに含まれる一酸化炭素(CO)
ガスを低下させる一酸化炭素(CO)変成器、10はこ
のCO変成器でCOガスを低下させた改質ガスGを冷却
する熱交換器、11はこの熱交換器10により冷却され
た改質ガスGに燃料電池本体1の電池酸化剤極3より排
出される酸素を含んだ酸化剤極排ガスの一部と混合され
て供給される一酸化炭素(CO)選択酸化触媒層で、こ
のCO選択酸化触媒層11はCOを選択してその濃度を
低減させ、燃料電池本体1の電池燃料極2に導入する。Further, 9 is supplied with reformed gas G from the reformer 8 and carbon monoxide (CO) contained in the reformed gas G is supplied.
A carbon monoxide (CO) shifter for reducing the gas, 10 is a heat exchanger for cooling the reformed gas G in which the CO gas has been lowered by the CO shifter, and 11 is a reformer cooled by the heat exchanger 10. In the carbon monoxide (CO) selective oxidation catalyst layer, which is supplied by being mixed with a part of the oxidant electrode exhaust gas containing oxygen discharged from the cell oxidant electrode 3 of the fuel cell body 1 in the gas G, this CO selection is performed. The oxidation catalyst layer 11 selects CO to reduce its concentration and introduces it into the cell fuel electrode 2 of the fuel cell body 1.
【0024】一方、12は空気Aを圧縮して燃料電池本
体1の電池酸化剤極3に供給する空気圧縮機である。な
お、OGは燃料電池本体1の電池酸化剤極3より排出さ
れる酸化剤極排ガスであり、またFGは燃料電池本体1
の電池燃料極2より排出される燃料極排ガスである。On the other hand, 12 is an air compressor for compressing the air A and supplying it to the cell oxidant electrode 3 of the fuel cell body 1. OG is an oxidant electrode exhaust gas discharged from the cell oxidant electrode 3 of the fuel cell body 1, and FG is a fuel cell body 1
Is the fuel electrode exhaust gas discharged from the cell fuel electrode 2.
【0025】次に上記のように構成されたメタノールを
燃料とする固体高分子燃料電池システムの作用を述べ
る。メタノール燃料Mが加熱蒸発器7に流入すると、こ
のメタノール燃料Mは加熱気化され、蒸気発生器6から
の水蒸気Sと適当な比で混合された後、300℃程度で
改質器8に流入する。改質器8では、この混合気体を改
質触媒層で反応させて水素を主成分とする改質ガスGに
変換する。Next, the operation of the polymer electrolyte fuel cell system using the above-mentioned methanol as a fuel will be described. When the methanol fuel M flows into the heating evaporator 7, the methanol fuel M is heated and vaporized, mixed with the steam S from the steam generator 6 at an appropriate ratio, and then flows into the reformer 8 at about 300 ° C. . In the reformer 8, this mixed gas is reacted in the reforming catalyst layer to be converted into reformed gas G containing hydrogen as a main component.
【0026】次いで改質ガスGが200〜250℃程度
の温度でCO変成器9に流入すると、この改質ガスGは
一酸化炭素を0.5%程度に低下させた後に、熱交換器
10により70〜170℃程度の温度に冷却され、燃料
電池本体1の電池酸化剤極3から排出される酸素を含ん
だ酸化剤極排ガスOGの一部と混合される。Next, when the reformed gas G flows into the CO shift converter 9 at a temperature of about 200 to 250 ° C., the reformed gas G reduces carbon monoxide to about 0.5% and then the heat exchanger 10 Is cooled to a temperature of about 70 to 170 ° C. and mixed with a part of the oxidant electrode exhaust gas OG containing oxygen discharged from the cell oxidant electrode 3 of the fuel cell body 1.
【0027】この場合、改質ガスGと酸化剤極排ガスO
Gとの混合比はO2 /CO(モル比)=0.5〜3の範
囲で、適当な値を選択すればよく、触媒性能及び装置性
能に依存する。In this case, the reformed gas G and the oxidant electrode exhaust gas O
The mixing ratio with G is in the range of O 2 / CO (molar ratio) = 0.5 to 3, and an appropriate value may be selected, and it depends on the catalyst performance and the apparatus performance.
【0028】この酸化剤極排ガスOGと混合された改質
ガスGは、CO選択酸化触媒層11に流入するとCOが
選択酸化され、CO濃度は数十ppm 以下に低減された後
に燃料電池本体1の電池燃料極2に導かれる。When the reformed gas G mixed with the oxidant electrode exhaust gas OG flows into the CO selective oxidation catalyst layer 11, CO is selectively oxidized and the CO concentration is reduced to several tens ppm or less, and then the fuel cell body 1 Is led to the cell fuel electrode 2.
【0029】一方、酸化剤である空気Aは空気圧縮機1
2により圧縮されて燃料電池本体1の電池酸化剤極13
に供給され、前述した電池燃料極2とで発電に使用され
た後、各々の極の排ガスFG,OGとなり、これらは加
熱蒸発器7の熱源として利用される。On the other hand, the air A, which is an oxidant, is supplied to the air compressor 1.
The cell oxidant electrode 13 of the fuel cell body 1 compressed by 2
After being used for power generation with the cell fuel electrode 2 described above, the exhaust gases FG and OG of the respective electrodes are used as heat sources of the heating evaporator 7.
【0030】さらに、燃料電池本体1は発電に伴って熱
が発生するので、冷却水が水処理装置5を通して水冷却
部4に供給され、燃料電池本体5を冷却した後は蒸気発
生器6の補給水として供給される。Further, since heat is generated in the fuel cell main body 1 during power generation, cooling water is supplied to the water cooling section 4 through the water treatment device 5, and after cooling the fuel cell main body 5, the steam generator 6 is cooled. Supplied as make-up water.
【0031】このような固体高分子燃料電池システムに
おいて、供給される燃料のCO濃度が低ければ低いほ
ど、経済的にも耐久性の面でも好ましいが、ppm オーダ
にするためには耐CO被毒性に優れた白金合金、例えば
Pt−Pu合金を電極触媒として用いる。In such a solid polymer fuel cell system, the lower the CO concentration of the supplied fuel is, the more economically and durable it is, but the CO poisoning resistance is required in order to achieve ppm order. An excellent platinum alloy, for example, a Pt-Pu alloy is used as an electrode catalyst.
【0032】また、電池酸化剤極3は通常空気にはCO
ppm 以下しか含まれないので、従来通りPtを電極触媒
とする。この場合、運転温度にも依存するが、これによ
ってある程度のCO濃度が許容されることになり、本発
明者等の知見によれば80〜100℃程度の運転温度で
あれば、数十ppm 程度のCOは実用上問題とはならなく
なる。また、この運転温度は通常の固体高分子燃料電池
では無理なく実現できる温度であり、材料的にも全く問
題はない。In addition, the battery oxidizer electrode 3 normally has CO in the air.
Since it contains only ppm or less, Pt is used as an electrode catalyst as usual. In this case, although depending on the operating temperature, a certain amount of CO concentration is allowed, and according to the knowledge of the present inventors, if the operating temperature is about 80 to 100 ° C, it is about several tens of ppm. CO will not be a practical problem. Further, this operating temperature is a temperature that can be reasonably realized by an ordinary polymer electrolyte fuel cell, and there is no problem in terms of materials.
【0033】さらに、CO低減方法としては種々の方法
が考えられるが、ここでは上述のようにCO濃度が数十
ppm 程度であれば、十分に満足できることを考慮して最
も安価でコンパクトな装置が可能な触媒によりCOを選
択的に酸化する方式が用いられる。この場合、酸化する
酸素源としては電池カソード排ガスの酸素利用率40〜
60%程度で0.5に近い程効率が良く、好ましいけれ
どCO選択酸化触媒層11の性能及び触媒反応装置の性
能に依存する。勿論、この値が大きければ大きいほどC
O濃度を極限まで低くすることができるが、システム全
体としての効率は悪くなり、好ましいものではない。Various methods are conceivable for reducing CO, but here, as described above, the CO concentration is several tens.
Considering that it can be sufficiently satisfied if it is in the order of ppm, a method of selectively oxidizing CO with a catalyst that can be the cheapest and compact apparatus is used. In this case, as the oxygen source to be oxidized, the oxygen utilization rate of the battery cathode exhaust gas is 40 to
The efficiency is better as it is closer to 0.5 at about 60%, which is preferable but depends on the performance of the CO selective oxidation catalyst layer 11 and the performance of the catalytic reactor. Of course, the larger this value is, the more C
Although the O concentration can be made as low as possible, the efficiency of the entire system deteriorates, which is not preferable.
【0034】ここで、最大の課題はCO選択酸化触媒層
11の性能であり、この性能によっては本実施の形態の
システムの効果を半減するといっても過言ではない。本
発明では、CO選択酸化触媒層11として例えばγ−ア
ルミナのような高表面積の担体に担持された白金触媒が
適している。担持ルテニウム担持触媒も同様であり、更
に白金とルテニウム担持触媒とを混合して使用しても良
い。これらの触媒は改質ガス中に多量に存在する水素の
酸化を抑えてCOのみを選択的に酸化する力がある。Here, the biggest problem is the performance of the CO selective oxidation catalyst layer 11, and it is no exaggeration to say that the effect of the system of the present embodiment is halved depending on this performance. In the present invention, a platinum catalyst supported on a high surface area carrier such as γ-alumina is suitable for the CO selective oxidation catalyst layer 11. The same applies to a supported ruthenium-supported catalyst, and platinum and a ruthenium-supported catalyst may be mixed and used. These catalysts have a power to selectively oxidize only CO by suppressing the oxidation of hydrogen that is present in a large amount in the reformed gas.
【0035】また、これらの触媒に銅−酸化銅触媒を5
〜20%程度添加すると触媒層入口CO濃度の変動に対
して応答が良くなり、触媒層の出口CO濃度が安定す
る。実際のシステムでは、前段のCO変成器9で0.2
〜0.5%程度までCO濃度が低減されてCO選択酸化
触媒層11に入ってくるが、流量、温度等の変動により
入口CO濃度が変動することは避けられない。Further, a copper-copper oxide catalyst is added to these catalysts.
Addition of about 20% improves the response to fluctuations in the CO concentration at the catalyst layer inlet, and stabilizes the CO concentration at the outlet of the catalyst layer. In the actual system, the CO transformer 9 in the previous stage is used to
The CO concentration is reduced to about 0.5% and enters the CO selective oxidation catalyst layer 11, but it is unavoidable that the inlet CO concentration fluctuates due to fluctuations in the flow rate, temperature and the like.
【0036】次いで重要なファクターはCO選択触媒槽
11の温度である。CO選択触媒槽11の温度は100
〜250℃に保たれるのが良い。下限の温度は触媒のC
O酸化能力によって決まってくるが、共存する水蒸気の
影響が著しく、100℃以下では触媒に凝縮し、著しく
触媒性能を低下させる。上限の温度は温度が高くなれ
ば、CO酸化の選択性が失われ、改質ガス中に存在する
多量の水素、炭酸ガス等による副反応も起こり、逆にC
Oの出口濃度が高くなる。Next, the important factor is the temperature of the CO selective catalyst tank 11. The temperature of the CO selective catalyst tank 11 is 100
It is good to keep at ~ 250 ° C. The lower limit temperature is C of the catalyst
Although it depends on the O-oxidizing ability, the effect of coexisting water vapor is significant, and at 100 ° C. or less, it condenses on the catalyst and significantly reduces the catalyst performance. When the upper limit temperature becomes higher, the selectivity of CO oxidation is lost, and a side reaction due to a large amount of hydrogen, carbon dioxide gas, etc. present in the reformed gas also occurs, and conversely C
The outlet concentration of O becomes high.
【0037】触媒層を上記の温度範囲に保つには、触媒
層入口温度を制御することが重要であり、CO酸化反応
の発熱等を考慮すると、70〜170℃の範囲で制御す
るのが良い。In order to keep the temperature of the catalyst layer within the above temperature range, it is important to control the inlet temperature of the catalyst layer. Considering the heat generation of the CO oxidation reaction and the like, it is preferable to control the temperature within the range of 70 to 170 ° C. .
【0038】ここで、本実施の形態のシステムに用いる
CO選択触媒の具体例について説明する。 例1 (触媒A) 市販のγ−アルミナの造粒体(3φ球、気孔率約40
%)に含浸法で白金をできるだけ表面に0.5%(W
t)担持させた後、400℃還元雰囲気化で焼成して調
整した。Here, a specific example of the CO selective catalyst used in the system of the present embodiment will be described. Example 1 (Catalyst A) Commercially available γ-alumina granules (3φ spheres, porosity of about 40)
%) With platinum impregnated on the surface as much as 0.5% (W
t) After being supported, it was adjusted by firing in a reducing atmosphere at 400 ° C.
【0039】例2 (触媒B) 同様なγ−アルミナの造粒体に含浸法でルテニウムをで
きるだけ表面に1%(Wt)担持させた後、350℃還
元雰囲気化で焼成して調整した。Example 2 (Catalyst B) 1% (Wt) of ruthenium was supported on the surface of a similar γ-alumina granule by the impregnation method as much as possible, and then calcined in a reducing atmosphere at 350 ° C.
【0040】例3 (触媒C) 同様なγ−アルミナの造粒体に含浸法で銅を30%(W
t)担持させた後、300℃還元雰囲気化で焼成して調
整した。Example 3 (Catalyst C) A similar γ-alumina granule was impregnated with 30% copper (W).
t) After being supported, it was adjusted by firing in a reducing atmosphere at 300 ° C.
【0041】触媒A,B,Cで種々の組合せの触媒層を
形成し、改質ガスの模擬として(CO 0.3%,CO
2 20%,H2 O10%,H2 バランス)ガスを試
験ガスとして通常の流通法でCO選択酸化試験を実施し
た。この場合空間速度は実ガス流量(STP)及び貴金
属触媒容積基準で、10000H-1とした。その結果を
示すと表1に示すようになる。Various combinations of catalyst layers were formed with the catalysts A, B, and C, and the reformed gas was simulated (CO 0.3%, CO
A CO selective oxidation test was carried out by a usual flow method using 20% 20%, H 2 O 10%, H 2 balance) gas as a test gas. In this case, the space velocity was set to 10000 H −1 based on the actual gas flow rate (STP) and the precious metal catalyst volume. The results are shown in Table 1.
【0042】[0042]
【表1】 上記実施の形態では、アルコール系燃料を改質するシス
テムについて述べたが、炭化水素燃料を改質する場合に
ついても前述同様に実施できるものである。[Table 1] In the above embodiment, the system for reforming the alcohol fuel is described, but the reforming of the hydrocarbon fuel can be performed in the same manner as described above.
【0043】[0043]
【発明の効果】以上述べたように本発明による固体高分
子燃料電池システムによれば、電池入口の一酸化炭素濃
度が50ppm 以下にできるので、燃料電池本体の性能及
び耐久性が大幅に向上し、さらに触媒による一酸化炭素
選択酸化方式はシステムをコンパクトにすると共に、他
の方法と比較してエネルギー効率的にも有利であり、固
体高分子燃料電池システムの実用化に大きく貢献でき
る。As described above, according to the polymer electrolyte fuel cell system of the present invention, the concentration of carbon monoxide at the cell inlet can be reduced to 50 ppm or less, so that the performance and durability of the fuel cell body are significantly improved. Further, the catalytic carbon monoxide selective oxidation method makes the system compact, and is more advantageous in energy efficiency than other methods, and can greatly contribute to the practical application of the polymer electrolyte fuel cell system.
【図1】本発明による固体高分子燃料電池システムの実
施の形態を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a polymer electrolyte fuel cell system according to the present invention.
1……燃料電池本体 2……電池燃料極 3……電池酸化剤極 4……水冷却部 5……水処理装置 6……蒸気発生器 7……加熱蒸発器 8……改質器 9……CO変成器 10……熱交換器 11……CO選択酸化触媒層 1 ... Fuel cell main body 2 ... Cell fuel electrode 3 ... Cell oxidizer electrode 4 ... Water cooling unit 5 ... Water treatment device 6 ... Steam generator 7 ... Heating evaporator 8 ... Reformer 9 ...... CO converter 10 ...... Heat exchanger 11 ...... CO selective oxidation catalyst layer
Claims (8)
する燃料改質系とこの燃料改質系で改質された改質燃料
ガスが導入される電池燃料極の電極触媒として白金合
金、酸化剤が導入される電池酸化剤極の触媒として白金
及び電解質として固体高分子膜を用いた燃料電池本体と
から構成される固体高分子燃料電池システムにおいて、 前記燃料改質系に一酸化炭素を選択的に酸化するための
触媒層を設けたことを特徴とする固体高分子燃料電池シ
ステム。1. A fuel reforming system for reforming hydrocarbon or alcohol fuel, and a platinum alloy and an oxidizer as an electrode catalyst of a cell fuel electrode into which reformed fuel gas reformed by this fuel reforming system is introduced. In a solid polymer fuel cell system composed of platinum as a catalyst of a cell oxidizer electrode into which is introduced and a fuel cell main body using a solid polymer membrane as an electrolyte, carbon monoxide is selectively used in the fuel reforming system. A polymer electrolyte fuel cell system, characterized in that a catalyst layer for oxidizing the polymer is provided.
白金担持触媒から構成されることを特徴とする請求項1
記載の固体高分子燃料電池システム。2. The catalyst layer for selectively oxidizing carbon monoxide is composed of a platinum-supported catalyst.
The polymer electrolyte fuel cell system described.
ルテニウム担持触媒から構成されることを特徴とする請
求項1記載の固体高分子燃料電池システム。3. The polymer electrolyte fuel cell system according to claim 1, wherein the catalyst layer that selectively oxidizes carbon monoxide comprises a ruthenium-supported catalyst.
白金担持触媒とルテニウム担持触媒の混合物から構成さ
れることを特徴とする請求項1記載の固体高分子燃料電
池システム。4. The solid polymer fuel cell system according to claim 1, wherein the catalyst layer for selectively oxidizing carbon monoxide is composed of a mixture of a platinum-supported catalyst and a ruthenium-supported catalyst.
白金担持触媒、ルテニウム担持触媒、白金担持触媒とル
テニウム担持触媒の混合物の何ずれかの触媒と銅ー酸化
銅触媒とから構成されることを特徴とする請求項1記載
の固体高分子燃料電池システム。5. A catalyst layer for selectively oxidizing carbon monoxide comprises a platinum-supported catalyst, a ruthenium-supported catalyst, some of a mixture of a platinum-supported catalyst and a ruthenium-supported catalyst, and a copper-copper oxide catalyst. The polymer electrolyte fuel cell system according to claim 1, wherein:
温度が100℃〜250℃であることを特徴とする請求
項1記載の固体高分子燃料電池システム。6. The polymer electrolyte fuel cell system according to claim 1, wherein the temperature of the catalyst layer for selectively oxidizing carbon monoxide is 100 ° C. to 250 ° C.
素をO2 /CO=0.5〜3.0の範囲で供給すること
を特徴とする請求項1記載の固体高分子燃料電池システ
ム。7. The solid polymer fuel cell system according to claim 1, wherein air or oxygen for oxidizing carbon monoxide is supplied in the range of O 2 /CO=0.5 to 3.0. .
電池酸素極の排ガスを用いることを特徴とする請求項1
記載の固体高分子燃料電池システム。8. The exhaust gas from the oxygen electrode of the battery is used as the air or oxygen source supplied to the catalyst layer.
The polymer electrolyte fuel cell system described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8076203A JPH09266005A (en) | 1996-03-29 | 1996-03-29 | Solid high polymer fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8076203A JPH09266005A (en) | 1996-03-29 | 1996-03-29 | Solid high polymer fuel cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09266005A true JPH09266005A (en) | 1997-10-07 |
Family
ID=13598612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8076203A Pending JPH09266005A (en) | 1996-03-29 | 1996-03-29 | Solid high polymer fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09266005A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000053696A1 (en) * | 1997-09-09 | 2000-09-14 | Osaka Gas Co., Ltd. | System for removing carbon monoxide and method for removing carbon monoxide |
WO2001004045A1 (en) * | 1999-07-09 | 2001-01-18 | Ebara Corporation | Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell |
WO2001037988A1 (en) * | 1999-11-25 | 2001-05-31 | Kawasaki Jukogyo Kabushiki Kaisha | Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer |
JP2002284504A (en) * | 2001-03-28 | 2002-10-03 | Osaka Gas Co Ltd | Carbon monoxide removing device and fuel reforming system having it |
WO2002079084A1 (en) * | 2001-03-28 | 2002-10-10 | Osaka Gas Co., Ltd. | Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter |
JP2006346535A (en) * | 2005-06-14 | 2006-12-28 | Mitsubishi Heavy Ind Ltd | Co removal catalyst and fuel cell system |
CN1308223C (en) * | 2001-03-28 | 2007-04-04 | 大阪瓦斯株式会社 | Method for removing carbon monoxide |
JP2007331970A (en) * | 2006-06-14 | 2007-12-27 | Nippon Oil Corp | Method and fuel cell system for reducing carbon monoxide concentration |
JP2008272614A (en) * | 2007-04-25 | 2008-11-13 | Mitsubishi Heavy Ind Ltd | CO removal catalyst, fuel reformer, fuel cell system, and CO removal method |
JP2012059412A (en) * | 2010-09-06 | 2012-03-22 | Eneos Celltech Co Ltd | Fuel cell system |
CN111747378A (en) * | 2020-08-04 | 2020-10-09 | 摩氢科技有限公司 | Methanol-water fuel reforming hydrogen production system |
-
1996
- 1996-03-29 JP JP8076203A patent/JPH09266005A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000053696A1 (en) * | 1997-09-09 | 2000-09-14 | Osaka Gas Co., Ltd. | System for removing carbon monoxide and method for removing carbon monoxide |
US6913738B1 (en) | 1999-03-05 | 2005-07-05 | Osaka Gas Co., Ltd. | System for removing carbon monoxide and method for removing carbon monoxide |
WO2001004045A1 (en) * | 1999-07-09 | 2001-01-18 | Ebara Corporation | Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell |
WO2001037988A1 (en) * | 1999-11-25 | 2001-05-31 | Kawasaki Jukogyo Kabushiki Kaisha | Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer |
CN100344526C (en) * | 2001-03-28 | 2007-10-24 | 大阪瓦斯株式会社 | Carbon monoxide removing device, filter, and method for removing carbon monoxide by using them |
US8357341B2 (en) | 2001-03-28 | 2013-01-22 | Osaka Gas Co., Ltd. | Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel removal system having the carbon monoxide remover, and filter |
CN1308223C (en) * | 2001-03-28 | 2007-04-04 | 大阪瓦斯株式会社 | Method for removing carbon monoxide |
JP2002284504A (en) * | 2001-03-28 | 2002-10-03 | Osaka Gas Co Ltd | Carbon monoxide removing device and fuel reforming system having it |
KR100856098B1 (en) * | 2001-03-28 | 2008-09-02 | 오사까 가스 가부시키가이샤 | Carbon monoxide removal method and operating method of fuel reforming system |
WO2002079084A1 (en) * | 2001-03-28 | 2002-10-10 | Osaka Gas Co., Ltd. | Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter |
CN100445197C (en) * | 2001-03-28 | 2008-12-24 | 大阪瓦斯株式会社 | Carbon monoxide removal method, operation method of fuel reforming system, carbon monoxide remover, fuel reforming system having the same, and filter |
US7972585B2 (en) | 2001-03-28 | 2011-07-05 | Osaka Gas Co., Ltd. | Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover , fuel removal system having the carbon monoxide remover, and filter |
US8591850B2 (en) | 2001-03-28 | 2013-11-26 | Osaka Gas Co., Ltd. | Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter |
JP2006346535A (en) * | 2005-06-14 | 2006-12-28 | Mitsubishi Heavy Ind Ltd | Co removal catalyst and fuel cell system |
JP2007331970A (en) * | 2006-06-14 | 2007-12-27 | Nippon Oil Corp | Method and fuel cell system for reducing carbon monoxide concentration |
JP2008272614A (en) * | 2007-04-25 | 2008-11-13 | Mitsubishi Heavy Ind Ltd | CO removal catalyst, fuel reformer, fuel cell system, and CO removal method |
JP2012059412A (en) * | 2010-09-06 | 2012-03-22 | Eneos Celltech Co Ltd | Fuel cell system |
CN111747378A (en) * | 2020-08-04 | 2020-10-09 | 摩氢科技有限公司 | Methanol-water fuel reforming hydrogen production system |
CN111747378B (en) * | 2020-08-04 | 2024-09-20 | 摩氢科技有限公司 | Methanol-water fuel reforming hydrogen production system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Integration of high temperature PEM fuel cells with a methanol reformer | |
CA2473449C (en) | Solid oxide fuel cell system | |
JP3439770B2 (en) | Fuel cell power generation system | |
JP5121533B2 (en) | Hydrogen production apparatus and fuel cell system using the same | |
WO2000048261A1 (en) | Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell | |
JPH07315801A (en) | System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system | |
JP2002520802A (en) | Fuel cell device | |
JP2004284875A (en) | Hydrogen production system and fuel cell system | |
JPH09266005A (en) | Solid high polymer fuel cell system | |
US6309768B1 (en) | Process for regenerating a carbon monoxide oxidation reactor | |
US7198862B2 (en) | Process for preparing a low-sulfur reformate gas for use in a fuel cell system | |
US6387555B1 (en) | Selective oxidizer in cell stack manifold | |
JP2001522122A (en) | Gold catalyst for fuel cells | |
US6932848B2 (en) | High performance fuel processing system for fuel cell power plant | |
US7223488B2 (en) | Integrated fuel cell system | |
JP3865479B2 (en) | Carbon monoxide removal system and carbon monoxide removal method | |
TW200937722A (en) | Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system | |
JP3625487B2 (en) | Fuel cell system | |
JP2005179081A (en) | Hydrogen production apparatus, fuel cell system and operation method thereof | |
JP2761066B2 (en) | Solid polymer electrolyte fuel cell device and power generation method | |
JP4682403B2 (en) | CO removing device and fuel cell power generator using the same | |
JP4550385B2 (en) | Hydrogen production apparatus and fuel cell system | |
JP2000327305A (en) | Co removal apparatus and fuel cell power generation system | |
JP2001189162A (en) | Fuel cell system | |
JPH08188783A (en) | Method for removing CO in reformed gas |