JPH09263414A - Method for forming fused grass and device therefor - Google Patents
Method for forming fused grass and device thereforInfo
- Publication number
- JPH09263414A JPH09263414A JP7368296A JP7368296A JPH09263414A JP H09263414 A JPH09263414 A JP H09263414A JP 7368296 A JP7368296 A JP 7368296A JP 7368296 A JP7368296 A JP 7368296A JP H09263414 A JPH09263414 A JP H09263414A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- mold
- rotation
- molten glass
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 244000025254 Cannabis sativa Species 0.000 title 1
- 239000011521 glass Substances 0.000 claims abstract description 77
- 238000000465 moulding Methods 0.000 claims description 67
- 239000006060 molten glass Substances 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 230000033001 locomotion Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/10—Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
- C03B7/12—Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/02—Other methods of shaping glass by casting molten glass, e.g. injection moulding
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/04—Other methods of shaping glass by centrifuging
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/64—Spinning, centrifuging or using g-force to distribute the glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶融ガラスからガ
ラスゴブを製造する溶融ガラスの成形方法および装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten glass forming method and apparatus for producing glass gobs from molten glass.
【0002】[0002]
【従来の技術】従来、溶融ガラスからガラスゴブを製造
する方法で中口径以上のものを成形する方法には、ガラ
スを溶融るつぼで加熱溶融し、溶融ガラスを成形型ある
いは支持部材上に滴下供給、滞留蓄積したのち、ガラス
に型形状を転写するガラスの成形方法が特開平6−20
6730号公報において提案されている。また、上記特
開平6−206730号公報には、溶融ガラスからガラ
スゴブを製造する装置として、溶融るつぼの底部に供給
ノズルを連結するとともに、溶融るつぼと供給ノズルを
個別に加熱するヒーターをそれぞれ持ち、供給ノズルの
加熱によって溶融ガラスの供給と停止を行い、供給ノズ
ルの下方に設置された成形型あるいは支持部材に滴下供
給、滞留する装置が記載されている。2. Description of the Related Art Conventionally, a method for producing a glass gob from a molten glass by molding a glass having a medium diameter or more includes heating and melting the glass in a melting crucible, and supplying the molten glass by dropping onto a molding die or a supporting member. A method for molding glass in which the mold shape is transferred to the glass after accumulating and accumulating is disclosed in JP-A-6-20.
No. 6730 is proposed. Further, in the above-mentioned JP-A-6-206730, as an apparatus for producing a glass gob from molten glass, a supply nozzle is connected to the bottom of a melting crucible, and a melting crucible and a heater for individually heating the supply nozzle are provided, There is described an apparatus for supplying and stopping molten glass by heating a supply nozzle, and dropping and supplying the molten glass to a molding die or a supporting member installed below the supply nozzle.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記提案の方
法および装置では、図5に示すように成形型9あるいは
支持部材上にガラス液滴5を落下後、滞留中に急速にガ
ラス液滴5が成形型9あるいは支持部材に熱を奪われて
冷却硬化するため、ガラス液滴5の下面である成形型9
あるいは支持部材との初期接触面が先に硬化膜6を形成
してしまい、その後ガラス液滴5の追加あるい押圧等で
ガラス液滴5の型接触面(成形面)の拡大を行っても初
期接触面と拡大した新しい面との境界に深い段差溝7が
生じてしまい、段差溝7のない大きい成形面の外径(φ
11mm以上)を持ったガラスゴブを得ることが困難で
あった。However, in the method and apparatus proposed above, as shown in FIG. 5, after the glass droplet 5 is dropped on the mold 9 or the supporting member, the glass droplet 5 is rapidly held during the stay. Is absorbed in heat by the molding die 9 or the supporting member and is cooled and hardened.
Alternatively, even if the initial contact surface with the support member forms the cured film 6 first and then the mold contact surface (molding surface) of the glass droplet 5 is expanded by adding or pressing the glass droplet 5. A deep step groove 7 is formed at the boundary between the initial contact surface and the enlarged new surface, and the outer diameter (φ
It was difficult to obtain a glass gob having a size of 11 mm or more).
【0004】本発明は、上記従来技術の問題点に鑑みて
なされたもので、請求項1の発明は段差溝のない大きな
成形面の外径(φ11mm以上)を持ったガラスゴブを
得ることが可能な溶融ガラスの成形方法を提供すること
を目的とし、請求項2、3、4の発明は段差溝のない大
きな成形面の外径(φ11mm以上)を持ったガラスゴ
ブを得ることが可能な溶融ガラスの成形装置を提供する
ことを目的とし、請求項5の発明は段差溝がなく、成型
品の外径と中肉を調整できる溶融ガラスの成形方法を提
供することを目的とする。The present invention has been made in view of the above problems of the prior art. The invention of claim 1 can obtain a glass gob having a large molding surface outer diameter (φ 11 mm or more) without a step groove. Another object of the present invention is to provide a molten glass capable of forming a glass gob having a large molding surface outer diameter (φ 11 mm or more) without a step groove. It is an object of the present invention to provide a molding apparatus for molten glass which has no step groove and which can adjust the outer diameter and the inner wall of the molded product.
【0005】[0005]
【課題を解決するための手段および作用】請求項1の発
明は、1300℃に加熱溶融された溶融ガラス(オハラ
・BAL41)1.4gを成形型(440℃に保温)上
に滴下したのち、成形型と接するガラス液滴下面表面の
温度を測定したところ図1のようになった。これによる
と、溶融ガラスが自重と表面張力によって融合、変形可
能なガラス粘度25ポアズ以下を得るためには、型接触
後0.2sec以内(ガラス液滴の温度1200℃以
上)である必要があることがわかった。この条件を満た
せば、ガラス液滴と成形型との初期接触面にできる硬化
膜が生成する前に、初期接触面と衝撃による拡大する拡
大面との融合が可能となる。According to the invention of claim 1, 1.4 g of molten glass (OHARA BAL41) heated and melted at 1300 ° C. is dropped on a molding die (heat-retained at 440 ° C.), When the temperature of the lower surface of the glass droplets in contact with the mold was measured, the result was as shown in FIG. According to this, in order for the molten glass to be fused and deformed by its own weight and surface tension to obtain a glass viscosity of 25 poise or less, it is necessary to be within 0.2 sec after the mold contact (the temperature of the glass droplet is 1200 ° C. or more). I understand. If this condition is satisfied, it is possible to fuse the initial contact surface and the enlarged surface expanded by impact before a cured film is formed on the initial contact surface between the glass droplet and the mold.
【0006】上記0.2sec以内での成形面の外径の
拡大変形を実現するために、あらかじめ成形型の姿勢と
向きを変えずに成形型の位置を回転させる並進回転(3
00〜1800rpm)させておき、成形型上に溶融ガ
ラス液滴を落下させ、落下後0.2sec以内に該ガラ
ス液滴の成形面の外径を拡大できるようにした。In order to realize the enlarged deformation of the outer diameter of the molding surface within the above 0.2 sec, the translational rotation (3) in which the position of the molding die is rotated in advance without changing the posture and direction of the molding die.
(00 to 1800 rpm), the molten glass droplets were dropped onto the molding die, and the outer diameter of the molding surface of the glass droplets could be enlarged within 0.2 sec after the dropping.
【0007】ガラス液滴が型表面に接触後、速やかに成
形面の外径拡大作用が進行し、0.2sec以内に(ガ
ラス粘度25ポアズ以下で)ガラス液滴の硬化が進行す
る前に成形面の拡大作用を終了できるので、段差溝のな
い大きな成形面の外径を持ったガラスゴブを得ることが
できる。After the glass droplets come into contact with the surface of the mold, the action of enlarging the outer diameter of the molding surface rapidly progresses, and before the hardening of the glass droplets progresses within 0.2 sec (with a glass viscosity of 25 poise or less). Since the action of expanding the surface can be completed, it is possible to obtain a glass gob having a large molding surface outer diameter without step grooves.
【0008】請求項2の発明は、基盤に回転自在に回転
円盤を設け、この回転円盤の回転軸から成形型の半径以
下の距離離れた位置に回転可能に成形型を装着し、該回
転円盤を回転させることによって該成形型をその半径以
下の径で円運動させる。これにより型の回転中に重複し
て型面の存在するポイントが発生し、ガラス液を常に滴
下できるポイントが得られる。このとき、該成形型の姿
勢を一定とするために、該成形型あるいは型ホルダーの
外周の一端以上の位置に弦巻ばねを接続して引っ張り、
該型の自転運動を抑制する。以上のように、該回転円盤
の回転によって成形型を並進回転できるようにし、成形
型上に落下したガラス溶融液滴の外径を速やかに拡大で
きるようにして、段差の生成を抑制する。According to a second aspect of the present invention, a rotary disk is rotatably provided on the base, and the mold is rotatably mounted at a position separated from the rotary shaft of the rotary disk by a distance equal to or smaller than the radius of the mold. The mold is circularly moved by rotating the mold with a diameter equal to or smaller than its radius. As a result, overlapping points of the mold surface are generated during the rotation of the mold, and a point at which the glass liquid can be constantly dropped is obtained. At this time, in order to maintain the posture of the molding die constant, a spiral spring is connected to a position of one or more of the outer periphery of the molding die or the die holder and pulled,
Suppress the type of rotation. As described above, the rotation of the rotary disk allows the mold to be translated and rotated, so that the outer diameter of the glass-melted droplets dropped on the mold can be rapidly expanded, thereby suppressing the formation of a step.
【0009】請求項3の発明は、基盤に回転自在に回転
円盤を設け、該回転円盤の回転軸から離れた位置に回転
自在にアームの一端を固定しアームの一端を円運動さ
せ、該アームの他端には成形型を固定し、該アームの中
間部を摺動自在に保持しかつ回転自在な摺動回動部材に
よって抑えることで、該回転円盤の回転によって該成形
型を並進回転させることができる。これによって、成形
型上に落下したガラス溶融液滴の外径を速やかに拡大で
きるようにして、段差の生成を抑制する。According to a third aspect of the present invention, a rotary disk is rotatably provided on the base, one end of the arm is rotatably fixed at a position distant from the rotation axis of the rotary disk, and one end of the arm is circularly moved. A mold is fixed to the other end of the arm, and the intermediate part of the arm is slidably held and held by a rotatable rotation member to rotate the mold in translation. be able to. As a result, the outer diameter of the glass melt droplets dropped on the molding die can be rapidly expanded, and the generation of steps is suppressed.
【0010】請求項4の発明は、偏心した回転軸をもつ
円柱状の偏心カムの外周にベアリングを装着し、該カム
の偏心の円運動のみを利用し自転運動をキャンセルでき
るようにするために、該ベアリングの外周と成形型を同
心に保持するバケットを設け、該バケットの外周の一端
以上の位置に弦巻ばねを接続して引っ張り、前記自転を
キャンセルする。これによって、該回転軸の回転により
偏心カムは偏心して円運動し、該カムの自転はキャンセ
ルされて、成形型は並進回転でき、該型上に落下したガ
ラス溶融液滴の外径を速やかに拡大できるようにして、
段差の生成を抑制する。According to a fourth aspect of the present invention, a bearing is mounted on the outer periphery of a cylindrical eccentric cam having an eccentric rotation shaft, and the rotation motion can be canceled by using only the eccentric circular motion of the cam. A bucket for holding the outer periphery of the bearing and the molding die concentrically is provided, and a spiral spring is connected to and pulled at a position of at least one end of the outer periphery of the bucket to cancel the rotation. As a result, the eccentric cam is eccentrically moved circularly by the rotation of the rotary shaft, the rotation of the cam is canceled, the molding die can rotate in translation, and the outer diameter of the molten glass droplet dropped on the die can be quickly increased. To be able to expand,
Suppress the generation of steps.
【0011】請求項5の発明は、溶融ガラスを成形型上
に滴下してガラスに型形状を転写する溶融ガラスの成形
方法において、上記成型品の成形面の外径と中肉の調整
作用を実現するために提案する成形方法であって、溶融
ガラス液滴を並進回転する成形型上に落下させ、並進回
転の振幅および回転数を調整することによって、成型品
の外径と中肉を変化させることができる。According to a fifth aspect of the present invention, in a method for forming a molten glass in which molten glass is dropped onto a molding die and the shape of the glass is transferred to the molding die, the function of adjusting the outer diameter and the inner wall of the molding surface of the molded product is adjusted. This is a molding method proposed to realize the method, in which molten glass droplets are dropped onto a translationally rotating mold and the amplitude and rotation speed of the translational rotation are adjusted to change the outer diameter and medium thickness of the molded product. Can be made.
【0012】[0012]
[発明の実施の形態1]本発明の実施形態1を図2に基
づき説明する。溶融るつぼ1内にはガラス(硝材、オハ
ラ・BAL41)があり、溶融るつぼ1の外周にあるる
つぼヒーター3によって1000℃〜1400℃に加熱
溶融可能になっている。溶融るつぼ1の底部には供給ノ
ズル4が連設されており、供給ノズル4の外周に設けた
ノズルヒーター10によって1200℃〜1300℃に
加熱可能になっている。また、溶融るつぼ1内には、供
給ノズル4の開放、閉塞を行うプランジャー11が溶融
るつぼ1に対して抜き差し自在に挿入されており、供給
ノズル4の先端より溶融後のガラス2が流出しようとす
る際に、溶融されたガラス2の流出を停止するとともに
滴下時の滴数を調整可能し得るようになっている。供給
ノズル4の先端より溶融後のガラス2が流出しようとす
るが、溶融るつぼ1の内部に抜き差し自在に挿入されて
いるプランジャー11によって流出を停止するとともに
滴下時の滴数を調整可能としている。[First Embodiment of the Invention] A first embodiment of the present invention will be described with reference to FIG. There is glass (glass material, OHARA.BAL41) in the melting crucible 1, and it can be heated and melted at 1000 ° C. to 1400 ° C. by the crucible heater 3 on the outer periphery of the melting crucible 1. A supply nozzle 4 is connected to the bottom of the melting crucible 1 and can be heated to 1200 ° C. to 1300 ° C. by a nozzle heater 10 provided on the outer periphery of the supply nozzle 4. Further, a plunger 11 for opening and closing the supply nozzle 4 is inserted into the melting crucible 1 so as to be freely inserted into and removed from the melting crucible 1, and the glass 2 after melting may flow out from the tip of the supply nozzle 4. At this time, the molten glass 2 can be stopped from flowing out and the number of drops at the time of dropping can be adjusted. The glass 2 after melting tends to flow out from the tip of the supply nozzle 4, but the flow is stopped and the number of drops at the time of dropping can be adjusted by a plunger 11 that is inserted into the melting crucible 1 so as to be freely inserted and removed. .
【0013】供給ノズル4の下方に成形型12が設置さ
れ、その外周には型ヒーター13があって型温380℃
〜480℃に加熱保温され、更にこれら成形型12、型
ヒーター13はバケット16に保持挿入されている。A mold 12 is installed below the supply nozzle 4, and a mold heater 13 is provided on the outer periphery of the mold 12 so that the mold temperature is 380 ° C.
The mold 12 and the mold heater 13 are heated and kept at a temperature of up to 480 ° C., and are held and inserted in the bucket 16.
【0014】一方、凹形状の基盤17には図示しない回
転駆動部によって回転する回転軸18が回転自在に固定
され、回転軸18に固定された回転板20を回転可能と
している。回転板20の回転軸18より離れた(偏心し
た)位置に偏心軸20′が固定してあり、この偏心軸2
0′の先部には上記バケット16が、前記回転軸18と
前記偏心軸20′の距離が成形型12の半径以下の距離
となるように、回転自在に連結されている。On the other hand, a rotary shaft 18 which is rotated by a rotary drive unit (not shown) is rotatably fixed to the concave base 17, and a rotary plate 20 fixed to the rotary shaft 18 is rotatable. An eccentric shaft 20 'is fixed at a position apart (eccentric) from the rotary shaft 18 of the rotary plate 20.
The bucket 16 is rotatably connected to the front end of 0 'so that the distance between the rotating shaft 18 and the eccentric shaft 20' is less than the radius of the forming die 12.
【0015】更に、上記バケット16の外周の一ヵ所以
上の位置に弦巻ばね21が固定され、バケット16は弦
巻ばね21に引っ張られて基盤17に固定されている。Further, a spiral spring 21 is fixed at one or more positions on the outer circumference of the bucket 16, and the bucket 16 is pulled by the spiral spring 21 and fixed to the base 17.
【0016】以上構成の成形装置に備えた溶融るつぼ
1、供給ノズル4、プランジャー11は白金製で、るつ
ぼヒーター3は二珪化モリブデンの焼結線ヒーター、ノ
ズルヒーター10は高周波ヒーター、型ヒーター13に
は金属抵抗線ヒーターで、成形型12にはWC合金の表
面に窒化クロムを成膜したものあるいはアルミナにCr
2 O3 を積層したものを使用した。なお、アルミナ基材
の型を使用するときは上記型温より60℃〜100℃低
い型温にしないと保温性が高くガラスが焼き付いて取れ
なくなる。A melting crucible provided in the molding apparatus having the above-mentioned structure
1, supply nozzle 4, plunger 11 are made of platinum,
The heater 3 is a molybdenum disilicide sintered wire heater.
The trick heater 10 is a high-frequency heater and a mold heater 13.
Is a metal resistance wire heater, and the mold 12 is made of WC alloy.
Chromium nitride film on the surface or Cr on alumina
TwoOThreeWas used. Alumina base material
When using the mold of 60 ° C to 100 ° C lower than the mold temperature above
If the mold temperature is not high, the heat retention is high and the glass burns off
Disappears.
【0017】次に、上記構成の成形装置を用いた溶融ガ
ラスの成形を、その作用とともに説明する。溶融るつぼ
1内にガラス2(オハラ・BAL41)を投入し、るつ
ぼヒーター3で溶融るつぼ1を1000℃〜1400℃
に加熱して内部のガラス2を溶融する。溶融中は供給ノ
ズル4を加熱せずに内部に入ってくるガラスを冷却硬化
して栓をした状態とし、ガラス2の流出を防止してい
る。これにより、その間溶融ガラスの撹拌が可能であ
る。ガラス2の加熱溶融の終了後、プランジャー11を
挿入して供給ノズル4の上端に栓をし、供給ノズル4を
ノズルヒーター10で1200℃〜1300℃に加熱し
内部の余剰ガラスを低粘度溶融して排出しておく。成形
型12は型ヒーター13により型表面温度380℃〜4
80℃(成形面にしわが生ぜすかつ焼き付きない型温範
囲)に加熱しておく。更に、図示しない回転駆動部によ
って回転軸18および回転板20を回転させ偏心軸2
0′を回転軸18を中心に円運動させる。このとき成形
型12の自転を抑えて姿勢を保つために該成形型12を
納めたバケット11の外周に接続された弦巻ばね21で
引っ張っておくことで、成形型12およびバケット16
は偏心軸20′を中心にして回転せず、成形型12の姿
勢と向きを変えずに回転軸18を中心にして成形型12
の位置を変える円運動である並進回転させておく。Next, the molding of molten glass using the molding apparatus having the above-mentioned structure will be described together with its operation. Glass 2 (OHARA / BAL41) is put into the melting crucible 1 and the melting crucible 1 is heated to 1000 ° C to 1400 ° C by the crucible heater 3.
It is heated to melt the glass 2 inside. During the melting, the glass that enters the inside is cooled and hardened without heating the supply nozzle 4, and the glass is prevented from flowing out. This allows the molten glass to be agitated during that time. After the heating and melting of the glass 2 is completed, the plunger 11 is inserted and the upper end of the supply nozzle 4 is plugged, and the supply nozzle 4 is heated to 1200 ° C. to 1300 ° C. by the nozzle heater 10 to melt the excess glass inside to a low viscosity. And then discharge. The molding die 12 is heated by a die heater 13 at a die surface temperature of 380 ° C. to 4 ° C.
It is heated to 80 ° C. (a mold temperature range where wrinkles do not occur on the molding surface and seizure does not occur). Further, the rotary shaft 18 and the rotary plate 20 are rotated by a rotary drive unit (not shown) to rotate the eccentric shaft 2
0'is circularly moved about the rotation axis 18. At this time, in order to suppress the rotation of the molding die 12 and maintain the posture thereof, the molding die 12 and the bucket 16 are pulled by a coiled spring 21 connected to the outer circumference of the bucket 11 in which the molding die 12 is housed.
Does not rotate about the eccentric shaft 20 ′, and does not change the posture and direction of the mold 12 and does not rotate about the rotary shaft 18.
Translation is a circular motion that changes the position of.
【0018】次に、プランジャー11を上下動し必要量
(例えば1.4g)のガラス液滴14を下方に設置した
成形型12上に落下させる。このとき、ガラス液滴14
は並進回転中の成形型12上に供給され、速やか(0.
2sec以内)に流動して外径が拡大する。Next, the plunger 11 is moved up and down to drop a required amount (for example, 1.4 g) of glass droplets 14 onto the molding die 12 installed below. At this time, the glass droplet 14
Is supplied onto the mold 12 during translational rotation, and is quickly (0.
It flows within 2 seconds) and the outer diameter expands.
【0019】本発明の実施形態1によれば、成形型12
に落下したガラス液滴14のガラス表面が成形型12へ
の熱伝導による冷却で初期接触面に硬化膜を形成する前
(接触後0.2sec以前、ガラス温度1200℃以
上、ガラス粘度25ポアズ以下)に上記拡大を終了する
ので、接触後0.2sec後に(ガラス滴の成形面の冷
却してガラス粘度25ポアズ以上になってから)拡大す
る面がないため、初期接触面と拡大面の間にできる段差
溝は発生せず、段差溝のない大きい成形面の外径(φ1
1mm以上)を持ったガラスの成型品19を得ることが
可能となる。According to the first embodiment of the present invention, the molding die 12
Before the glass surface of the glass droplet 14 that has dropped onto the mold forms a cured film on the initial contact surface by cooling due to heat conduction to the mold 12 (before 0.2 seconds after contact, glass temperature 1200 ° C. or higher, glass viscosity 25 poise or less). ), The expansion is completed, so there is no expansion surface (after the glass drop molding surface cools and the glass viscosity becomes 25 poise or more) 0.2 seconds after the contact, so that there is no expansion surface between the initial contact surface and the expansion surface. The outer diameter of the large molding surface (φ1
It is possible to obtain a molded glass product 19 having a size of 1 mm or more).
【0020】[発明の実施の形態2]本発明の実施形態
2を図3に基づいて説明する。本実施形態の成形装置に
備えた溶融るつぼ1、ガラス2、るつぼヒーター3、供
給ノズル4、ノズルヒーター10、成形型12、型ヒー
ター13、プランジャー11、ガラス液滴14、成型品
19、バケット16の配置および構成は上記実施形態1
と同様である。[Second Embodiment of the Invention] A second embodiment of the present invention will be described with reference to FIG. Molten crucible 1, glass 2, crucible heater 3, supply nozzle 4, nozzle heater 10, mold 12, mold heater 13, plunger 11, glass droplet 14, molded product 19, bucket provided in the molding apparatus of this embodiment. The arrangement and configuration of 16 are the same as those in the first embodiment.
Is the same as
【0021】上記に加え、本実施形態の成形装置は、図
示しない回転駆動機構によって回転可能な回転中心軸2
4と回転円盤22が供給ノズル4の下方よりアーム23
の長さ分離れた位置で基盤25上に回転自在に固定され
ている。回転円盤22上の回転中心軸24から離れた位
置に回動自在にアーム23の一端が円運動軸26に固定
されてあり、アーム23の他端には成形型12を内包す
るバケット16が回動不可能に固定されている。アーム
23の中間部には該アーム23を摺動自在に保持し、か
つ基盤25と回動自在な摺動回動部材31が基盤25に
固定されている。このとき、成形型12の並進回転の中
心が供給ノズル4の直下になるように配置されている。In addition to the above, the molding apparatus of this embodiment has a rotation center shaft 2 rotatable by a rotation drive mechanism (not shown).
4 and the rotating disk 22 are arranged below the supply nozzle 4 from the arm 23.
Are rotatably fixed on the base 25 at positions separated by the length. One end of an arm 23 is rotatably fixed to a circular movement shaft 26 at a position distant from a rotation center shaft 24 on a rotary disk 22, and a bucket 16 containing a mold 12 is rotated at the other end of the arm 23. It is fixedly immovable. A sliding / rotating member 31 that holds the arm 23 slidably and is rotatable with respect to the base 25 is fixed to the base 25 in the middle of the arm 23. At this time, the center of the translational rotation of the molding die 12 is arranged directly below the supply nozzle 4.
【0022】次に、上記実施形態2の作用を説明する。
ガラス2の溶融、滴下までの作用は実施形態1と同様の
ため説明は省略する。図示しない回転駆動機構によって
回転中心軸24および回転円盤22を回転すると、円運
動軸26はアーム23の左端とともに円運動する。この
とき、アーム23の中間部は摺動回動部材31によっ
て、その動作を左右の往復運動と水平の角度往復運動に
規制されるため、円運動軸26の円運動がアーム23の
右端に固定されたバケット16および成形型12を並進
回転させることができる。Next, the operation of the second embodiment will be described.
The operation up to melting and dropping of the glass 2 is the same as that of the first embodiment, and therefore its explanation is omitted. When the rotation center shaft 24 and the rotary disk 22 are rotated by a rotation drive mechanism (not shown), the circular motion shaft 26 circularly moves together with the left end of the arm 23. At this time, the middle part of the arm 23 is restricted by the sliding / rotating member 31 into left and right reciprocating motions and horizontal angular reciprocating motions, so that the circular motion of the circular motion shaft 26 is fixed to the right end of the arm 23. The bucket 16 and the molding die 12 that have been formed can be translated and rotated.
【0023】本発明の実施形態2によれば、成形型12
の並進回転が可能となり、あらかじめ並進回転させてお
くことによって、ガラス液滴14供給後のガラス表面が
該成形型12への熱伝導による冷却で初期接触面に硬化
膜を形成する前(接触後0.2sec以前、ガラス温度
1200℃以上、ガラス粘度25ポアズ以下)に外径拡
大を終了でき、接触後0.2sec後に拡大する面がな
く、初期接触面と拡大面の間にできる段差溝も発生せ
ず、段差溝のない大きい成形面の外径(φ11mm以
上)を持ったガラスの成型品19を得ることが可能とな
る。また、本実施形態では回転円盤22が成形型12の
直下に無いので並進回転の振幅の調整がしやすいという
利点がある。さらに、成形のサイクル間で振幅調整も可
能である。According to the second embodiment of the present invention, the molding die 12 is used.
Of the glass droplet 14 is supplied to the molding die 12 by cooling by heat conduction to the forming die 12 before forming a cured film on the initial contact surface (after contact). Before 0.2 sec, the outside diameter can be expanded to a glass temperature of 1200 ° C or more and a glass viscosity of 25 poise or less), there is no surface to expand 0.2 seconds after contact, and there is also a step groove formed between the initial contact surface and the expansion surface. It is possible to obtain a glass molded product 19 having a large molding surface outer diameter (φ11 mm or more) that does not occur and has no step groove. Further, in the present embodiment, since the rotary disk 22 is not directly below the molding die 12, there is an advantage that the amplitude of translational rotation can be easily adjusted. Further, the amplitude can be adjusted between molding cycles.
【0024】[発明の実施の形態3]本発明の実施形態
3を図4に基づいて説明する。本実施形態の成形装置に
備えた溶融るつぼ1、ガラス2、るつぼヒーター3、供
給ノズル4、ノズルヒーター10、成形型12、型ヒー
ター13、プランジャー11、ガラス液滴14、成型品
19、弦巻ばね21、基盤17の配置および構成は上記
実施形態1と同様である。[Third Embodiment of the Invention] A third embodiment of the present invention will be described with reference to FIG. Molten crucible 1, glass 2, crucible heater 3, supply nozzle 4, nozzle heater 10, molding die 12, mold heater 13, plunger 11, glass droplet 14, molded product 19, string winding provided in the molding apparatus of this embodiment. The arrangement and configuration of the spring 21 and the base 17 are the same as those in the first embodiment.
【0025】上記に加え、本実施形態の成形装置は、成
形型12とその外周にある型ヒーター13を内包しつつ
その下部にはベアリング28を内包する上下に凹部を形
成したバケットホルダー27が設けられている。一方、
基盤17には図示しない回転駆動部の回転によって回転
可能に固定された回転軸30が設けられ、この回転軸3
0は円柱状の偏心カム29の円中心から離れた位置に接
続固定されている。偏心カム29は上記バケットホルダ
ー27の下部に内包されたベアリング28の内径に嵌合
挿入されており、バケットホルダー27を回転自在に保
持している。また、バケットホルダー27は実施形態1
と同様に、その外周の一端以上の点に弦巻ばね21が固
定され、弦巻ばね21により基盤17とに引っ張り固定
されている。In addition to the above, the molding apparatus of this embodiment is provided with a bucket holder 27 which contains a molding die 12 and a die heater 13 on the outer periphery thereof, and at the lower part of which a bearing 28 is enclosed and which is formed with vertical recesses. Has been. on the other hand,
The base 17 is provided with a rotary shaft 30 rotatably fixed by the rotation of a rotary drive unit (not shown).
0 is connected and fixed at a position away from the center of the circle of the cylindrical eccentric cam 29. The eccentric cam 29 is fitted and inserted into the inner diameter of the bearing 28 included in the lower portion of the bucket holder 27, and rotatably holds the bucket holder 27. Further, the bucket holder 27 is the first embodiment.
Similarly, the coiled spring 21 is fixed to one or more points on the outer periphery thereof, and the coiled spring 21 is stretched and fixed to the base 17 by the coiled spring 21.
【0026】次に、本実施形態の作用を説明する。ガラ
ス2の溶融、落下までの作用は実施形態1を同様のた
め、その説明は省略する。図示しない回転駆動機構によ
って回転軸30および偏心カム29を回転すると、偏心
カム29の外径円は偏心して円運動する。このとき、偏
心カム29の円運動のみを取り出し、自転回転をバケッ
トホルダー27および成形型12に伝達させないため
に、ベアリング28を偏心カム29とバケットホルダー
27間に介在させ、バケットホルダー27の外周を弦巻
ばね21で基盤17に引っ張り固定して自転回転を止め
ている。Next, the operation of the present embodiment will be described. The operation up to melting and dropping of the glass 2 is the same as that of the first embodiment, and therefore its explanation is omitted. When the rotating shaft 30 and the eccentric cam 29 are rotated by a rotation drive mechanism (not shown), the outer diameter circle of the eccentric cam 29 is eccentrically moved circularly. At this time, in order to take out only the circular motion of the eccentric cam 29 and prevent the rotation of the rotation from being transmitted to the bucket holder 27 and the molding die 12, the bearing 28 is interposed between the eccentric cam 29 and the bucket holder 27, and the outer circumference of the bucket holder 27 is The spiral spring 21 is pulled and fixed to the base 17 to stop rotation.
【0027】本発明の実施形態3によれば、成形型12
の並進回転が可能となり、あらかじめ並進回転させてお
くことによって、ガラス液滴14を成形型12に供給後
のガラス表面が該成形型12への熱伝導による冷却で初
期接触面に硬化膜を形成する前に外径拡大を終了でき、
段差溝のない大きい成形面の外径(φ11mm以上)を
持ったガラスの成型品19を得ることが可能となる。ま
た、本実施形態では回転軸30の位置を供給ノズル10
の直下に設定すれば良く、位置の設定が簡単に行うこと
が可能であり、また構成が単純で故障が少なく、かつコ
ンパクトであるという利点がある。According to the third embodiment of the present invention, the molding die 12 is used.
And the glass surface after the glass droplets 14 are supplied to the mold 12 is cooled by heat conduction to the mold 12 to form a cured film on the initial contact surface. The outer diameter expansion can be completed before
It is possible to obtain a glass molded product 19 having a large molding surface outer diameter (φ 11 mm or more) without a step groove. Further, in the present embodiment, the position of the rotary shaft 30 is set to the supply nozzle 10.
It is only necessary to set the position directly under the position, and it is possible to easily set the position, and there is an advantage that the structure is simple, there are few failures, and it is compact.
【0028】[発明の実施の形態4]本発明の実施形態
4を図2、3、4に基づいて説明する。本実施形態は、
実刑形態1、2、3に用いた構成の成形装置でそれぞれ
溶融ガラスを成形する方法である。[Fourth Embodiment of the Invention] A fourth embodiment of the present invention will be described with reference to FIGS. In this embodiment,
It is a method of molding molten glass with a molding device having the configuration used in prison sentences 1, 2, and 3, respectively.
【0029】成形型12を並進回転した後、溶融ガラス
を成形型12上に滴下し成型品19の外径を速やかに拡
大するときに、その並進回転の振幅は大きいほど径の拡
大は大きくすることができ中肉は薄くなり、その回転数
が大きいほど急速にかつ肉ムラなく外径を拡大すること
ができるとともに、径は拡大し中肉は薄くなる。つま
り、振幅と回転数の調整によって径と中肉の調整が可能
である。After the mold 12 is translated and rotated, molten glass is dropped onto the mold 12 to rapidly expand the outer diameter of the molded product 19. The larger the translational rotation amplitude, the larger the diameter expansion. The inner wall becomes thinner and the outer diameter can be increased more rapidly and more evenly as the number of revolutions increases, and at the same time, the inner diameter becomes larger and the inner wall becomes thinner. In other words, the diameter and the inside thickness can be adjusted by adjusting the amplitude and the rotation speed.
【0030】しかし、振幅は、ガラス液滴14が成形型
12に命中しなければならないので、成形型12の直径
の1/4以下に抑えるのが妥当である。また、回転数は
0.2sec以下で一回転以上回さなければならないの
で最低300rpmが必要である。回転数の調整は図
2、3、4で図示しない回転駆動機構の出力調整で可能
である。一方、振幅の調整は図2(実施形態1)は偏心
軸21の回転板20への取り付け位置の異なる物に交換
するか、あるいは取り付け位置を同回転板20上に多数
用意し、組立直して調整する。さらに、図3(実施形態
2)では回転円盤22上の円運動軸26の位置を、図4
(実施形態3)では回転軸30の偏心カム29取り付け
位置を、上記等の方法によって調整すれば調整できる。However, since the glass droplet 14 must hit the forming die 12, it is appropriate that the amplitude be suppressed to 1/4 or less of the diameter of the forming die 12. In addition, the number of revolutions is 0.2 sec or less and one revolution or more must be performed, so at least 300 rpm is required. The rotation speed can be adjusted by adjusting the output of a rotary drive mechanism not shown in FIGS. On the other hand, in the adjustment of the amplitude, in FIG. 2 (Embodiment 1), the eccentric shaft 21 is exchanged with another one having a different mounting position to the rotary plate 20, or a large number of mounting positions are prepared on the rotary plate 20, and the assembly is performed again. adjust. Furthermore, in FIG. 3 (Embodiment 2), the position of the circular motion axis 26 on the rotary disk 22 is shown in FIG.
In the third embodiment, the mounting position of the eccentric cam 29 on the rotary shaft 30 can be adjusted by adjusting the above method.
【0031】本発明の実施形態4によれば、段差溝のな
い大きな成形面の外径を持った成型品19を得ることが
できるだけでなく、更に成形型の並進回転の振幅および
回転数を調整することによって、成型品19の外径と中
肉を変化させることができる。According to the fourth embodiment of the present invention, not only a molded product 19 having a large molding surface outer diameter without a step groove can be obtained, but also the translational rotation amplitude and the rotational speed of the molding die are adjusted. By doing so, the outer diameter and the inside thickness of the molded product 19 can be changed.
【0032】[0032]
【発明の効果】以上説明したように、本発明の溶融ガラ
スの成形方法および装置によれば、段差溝のない大きい
成形面の外径(φ11mm以上)を持ったガラス成形品
(ガラスゴブ、ガラスレンズ)を安定して成形すること
が可能となる。As described above, according to the method and apparatus for molding molten glass of the present invention, a glass molded article (glass gob, glass lens) having a large molding surface outer diameter (φ11 mm or more) without a step groove is provided. ) Can be stably molded.
【図1】成形型に接触した後の経過時間とガラスの温度
との関係を示す図である。FIG. 1 is a diagram showing a relationship between an elapsed time after contact with a molding die and a glass temperature.
【図2】本発明の実施形態1を示す断面図である。FIG. 2 is a sectional view showing Embodiment 1 of the present invention.
【図3】本発明の実施形態2を示す断面図である。FIG. 3 is a sectional view showing Embodiment 2 of the present invention.
【図4】本発明の実施形態3を示す断面図である。FIG. 4 is a sectional view showing a third embodiment of the present invention.
【図5】従来技術を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a conventional technique.
1 溶融るつぼ 2 ガラス 3 るつぼヒーター 4 供給ノズル 10 ノズルヒーター 11 プランジャー 12成形型 14 ガラス液滴 16 バケット 15 落下経路 17 基盤 18 回転軸 19 成型品 20 回転板 21 弦巻ばね 23 アーム 27 バケットホルダー 31 摺動回動部材 1 Molten Crucible 2 Glass 3 Crucible Heater 4 Supply Nozzle 10 Nozzle Heater 11 Plunger 12 Mold 14 Glass Droplet 16 Bucket 15 Drop Path 17 Base 18 Rotating Axis 19 Molded Product 20 Rotating Plate 21 Twisting Spring 23 Arm 27 Bucket Holder 31 Sliding Dynamic rotation member
Claims (5)
に型形状を転写する溶融ガラスの成形方法において、成
形型の姿勢と向きを変えずに成形型の位置を回転させる
並進回転をさせた成形型上に溶融ガラス液滴を滴下さ
せ、落下後0.2sec以内に該ガラス液滴の成形面の
外径を拡大することを特徴とする溶融ガラスの成形方
法。1. A method for forming a molten glass in which molten glass is dropped onto a forming die to transfer the shape of the glass to the glass, and translational rotation is performed to rotate the position of the forming die without changing the attitude and orientation of the forming die. A molten glass droplet is dropped onto a molding die, and the outer diameter of the molding surface of the glass droplet is enlarged within 0.2 seconds after the drop.
ら成形型の半径以下の距離離れた位置に回動可能に成形
型を装着し、上記成形型の外周の一端以上の距離に弦巻
ばねを接続して引っ張り、上記回転円盤の回転によって
成形型を並進回転できるようにしたことを特徴とする溶
融ガラスの成形装置。2. A rotary disk is provided, the mold is rotatably mounted at a position separated from a rotary shaft of the rotary disk by a distance equal to or smaller than a radius of the mold, and the winding is wound at a distance of at least one end of an outer periphery of the mold. A molten glass molding apparatus, characterized in that a spring is connected and pulled so that the mold can be translated and rotated by the rotation of the rotary disk.
心から離れた位置に回動自在にアームの一端を固定し、
上記アームの他端には成形型を固定するとともにアーム
の中間部を摺動自在に保持しかつ回動自在な摺動回動部
材があり、上記回転円盤の回転によって成形型を並進回
転できるようにしたことを特徴とする溶融ガラスの成形
装置。3. A rotating disk is provided, and one end of an arm is rotatably fixed at a position distant from a center of rotation of the rotating disk,
At the other end of the arm, there is a sliding / rotating member for fixing the mold and holding the middle part of the arm slidably and rotatable, so that the mold can be translated and rotated by the rotation of the rotary disk. An apparatus for forming molten glass, characterized in that
の外周にベアリングを装着し、該ベアリングの外周と成
形型を同心に保持するバケットを設け、該バケットの外
周の一端以上の位置に弦巻ばねを接続して引っ張り、上
記回転軸の回転によって成形型を並進回転できるように
したことを特徴とする溶融ガラスの成形装置。4. A bearing is mounted on the outer periphery of a cylindrical eccentric cam having an eccentric rotation shaft, and a bucket is provided to hold the outer periphery of the bearing and the molding die concentrically. An apparatus for forming molten glass, characterized in that a helical spring is connected and pulled so that the forming die can be translated and rotated by the rotation of the rotating shaft.
に型形状を転写する溶融ガラスの成形方法において、溶
融ガラス液滴を並進回転する成形型上に落下させ、上記
並進回転の振幅および回転数を調整することによって、
成型品の外径と中肉を変化させることを特徴とする溶融
ガラスの成形方法。5. A method of forming a molten glass in which molten glass is dropped onto a molding die to transfer the shape of the glass to the glass, and the molten glass droplet is dropped onto a translationally rotating molding die, and the translational rotation amplitude and By adjusting the rotation speed,
A method for forming molten glass, which comprises changing the outer diameter and the inside thickness of a molded product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7368296A JPH09263414A (en) | 1996-03-28 | 1996-03-28 | Method for forming fused grass and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7368296A JPH09263414A (en) | 1996-03-28 | 1996-03-28 | Method for forming fused grass and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09263414A true JPH09263414A (en) | 1997-10-07 |
Family
ID=13525239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7368296A Withdrawn JPH09263414A (en) | 1996-03-28 | 1996-03-28 | Method for forming fused grass and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09263414A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083386A1 (en) * | 2000-04-27 | 2001-11-08 | Schott Glas | Method for producing fine glass articles by compression moulding |
US7428828B2 (en) | 2001-05-09 | 2008-09-30 | Fuji Electric Device Technology Co., Ltd. | Press die of disk with shaft shaped portion |
WO2018097552A1 (en) * | 2016-11-25 | 2018-05-31 | 한국수력원자력 주식회사 | Mold supporting device for forming uniform molten solidified body, and method for forming uniform molten solidified body |
-
1996
- 1996-03-28 JP JP7368296A patent/JPH09263414A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083386A1 (en) * | 2000-04-27 | 2001-11-08 | Schott Glas | Method for producing fine glass articles by compression moulding |
US7428828B2 (en) | 2001-05-09 | 2008-09-30 | Fuji Electric Device Technology Co., Ltd. | Press die of disk with shaft shaped portion |
WO2018097552A1 (en) * | 2016-11-25 | 2018-05-31 | 한국수력원자력 주식회사 | Mold supporting device for forming uniform molten solidified body, and method for forming uniform molten solidified body |
JP2019537545A (en) * | 2016-11-25 | 2019-12-26 | コリア ハイドロ アンド ニュークリアー パワー カンパニー リミテッド | Mold support device for forming uniform melt-solidified body and method for forming uniform melt-solidified body |
US11306017B2 (en) | 2016-11-25 | 2022-04-19 | Korea Hydro & Nuclear Power Co.; LTD | Mold supporting device for forming uniform molten solidified body, and method for forming uniform molten solidified body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106827536B (en) | 3D printer adjustable nozzle component | |
JPH09263414A (en) | Method for forming fused grass and device therefor | |
US5738701A (en) | Glass gob production device and production method | |
JPWO2013018484A1 (en) | Method for producing glass molded body | |
TW200829522A (en) | A group of glass preforms and processes for the production of a group of glass preforms and optical elements | |
JPH09263415A (en) | Forming method for fused glass and device therefor | |
JP4938988B2 (en) | Press molding preform manufacturing method, optical element manufacturing method, and molten glass outflow device | |
JP3878310B2 (en) | Raw material supply apparatus, rotational molding method and apparatus | |
JPH03137031A (en) | Method and apparatus for producing glass lens | |
WO2006064723A1 (en) | Preform production apparatus and preform production method | |
JP3808909B2 (en) | Glass gob manufacturing equipment | |
JPH08133751A (en) | Method and device for supplying fused glass | |
JPH08109028A (en) | Method for supplying molten glass and apparatus therefor | |
KR102456442B1 (en) | Ribbon manufacturing apparatus and manufacturing method that can have excellent cooling ability through centrifugal casting | |
JPH08290924A (en) | Molding device for glass optical element | |
JP2018111645A (en) | Manufacturing method of glass material and manufacturing apparatus of glass material | |
JPH1111958A (en) | Optical element, method of manufacturing the same, and apparatus for manufacturing an optical element | |
JPH06298536A (en) | Method for forming glass optical element and apparatus therefor | |
JPH09235125A (en) | Receiving member for molten glass, forming of glass gob and apparatus therefor | |
JPH0632624A (en) | Method for forming optical glass and apparatus therefor | |
JPH06305750A (en) | Method for producing optical element and apparatus therefor | |
JPH0585743A (en) | Molding device for optical element | |
JPH07242428A (en) | Process and apparatus for producing gob for glass forming | |
JPH0380738B2 (en) | ||
JP2007106638A (en) | Method of manufacturing glass rotary body and apparatus for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030603 |