JPH09258838A - Maximum electric power control method for photovolatic power generation system - Google Patents
Maximum electric power control method for photovolatic power generation systemInfo
- Publication number
- JPH09258838A JPH09258838A JP8072077A JP7207796A JPH09258838A JP H09258838 A JPH09258838 A JP H09258838A JP 8072077 A JP8072077 A JP 8072077A JP 7207796 A JP7207796 A JP 7207796A JP H09258838 A JPH09258838 A JP H09258838A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- operating voltage
- power
- cell operating
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は太陽光発電システ
ムにおいて、太陽電池から常に最大の電力を取り出す制
御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for constantly extracting maximum electric power from a solar cell in a solar power generation system.
【0002】[0002]
【従来の技術】図10は例えば特開昭61−97721
号公報に示された従来の太陽光発電システムの構成図で
ある。図11は従来の太陽光発電システムの動作を示す
タイムチャート、図12は日射量が大・小の場合の太陽
電池の出力電力−出力電圧特性を示す図、図13は日射
量が大・中・小の場合の太陽電池の出力電力−出力電圧
特性を示す図、図14は太陽電池の温度が高・低の場合
の太陽電池の出力電力−出力電圧特性を示す図である。2. Description of the Related Art FIG. 10 shows, for example, JP-A-61-197721.
It is a block diagram of the conventional solar power generation system shown by the publication. 11 is a time chart showing the operation of the conventional solar power generation system, FIG. 12 is a diagram showing the output power-output voltage characteristics of the solar cell when the amount of solar radiation is large and small, and FIG. 13 is the amount of solar radiation being large and medium. -The figure which shows the output power-output voltage characteristic of a solar cell in the case of a small case, and FIG. 14 is a figure which shows the output power-output voltage characteristic of a solar cell when the temperature of a solar cell is high / low.
【0003】図において、1は太陽電池、2は電圧形イ
ンバータ(以下インバータと記載する)、3は結合リア
クトル、4は交流電源、5は電圧検出器、6は電圧基準
器、7は加算器、8はインバータ制御回路、9は電流検
出器である。In the figure, 1 is a solar cell, 2 is a voltage type inverter (hereinafter referred to as an inverter), 3 is a coupling reactor, 4 is an AC power source, 5 is a voltage detector, 6 is a voltage reference device, and 7 is an adder. , 8 is an inverter control circuit, and 9 is a current detector.
【0004】次に太陽光発電システムの最大電力制御方
法について図13を用いて説明する。まず、日射量中の
特性に基づいて説明する。最大電力点の追尾初期におい
ては、太陽電池動作電圧の初期値を図中の無負荷電圧V
1となるように設定する。その後、所定のサンプリング
期間で太陽電池動作電圧を一定幅で降下させる。この
間、太陽電池出力電力は図中のの方向に移行し増加す
ることになる。Next, a maximum power control method for the solar power generation system will be described with reference to FIG. First, a description will be given based on the characteristics of the amount of solar radiation. In the initial tracking of the maximum power point, the initial value of the solar cell operating voltage is set to the no-load voltage V in the figure.
Set it to 1. After that, the operating voltage of the solar cell is decreased in a certain width in a predetermined sampling period. During this period, the solar cell output power shifts and increases in the direction shown in the figure.
【0005】しかしながら、このまま太陽電池動作電圧
を降下させた場合には、やがて太陽電池出力電力は最大
電力点M2を越え、の方向に移行し、減少してしま
う。そこで、太陽電池出力電力がの方向に移行したこ
とを検出して、太陽電池動作電圧を一定幅で上昇する方
向に変化させる。そして、太陽電池動作電圧を上昇する
方向に制御した場合には、太陽電池出力電力はの方向
に移行し再び増加するが、最大電力点M2を越えた場合
にはの方向に移行し減少し始める。そこで、の方向
に移行したことを検出して、太陽電池動作電圧を再び降
下させる方向に変化させる。However, if the operating voltage of the solar cell is lowered as it is, the output power of the solar cell will eventually exceed the maximum power point M2 and will move in the direction of and decrease. Therefore, it is detected that the output power of the solar cell has shifted to the direction, and the operating voltage of the solar cell is changed to increase in a certain width. When the solar cell operating voltage is controlled to increase, the solar cell output power shifts to and increases again, but when the maximum power point M2 is exceeded, it shifts to and starts decreasing. . Then, the shift to the direction of is detected and the operating voltage of the solar cell is changed to the direction of decreasing again.
【0006】このように、太陽電池動作電圧を変動さ
せ、太陽電池出力電力が増加した場合には引き続き同じ
方向に太陽電池動作電圧を変化させ、太陽電池出力電力
が減少した場合には太陽電池動作電圧の変化方向を反転
させる。以上の動作を繰り返すことにより、最大電力点
M2が検索され、太陽電池動作点が最大電力点M2近傍
を往復し、最大電力点M2近傍で運転されることにな
る。As described above, when the solar cell operating voltage is varied and the solar cell output power is increased, the solar cell operating voltage is continuously changed in the same direction, and when the solar cell output power is decreased, the solar cell operation is performed. Reverses the direction of voltage change. By repeating the above operation, the maximum power point M2 is searched, the solar cell operating point reciprocates near the maximum power point M2, and the solar cell is operated near the maximum power point M2.
【0007】また、日射量中の特性における最大電力点
M2近傍で運転していた時に、日射量が増え日射量大の
特性に移行した場合には太陽電池動作点がBに移るが、
太陽電池動作電圧を一定幅で絶えず上昇/降下させてい
るので、日射量中の特性において最大電力点M2を検索
したのと同様の動作が行われ、太陽電池動作点が最大電
力点M1近傍を往復し、最大電力点M1近傍で運転され
ることになる。以上のような動作を行う最大電力制御方
法が従来より提案されている。Further, when operating near the maximum power point M2 in the characteristic of the amount of solar radiation, if the amount of solar radiation increases and the characteristic shifts to a large amount of solar radiation, the operating point of the solar cell shifts to B.
Since the solar cell operating voltage is constantly increased / decreased within a certain range, the same operation as the search for the maximum power point M2 in the characteristics during the amount of solar radiation is performed, and the solar cell operating point is in the vicinity of the maximum power point M1. It reciprocates and is operated near the maximum power point M1. Conventionally, a maximum power control method for performing the above operation has been proposed.
【0008】[0008]
【発明が解決しようとする課題】上記のような従来の太
陽光発電システムの最大電力制御方法では、例えば図1
1中の実線(a)に示すように、太陽電池動作電圧を上
昇/降下させる一定の変化幅(D1)が大きい場合に
は、最大電力点付近までは短時間(T1)で到達する
が、最大電力点との偏差(D2)が大きくなってしま
い、太陽電池から最大の電力を取り出すことができず、
効率が悪くなってしまうという問題点があった。In the conventional maximum power control method for a solar power generation system as described above, for example, as shown in FIG.
As shown by the solid line (a) in 1, when the constant change width (D1) for increasing / decreasing the solar cell operating voltage is large, the maximum power point is reached in a short time (T1), The deviation (D2) from the maximum power point becomes large, and the maximum power cannot be extracted from the solar cell,
There was a problem that efficiency became poor.
【0009】特に、例えば図12に示すように日射量小
の特性において、日射量大の特性と同じ一定の変化幅で
太陽電池動作電圧を変動させた場合には、動作点はG−
H間を往復することになり、最大電力点M3との偏差
は、より顕著に現れてしまい、最大電力を取り出すこと
ができず、効率が悪くなるという問題点があった。In particular, for example, when the solar cell operating voltage is fluctuated with the same constant change width as the large solar radiation amount characteristic as shown in FIG. 12, the operating point is G-
Since it makes a round trip between H, the deviation from the maximum power point M3 appears more conspicuously, the maximum power cannot be taken out, and the efficiency becomes poor.
【0010】また、例えば図11の点線(b)に示すよ
うに、太陽電池動作電圧を上昇/降下させる一定の変化
幅(D3)が小さい場合には、最大電力点との偏差(D
4)は小さくなるが、最大電力点付近に到達するまで時
間(T2)がかかり、急激な日射量の変動には追従でき
ないという問題点があった。Further, for example, as shown by the dotted line (b) in FIG. 11, when the constant change width (D3) for increasing / decreasing the solar cell operating voltage is small, the deviation from the maximum power point (D)
Although 4) becomes small, there is a problem that it takes time (T2) to reach the vicinity of the maximum power point and cannot follow a rapid change in the amount of solar radiation.
【0011】特に、例えば図13の日射量大の特性にお
ける最大電力点M1付近で運転中に、日射量が急減し急
激してしまい日射量小の特性になった場合には、動作点
が点M1から点Cになってしまう。この結果、太陽電池
出力電力はゼロになり、インバータ2が停止してしまう
という問題点があった。In particular, for example, when the amount of solar radiation is suddenly reduced and suddenly becomes small during operation near the maximum power point M1 in the characteristic of large amount of solar radiation shown in FIG. 13, the operating point becomes a point. It becomes point C from M1. As a result, there has been a problem that the output power of the solar cell becomes zero and the inverter 2 stops.
【0012】さらに、図10において、通常は交流電源
4の部分には商用系統電源を接続し並列運転する。ここ
で、商用系統電圧は定格電圧を中心に数%変動するもの
であり、商用系統電圧が高い側に数%変動した場合でも
商用系統電源と並列運転ができるように、インバータ2
の入力電圧を確保するため、太陽電池動作電圧に下限値
が設定されている。Further, in FIG. 10, a commercial system power source is usually connected to the AC power source 4 for parallel operation. Here, the commercial system voltage fluctuates by several% around the rated voltage, and even if the commercial system voltage fluctuates by several% on the high side, the inverter 2 can be operated in parallel with the commercial system power supply.
In order to secure the input voltage of, the lower limit value is set for the solar cell operating voltage.
【0013】しかしながら、例えば図14に示すよう
に、同じ日射量であっても太陽電池温度が低い状態から
高い状態になった場合には、最大電力点は点M1Aから
点M1Bへシフトし、太陽電池動作電圧はV2からV3
へ電圧の低い方にシフトする。その結果、最大電力点M
1Bの動作電圧V3が太陽電池動作電圧の下限値V4以
下になってしまい、このため太陽電池から最大電力を取
り出すことができないという問題点があった。However, as shown in FIG. 14, for example, when the solar cell temperature changes from low to high even with the same amount of solar radiation, the maximum power point shifts from point M1A to point M1B, Battery operating voltage is V2 to V3
To lower voltage. As a result, the maximum power point M
The operating voltage V3 of 1B becomes lower than the lower limit value V4 of the operating voltage of the solar cell, which causes a problem that the maximum electric power cannot be taken out from the solar cell.
【0014】この発明は上記のような問題点を解決する
ためになされたもので、短時間で最大電力点に到達で
き、最大電力点との偏差を解消でき、日射量の急変に対
してインバータ(電力変換器)の停止を解消でき、か
つ、太陽電池温度が高い場合でも太陽電池からより多く
の電力を取り出すことのできる太陽光発電システムの最
大電力制御方法を提供すること目的とする。The present invention has been made to solve the above problems, and can reach the maximum power point in a short time, eliminate the deviation from the maximum power point, and respond to sudden changes in solar radiation by an inverter. An object of the present invention is to provide a maximum power control method for a photovoltaic power generation system that can eliminate the stoppage of a (power converter) and can extract more power from the solar cell even when the temperature of the solar cell is high.
【0015】[0015]
【課題を解決するための手段】この発明に係る太陽光発
電システムの最大電力制御方法は、太陽電池により発生
する直流電力を交流電力に変換し、太陽電池電力として
出力する電力変換器と、太陽電池の出力電圧、出力電流
を検出して太陽電池の出力電力を演算する制御部とを備
え、所定時間毎に制御部により太陽電池の目標太陽電池
動作電圧を演算し、電力変換器により太陽電池動作電圧
を目標太陽電池動作電圧に一致させるように太陽電池出
力電力を制御し、最大電力に推移させる太陽光発電シス
テムの最大電力制御方法であって、所定時間毎の目標太
陽電池動作電圧の変化に伴い、太陽電池動作電圧が変化
した時に、前回の太陽電池出力電力よりも今回の太陽電
池出力電力の方が大きい場合には目標太陽電池動作電圧
の変化する方向を同じ方向に設定し、小さい場合には変
化する方向を反転させ、かつ、反転させる毎に目標太陽
電池動作電圧の変化幅を小さくするものである。A maximum power control method for a photovoltaic power generation system according to the present invention is a power converter for converting DC power generated by a solar cell into AC power and outputting the AC power. It has a control unit that calculates the output voltage of the solar cell by detecting the output voltage and output current of the battery, calculates the target solar cell operating voltage of the solar cell by the control unit every predetermined time, and the solar cell by the power converter. It is a maximum power control method of a solar power generation system that controls the solar cell output power so that the operating voltage matches the target solar cell operating voltage, and changes to the maximum power. Therefore, when the solar cell operating voltage changes, if the current solar cell output power is larger than the previous solar cell output power, change the target solar cell operating voltage direction. Flip set direction, reversing the direction of change is smaller, and is intended to reduce the change width of the target solar cell operation voltage each time reversing.
【0016】また、所定時間毎の目標太陽電池動作電圧
の変化に伴い、太陽電池動作電圧が変化した時に、今回
の太陽電池出力電力が前回の太陽電池出力電力よりも所
定値以上変化した場合には、目標太陽電池動作電圧の変
化幅を大きくするものである。In addition, when the solar cell operating voltage changes with the change of the target solar cell operating voltage at every predetermined time, if the current solar cell output power changes by a predetermined value or more than the previous solar cell output power. Is to increase the variation range of the target solar cell operating voltage.
【0017】さらに、所定時間毎の目標太陽電池動作電
圧の変化に伴い、太陽電池動作電圧が変化した時に、前
回の太陽電池動作電圧よりも今回の太陽電池動作電圧の
方が大きい、または小さいことが所定回数連続して生じ
た場合には、所定時間毎の目標太陽電池動作電圧の変化
幅を大きくするものである。Furthermore, when the operating voltage of the solar cell changes with the change of the target operating voltage of the solar cell at every predetermined time, the operating voltage of this time is larger or smaller than the operating voltage of the previous time. If the above occurs for a predetermined number of times in succession, the change width of the target solar cell operating voltage for each predetermined time is increased.
【0018】また、太陽電池の出力電流、太陽電池の出
力電力、電力変換器の出力電流、または電力変換器の出
力電力のいずれかの現在値に応じて目標太陽電池動作電
圧の変化幅の最大値を設定し、所定時間毎の目標太陽電
池動作電圧の変化時には、目標太陽電池動作電圧の変化
幅を最大値より大きくしないものである。Further, the maximum variation range of the target solar cell operating voltage is determined according to the present value of the output current of the solar cell, the output power of the solar cell, the output current of the power converter, or the output power of the power converter. A value is set, and when the target solar cell operating voltage changes every predetermined time, the change width of the target solar cell operating voltage is not made larger than the maximum value.
【0019】また、目標太陽電池動作電圧の変化幅の最
大値は、太陽電池の出力電流、太陽電池の出力電力、電
力変換器の出力電流、前記電力変換器出力電力のいずれ
かの現在値に比例させるものである。Further, the maximum value of the variation width of the target solar cell operating voltage is the present value of any one of the output current of the solar cell, the output power of the solar cell, the output current of the power converter and the output power of the power converter. It is proportional.
【0020】また、所定時間毎の目標太陽電池動作電圧
の変化に伴い、太陽電池動作電圧が変化した時に、今回
の太陽電池出力電力が前回の太陽電池出力電力に比べて
所定値以上減少した場合には、今回が目標太陽電池動作
電圧を上昇する方向へ反転する場合に関係なく、目標太
陽電池動作電圧を降下させるものである。Further, when the solar cell operating voltage changes with the change of the target solar cell operating voltage at every predetermined time, the current solar cell output power decreases by a predetermined value or more as compared with the previous solar cell output power. In this case, the target solar cell operating voltage is lowered regardless of the case where the target solar cell operating voltage is reversed in this direction.
【0021】また、所定時間毎の目標太陽電池動作電圧
の変化に伴い、太陽電池動作電圧が変化した時に、今回
の太陽電池出力電力が前回の太陽電池出力電力に比べて
所定値以上増加した場合には、今回が目標太陽電池動作
電圧を下降する方向へ反転する場合に関係なく、目標太
陽電池動作電圧を上昇させるものである。In addition, when the solar cell operating voltage changes with the change of the target solar cell operating voltage at every predetermined time, the current solar cell output power increases by a predetermined value or more as compared with the previous solar cell output power. In this case, the target solar cell operating voltage is raised regardless of the case where the target solar cell operating voltage is reversed in this direction.
【0022】また、電力変換器の出力に接続される商用
電力系統を備え、制御部により商用電力系統の系統電圧
と系統周波数を検出し、この系統電圧と系統周波数に同
期した交流電力を発生させるように電力変換器を制御す
るとともに、系統電圧に比例して太陽電池動作電圧下限
値を設定し、目標太陽電池動作電圧を太陽電池動作電圧
下限値以下にしないものである。Further, the commercial power system connected to the output of the power converter is provided, the system voltage and the system frequency of the commercial power system are detected by the control unit, and AC power synchronized with the system voltage and the system frequency is generated. As described above, the power converter is controlled as described above, the lower limit value of the solar cell operating voltage is set in proportion to the system voltage, and the target solar cell operating voltage is not made lower than the lower limit value of the solar cell operating voltage.
【0023】[0023]
実施の形態1.図1は、この発明の実施の形態1を示す
太陽光発電システムのブロック図である。図2、図3、
図4は制御回路3(後述)の動作を示すフローチャート
であり、図2と図3は一連の動作を示すフローチャート
であるが、便宜上2つに分けて図示している。図2と図
3の動作は数秒程度の間隔t0で繰り返し実行され、図
4の動作は数msec程度の間隔t1で繰り返し実行さ
れるものである。Embodiment 1. First Embodiment FIG. 1 is a block diagram of a solar power generation system showing a first embodiment of the present invention. 2, 3,
FIG. 4 is a flow chart showing the operation of the control circuit 3 (described later), and FIGS. 2 and 3 are flow charts showing a series of operations, but are shown in two separate sections for convenience. The operation of FIGS. 2 and 3 is repeatedly executed at an interval t0 of about several seconds, and the operation of FIG. 4 is repeatedly executed at an interval t1 of about several msec.
【0024】図5はある日射量の場合の太陽電池出力電
流IS −出力電圧VS 特性を示す図、図6は太陽光発電
システムの動作を示すタイムチャート、図7は太陽電池
出力電流IS と太陽電池動作電圧最大変化幅VKMAXの関
係を示す図、図8は太陽光発電システムの動作を示すタ
イムチャート、図9は商用電力系統の系統電圧VACと太
陽電池動作電圧下限値VDMINとの関係を示す図である。FIG. 5 is a diagram showing a solar cell output current I S -output voltage V S characteristic in the case of a certain amount of solar radiation, FIG. 6 is a time chart showing the operation of the solar power generation system, and FIG. 7 is a solar cell output current I FIG. 8 is a diagram showing the relationship between S and the maximum change range V KMAX of the solar cell operating voltage, FIG. 8 is a time chart showing the operation of the photovoltaic power generation system, and FIG. 9 is a system voltage V AC of the commercial power system and the solar cell operating voltage lower limit value V. It is a figure which shows the relationship with DMIN .
【0025】図において、1は太陽光により直流の電力
を発生する太陽電池、2は太陽電池1の直流電力を交流
電力に変換する電力変換器であり、商用電力系統4に接
続され並列に運転が行われる。10は電力変換器2の出
力が商用電力系統4の系統電圧と系統周波数に同期する
ように電力変換器2を制御し、かつ、太陽電池1の出力
電圧と出力電流を検出して出力電力を演算し、太陽電池
1の出力電圧が所定の値になるように電力変換器2の出
力電流を制御する制御回路であり、制御部を示す。In the figure, 1 is a solar cell that generates direct current power from sunlight, and 2 is a power converter that converts the direct current power of the solar cell 1 into alternating current power, which is connected to a commercial power system 4 and operated in parallel. Is done. Reference numeral 10 controls the power converter 2 so that the output of the power converter 2 is synchronized with the grid voltage and grid frequency of the commercial power grid 4, and detects the output voltage and output current of the solar cell 1 to output the output power. A control circuit that calculates and controls the output current of the power converter 2 so that the output voltage of the solar cell 1 becomes a predetermined value, and shows a control unit.
【0026】なお、従来例と同一または相当部分には同
一符号を付している。次に、制御回路10による太陽光
発電システムの最大電力制御方法について説明する。図
2、図3による説明の前に、図4による説明を行う。図
4のフローチャートは太陽電池出力電圧VS を図2、図
3により演算された目標太陽電池動作電圧VDNと一致す
るように制御するものである。The same or corresponding parts as those of the conventional example are designated by the same reference numerals. Next, the maximum power control method of the solar power generation system by the control circuit 10 will be described. Before the description with FIGS. 2 and 3, the description with FIG. 4 will be given. The flowchart of FIG. 4 controls the solar cell output voltage V S so as to match the target solar cell operating voltage V DN calculated by FIGS. 2 and 3.
【0027】まず、S300で太陽電池出力電圧VS を
読み込み、S301で図2、図3で演算された目標太陽
電池動作電圧VDNと比較する。太陽電池出力電圧VS が
目標太陽電池動作電圧VDNより大きければ、S303で
電力変換器2の交流出力電流IOUT を所定値αだけ増加
させる。これにより太陽電池出力電流IS も増加し、図
5の太陽電池出力電流IS −出力電圧VS 特性により、
出力電圧VS が降下することになる。First, the solar cell output voltage V S is read in S300, and compared with the target solar cell operating voltage V DN calculated in FIGS. 2 and 3 in S301. If the solar cell output voltage V S is higher than the target solar cell operating voltage V DN , the AC output current I OUT of the power converter 2 is increased by a predetermined value α in S303. This also increases the solar cell output current I S, the solar cell output current I S in Figure 5 - the output voltage V S characteristic,
The output voltage V S will drop.
【0028】また、S301で太陽電池出力電圧VS が
目標太陽電池動作電圧VDNより小さければ、S302で
電力変換器2の交流出力電流IOUT を所定値αだけ減少
させる。これにより太陽電池出力電流IS も減少し、図
5の太陽電池出力電流IS −出力電圧VS 特性により、
出力電圧VS が上昇することになる。If the solar cell output voltage V S is smaller than the target solar cell operating voltage V DN in S301, the AC output current I OUT of the power converter 2 is reduced by a predetermined value α in S302. This also reduces the solar cell output current I S, the solar cell output current I S in Figure 5 - the output voltage V S characteristic,
The output voltage V S will rise.
【0029】以上のS300〜S303の動作をt1
(数msec)毎に高速で繰り返すことにより、太陽電
池出力電圧VS が目標太陽電池動作電圧VDNと一致する
ように制御する。なお、図1において、交流出力電流I
OUT が商用電力系統4に同期した値となるように、商用
電力系統4の電圧と交流出力電流を検出して、電力変換
器2をフィードバック制御しているが、詳細説明は省略
する。The above operation of S300 to S303 is t1.
By repeating at high speed every (several msec), the solar cell output voltage V S is controlled so as to match the target solar cell operating voltage V DN . In FIG. 1, the AC output current I
The voltage and the AC output current of the commercial power system 4 are detected and the power converter 2 is feedback-controlled so that OUT has a value synchronized with the commercial power system 4, but the detailed description is omitted.
【0030】次に図2、図3による説明を行う。図2、
図3のフローチャートは目標太陽電池動作電圧VDNを演
算するものである。まず、S200で太陽電池出力電圧
VS が読み込まれる。次にS201で太陽電池出力電圧
VS を電力変換器2の運転可能入力電圧V1と比較す
る。日射量が少なく、太陽電池出力電圧VS が運転可能
入力電圧V1より小さいと判定された場合には、電力変
換器2を運転できないと判定して、S202で電力変換
器2の運転を停止する。Next, description will be made with reference to FIGS. FIG.
The flowchart of FIG. 3 calculates the target solar cell operating voltage V DN . First, in S200, the solar cell output voltage V S is read. Next, in S201, the solar cell output voltage V S is compared with the operable input voltage V1 of the power converter 2. When it is determined that the amount of solar radiation is small and the solar cell output voltage V S is lower than the operable input voltage V1, it is determined that the power converter 2 cannot be operated, and the operation of the power converter 2 is stopped in S202. .
【0031】これとともに、S203で太陽電池動作電
圧の変化幅VK をβに初期化し、S204で目標太陽電
池動作電圧VDNを(V1−β)に初期化し、更に、S2
05で目標太陽電池動作電圧VDNの変化方向を表すF
1、F2に”−1”を設定し、現在の太陽電池出力電力
PNOW を零として処理を終了する。At the same time, the variation width V K of the solar cell operating voltage is initialized to β in S203, the target solar cell operating voltage V DN is initialized to (V1-β) in S204, and further, S2
F represents the change direction of the target solar cell operating voltage V DN at 05
"-1" is set to 1 and F2, the current solar cell output power P NOW is set to zero, and the process ends.
【0032】一方、日射量が多く、S201で太陽電池
出力電圧VS が運転可能入力電圧V1より大きいと判定
された場合には、電力変換器2が運転可能であると判定
して、S206で電力変換器2の運転を開始する。これ
により、電力変換器2は、太陽電池出力電圧VS が目標
太陽電池動作電圧VDNとなるように商用電力系統4の系
統電圧と系統周波数に同期した交流出力電流を制御す
る。On the other hand, when the amount of solar radiation is large and it is determined in S201 that the solar cell output voltage V S is higher than the operable input voltage V1, it is determined that the power converter 2 is operable, and in S206. The operation of the power converter 2 is started. Thus, the power converter 2, the solar cell output voltage V S to control the AC output current synchronized with the system voltage and a system frequency of the commercial power system 4 so that the target solar cell operating voltage V DN.
【0033】そこで、S207で太陽電池出力電力P
OLD に前回計算した太陽電池出力電力PNOW を代入、S
208で太陽電池出力電流IS を読み込む。そして、S
209で新たに太陽電池出力電力PNOW (=太陽電池出
力電圧VS ×太陽電池出力電流IS )を計算する。この
S207からS209の一連の動作により、前回計算し
た太陽電池出力電力はPOLD 、今回計算した太陽電池出
力電力はPNOW として設定される。Then, in S207, the solar cell output power P
Substituting PV output power P NOW calculated last time into OLD , S
At 208, the solar cell output current I S is read. And S
In 209, the solar cell output power P NOW (= solar cell output voltage V S × solar cell output current I S ) is newly calculated. Through the series of operations from S207 to S209, the solar cell output power calculated last time is set as P OLD , and the solar cell output power calculated this time is set as P NOW .
【0034】次にS210〜S217の動作について説
明する。まず、F1は前回の太陽電池動作電圧を変化さ
せた向き、F2は前前回の太陽電池動作電圧を変化させ
た向きを示すものである。すなわち、前回に太陽電池動
作電圧を上昇していればF1に”1”(正)が設定さ
れ、降下していれば”−1”(負)が設定される。同様
に前前回に太陽電池動作電圧を上昇していればF2に
は”1”(正)が設定され、降下していれば”−1”
(負)が設定される。Next, the operation of S210 to S217 will be described. First, F1 indicates the direction in which the previous solar cell operating voltage has been changed, and F2 indicates the direction in which the previous solar cell operating voltage has been changed. That is, "1" (positive) is set to F1 when the solar cell operating voltage has been increased last time, and "-1" (negative) is set to F1 when it has decreased. Similarly, "1" (positive) is set to F2 if the solar cell operating voltage has risen the previous time, and "-1" if it has fallen.
(Negative) is set.
【0035】S210とS211で、F1、F2がとも
に負、すなわち前回、前前回ともに太陽電池動作電圧を
降下していれば、S212で太陽電池動作電圧の変化幅
VKを1.5倍にする。S210とS211でF1が
負、F2が正、すなわち前回、太陽電池動作電圧を降下
したが、前前回は太陽電池動作電圧を上昇していれば、
S212で太陽電池動作電圧の変化幅を0.7倍にす
る。If both F1 and F2 are negative in S210 and S211, that is, if the solar cell operating voltage has dropped both in the previous time and in the previous time, the change width V K of the solar cell operating voltage is increased by 1.5 times in S212. . In S210 and S211, F1 is negative and F2 is positive, that is, the solar cell operating voltage was decreased last time, but if the solar cell operating voltage was increased last time,
In step S212, the change width of the solar cell operating voltage is multiplied by 0.7.
【0036】S210とS214でF1、F2がともに
正、すなわち前回、前前回ともに太陽電池動作電圧を上
昇していれば、S215で太陽電池動作電圧の変化幅V
K を1.5倍にする。S210とS214でF1が正、
F2が負、すなわち前回は太陽電池動作電圧を上昇した
が、前前回は太陽電池動作電圧を降下していれば、S2
16で太陽電池動作電圧の変化幅VK を0.7倍にす
る。If F1 and F2 are both positive in S210 and S214, that is, if the solar cell operating voltage has increased both in the previous time and in the previous time, the change width V of the solar cell operating voltage in S215.
Increase K by 1.5 times. F1 is positive in S210 and S214,
If F2 is negative, that is, the solar cell operating voltage was increased last time, but the solar cell operating voltage was decreased the previous time, S2
At 16, the variation width V K of the solar cell operating voltage is multiplied by 0.7.
【0037】以上の動作により、前回と前前回に太陽電
池動作電圧を同じ方向に変化していれば、太陽電池動作
電圧の変化幅VK は1.5倍になり、前回と前前回の太
陽電池動作電圧の変化方向が異なれば、太陽電池動作電
圧の変化幅VK は0.7倍になる。すなわち、太陽電池
動作電圧の変化方向が同じ方向に連続すれば、太陽電池
動作電圧の変化幅VK は1.5倍づつ大きくなり、図6
の(r)部分のように、太陽電池動作電圧の変化幅VK
が大きくなる。By the above operation, if the solar cell operating voltage is changed in the same direction in the previous time and the previous time, the change width V K of the solar cell operating voltage becomes 1.5 times, and If the change direction of the battery operating voltage is different, the change width V K of the solar cell operating voltage becomes 0.7 times. That is, if the solar cell operating voltage changes continuously in the same direction, the solar cell operating voltage change width V K increases by 1.5 times, as shown in FIG.
Of (r) as part, variation V K of the solar cell operating voltage
Becomes larger.
【0038】また、太陽電池動作電圧の変化方向が毎回
反転すれば、太陽電池動作電圧の変化幅VK は0.7倍
づつ小さくなり、図6の(s)部分のように、太陽電池
動作電圧の変化幅VK が小さくなり、最大電力太陽電池
動作電圧M2に近づいていくことになる。更に、S21
7では、次回の制御のために、前回の太陽電池動作電圧
を変化させた向きF1を前前回の太陽電池動作電圧を変
化させた向きF2に設定する処理を行う。If the change direction of the solar cell operating voltage is reversed every time, the change width V K of the solar cell operating voltage is decreased by 0.7 times, and the solar cell operation is reduced as shown in part (s) of FIG. The change width V K of the voltage becomes smaller and approaches the maximum power solar cell operating voltage M2. Furthermore, S21
In step 7, processing for setting the direction F1 in which the previous solar cell operating voltage was changed to the direction F2 in which the previous previous solar cell operating voltage was changed is performed for the next control.
【0039】次にS218〜S220の動作について説
明する。S218で図7を用い太陽電池出力電流IS の
値に応じた太陽電池動作電圧最大変化幅VKMAXを検索し
決定する。ここで、太陽電池出力電流IS と太陽電池動
作電圧最大変化幅VKMAXとの関係は比例関係となるよう
にする。次にS219で太陽電池動作電圧の変化幅VK
と太陽電池動作電圧最大変化幅VKMAXを比較する。Next, the operation of S218 to S220 will be described. In step S218, the maximum variation range V KMAX of the solar cell operating voltage according to the value of the solar cell output current I S is searched and determined using FIG. Here, the relationship between the solar cell output current I S and the solar cell operating voltage maximum change width V KMAX is set to be proportional. Next, in S219, the variation width V K of the solar cell operating voltage is
And the solar cell operating voltage maximum change width V KMAX are compared.
【0040】太陽電池動作電圧の変化幅VK が太陽電池
動作電圧最大変化幅VKMAXよりも大きければ、S220
で太陽電池動作電圧の変化幅VK に太陽電池動作電圧最
大変化幅VKMAXを設定する。すなわち、太陽電池動作電
圧の変化幅VK は太陽電池動作電圧最大変化幅VKMAXよ
りも大きくならないように制限されることになる。If the variation range V K of the solar cell operating voltage is larger than the maximum variation range V KMAX of the solar cell operating voltage, S220
The solar cell operating voltage maximum variation range V KMAX is set to the solar cell operating voltage variation range V K. That is, the variation range V K of the solar cell operating voltage is limited so as not to be larger than the maximum variation range V KMAX of the solar cell operating voltage.
【0041】次にS221〜S223の動作について説
明する。S221で前回の太陽電池出力電力POLD と今
回の太陽電池出力電力PNOW との偏差ΔPを計算する。
S222で偏差ΔPの絶対値と所定値λを比較する。そ
こで、偏差ΔPの絶対値が所定値λ以上変化していれ
ば、S223で太陽電池動作電圧の変化幅VK に太陽電
池動作電圧最大変化幅VKMAXを設定する。Next, the operation of S221 to S223 will be described. In step S221, the deviation ΔP between the previous solar cell output power P OLD and the current solar cell output power P NOW is calculated.
In S222, the absolute value of the deviation ΔP is compared with the predetermined value λ. Therefore, if the absolute value of the deviation ΔP has changed by the predetermined value λ or more, the maximum variation range V KMAX of the solar cell operating voltage is set to the variation range V K of the solar cell operating voltage in S223.
【0042】すなわち、今回の太陽電池出力電力PNOW
が前回の太陽電池出力電力POLD より所定値λ以上変化
していれば、太陽電池動作電圧の変化幅VK は太陽電池
動作電圧最大変化幅VKMAXとなる。すなわち、図6の
(n)部で示すように、最大電力点の最大電力太陽電池
動作電圧M2で運転中に日射量が急変し、太陽電池の出
力電力が急変し、最大電力太陽電池動作電圧M1になっ
た場合に、太陽電池動作電圧の変化幅VK に太陽電池動
作電圧最大変化幅VKMAXが設定される。That is, the solar cell output power P NOW
Changes from the previous solar cell output power P OLD by a predetermined value λ or more, the variation range V K of the solar cell operating voltage becomes the maximum variation range V KMAX of the solar cell operating voltage. That is, as shown in part (n) of FIG. 6, the amount of solar radiation suddenly changes during operation at the maximum power solar cell operating voltage M2 at the maximum power point, the output power of the solar cell suddenly changes, and the maximum power solar cell operating voltage When M1 is reached, the maximum variation range V KMAX of the solar cell operating voltage is set to the variation range V K of the solar cell operating voltage.
【0043】S224で太陽電池出力電力が−γ以上減
少した場合には、S232〜S234の動作を行う。S
232〜S234の動作については詳しくは後述する
が、この動作は太陽電池動作電圧を降下させる動作であ
る。すなわち、太陽電池出力電力が、−γ以上減少した
場合は、太陽電池動作電圧は降下する。If the output power of the solar cell has decreased by -γ or more in S224, the operations of S232 to S234 are performed. S
The operation of steps 232 to S234 will be described later in detail, but this operation is an operation of decreasing the solar cell operating voltage. That is, when the solar cell output power decreases by -γ or more, the solar cell operating voltage drops.
【0044】つまり、太陽電池出力電力が−γ以上減少
した場合は、日射量が急減したと判定し、この時は図1
3からもわかるように最大電力となる太陽電池動作電圧
は低くなるので、たとえ図8の(P)部に示すように、
今回の太陽電池動作電圧の変化方向が上昇方向へ反転さ
せる場合であっても、S224、S232〜S234の
ステップの動作により太陽電池動作電圧を降下させる。That is, when the solar cell output power decreases by -γ or more, it is determined that the amount of solar radiation has decreased sharply.
As can be seen from FIG. 3, the operating voltage of the solar cell that becomes the maximum power is low, so as shown in (P) part of FIG.
Even when the change direction of the current solar cell operating voltage is reversed to the rising direction, the solar cell operating voltage is decreased by the operations of steps S224, S232 to S234.
【0045】S225で太陽電池出力電力がζ以上増加
した場合にはS235〜S237の動作を行う。S23
5〜S237の動作については詳しくは後述するが、こ
の動作は太陽電池動作電圧を上昇させる処理である。す
なわち、太陽電池出力電力が、ζ以上増加した場合は、
太陽電池動作電圧は上昇する。When the solar cell output power increases by ζ or more in S225, the operations of S235 to S237 are performed. S23
The operation of 5 to S237 will be described in detail later, but this operation is a process of increasing the solar cell operating voltage. That is, when the solar cell output power increases by ζ or more,
The solar cell operating voltage rises.
【0046】つまり、太陽電池出力電力が、ζ以上上昇
した場合は、日射量が急増したと判定し、この時は図1
3からもわかるように最大電力となる太陽電池動作電圧
は高くなるので、たとえ図8の(W)部に示すように、
今回の太陽電池動作電圧の変化方向が下降方向へ反転さ
せる場合であっても、S225、S235〜S237の
ステップの動作により太陽電池の動作電圧を上昇させ
る。That is, when the output power of the solar cell increases by ζ or more, it is determined that the amount of solar radiation has rapidly increased.
As can be seen from Fig. 3, the operating voltage of the solar cell that becomes the maximum power is high, so even if the (W) part of FIG.
Even when the change direction of the present solar cell operating voltage is reversed to the lowering direction, the operating voltage of the solar cell is increased by the operations of steps S225, S235 to S237.
【0047】次にS226〜S228の動作では、前
回、太陽電池動作電圧を変更したとき、太陽電池出力電
力特性が図13に示すような〜の方向のうち、どの
方向に動いたのかを判定する。まず、S226で現在の
太陽電池動作電圧VDNが前回の太陽電池動作電圧VDOよ
り大きいと判定され、かつ、S228で現在の太陽電池
出力電力PNOW が前回の太陽電池出力電力POLD より大
きければ、の方向に向かって動いていると判定でき
る。Next, in the operations of S226 to S228, when the operating voltage of the solar cell is changed last time, it is determined in which direction the solar cell output power characteristic moves, as shown in FIG. . First, it is determined in S226 that the current solar cell operating voltage V DN is higher than the previous solar cell operating voltage V DO , and in S228 the current solar cell output power P NOW is greater than the previous solar cell output power P OLD. For example, it can be determined that the movement is in the direction of.
【0048】同様にして、S226で現在の太陽電池動
作電圧VDNが前回の太陽電池動作電圧VDOより小さく、
かつ、S227で現在の太陽電池出力電力PNOW が前回
の太陽電池出力電力POLD より小さければ、の方向に
向かって動いていると判定でき、S226で現在の太陽
電池動作電圧VDNが前回の太陽電池動作電圧VDOより大
きく、かつ、S228で現在の太陽電池出力電力PNOW
が前回の太陽電池出力電力POLD より小さければの方
向、S226で現在の太陽電池動作電圧VDNが前回の太
陽電池動作電圧VDOより小さく、かつ、S227で現在
の太陽電池出力電力PNOW が前回の太陽電池出力電力P
OLD より大きければの方向に向かって動いていると判
定できる。Similarly, in S226, the current solar cell operating voltage V DN is smaller than the previous solar cell operating voltage V DO ,
If the current solar cell output power P NOW is smaller than the previous solar cell output power P OLD in S227, it can be determined that the solar cell is moving in the direction of, and the current solar cell operating voltage V DN is the previous one in S226. It is larger than the solar cell operating voltage V DO , and the current solar cell output power P NOW at S228.
Is smaller than the previous solar cell output power P OLD , the current solar cell operating voltage V DN is smaller than the previous solar cell operating voltage V DO in S226, and the current solar cell output power P NOW is S227. Previous solar cell output power P
If it is larger than OLD , it can be determined that it is moving in the direction of.
【0049】つぎに、からの各方向に動いた場合の
動作について説明する。S226〜S228での方向
に動いたと判定された場合には、S229〜S231の
動作を行う。S229で前回の太陽電池動作電圧VDOに
現在の太陽電池動作電圧VDNを設定し、S230で現在
の太陽電池動作電圧VDNに「現在の太陽電池動作電圧V
DN+太陽電池動作電圧の変化幅VK 」を設定する。この
S229とS230の動作により、今回の太陽電池動作
電圧VDNは前回の太陽電池動作電圧VDOとなり、新たな
太陽電池動作電圧VDNは太陽電池動作電圧の変化幅VK
だけ上昇した値となる。さらに、このS230で太陽電
池動作電圧を上昇方向に変更したので、S231で前回
の太陽電池動作電圧を変化させた向きF1に”1”
(正)を設定する。Next, the operation when moving in the respective directions from to will be described. When it is determined that the movement has been made in the directions of S226 to S228, the operations of S229 to S231 are performed. Set the current of the solar cell operating voltage V DN to the last of the solar cell operating voltage V DO in S229, the current of the solar cell operating voltage V DN in S230 "of the current solar cell operating voltage V
DN + solar cell operating voltage change width V K "is set. By the operations of S229 and S230, the present solar cell operating voltage V DN becomes the previous solar cell operating voltage V DO , and the new solar cell operating voltage V DN is the variation width V K of the solar cell operating voltage.
It will be an increased value. Further, since the solar cell operating voltage is changed to the rising direction in S230, the direction F1 in which the previous solar cell operating voltage is changed is "1" in S231.
Set (positive).
【0050】また、S226〜S228での方向に動
いたと判定された場合には、S232〜S234の動作
を行う。S232で前回の太陽電池動作電圧VDOに現在
の太陽電池動作電圧VDNを設定し、S233で新たな現
在の太陽電池動作電圧VDNは太陽電池動作電圧の変化幅
VK だけ降下した値となる。さらに、このS233で太
陽電池動作電圧を降下方向に変更したので、S234で
前回の太陽電池動作電圧を変化させた向きF1に”−1
(負)”を設定する。If it is determined that the movement is in the directions of S226 to S228, the operations of S232 to S234 are performed. In step S232, the current solar cell operating voltage V DN is set to the previous solar cell operating voltage V DO , and in step S233, the new current solar cell operating voltage V DN is set to a value decreased by the variation range V K of the solar cell operating voltage. Become. Further, since the solar cell operating voltage is changed to the decreasing direction in S233, the direction F1 in which the previous solar cell operating voltage is changed in S234 is set to "-1".
(Negative) ”is set.
【0051】さらに、S226〜S228での方向に
動いたと判定された場合には、S235〜S237の動
作を行う。S235で前回の太陽電池動作電圧VDOに現
在の太陽電池動作電圧VDNを設定し、S236で新たな
現在の太陽電池動作電圧VDNは太陽電池動作電圧の変化
幅VK だけ上昇した値となる。さらに、このS236で
太陽電池動作電圧を上昇方向に変更したので、S237
で前回の太陽電池動作電圧を変化させた向きF1に”1
(正)”を設定する。Further, when it is determined that the movement has been made in the directions of S226 to S228, the operations of S235 to S237 are performed. In S235, the current solar cell operating voltage V DN is set to the previous solar cell operating voltage V DO , and in S236, the new current solar cell operating voltage V DN is a value increased by the variation range V K of the solar cell operating voltage. Become. Furthermore, since the solar cell operating voltage is changed in the rising direction in S236, S237
Then, in the direction F1 in which the previous solar cell operating voltage was changed, "1"
(Correct) ”is set.
【0052】また、S226〜S228での方向に動
いたと判定された場合には、S238〜S240の処理
を行う。S238で前回の太陽電池動作電圧VDOに現在
の太陽電池動作電圧VDNを設定し、S239で新たな現
在の太陽電池動作電圧VDNは太陽電池動作電圧の変化幅
VK だけ降下した値となる。さらに、このS239で太
陽電池動作電圧を降下方向に変更したので、S240で
前回の太陽電池動作電圧を変化させた向きF1に”−
1”(負)を設定する。If it is determined that the movement is in the directions of S226 to S228, the processing of S238 to S240 is performed. In S238, the current solar cell operating voltage V DN is set to the previous solar cell operating voltage V DO , and in S239, the new current solar cell operating voltage V DN is set to a value decreased by the variation range V K of the solar cell operating voltage. Become. Further, since the solar cell operating voltage is changed to the decreasing direction in S239, the direction F1 in which the previous solar cell operating voltage is changed in S240 is "-".
Set to 1 ”(negative).
【0053】次に、S241〜S243の動作では、商
用電力系統4の系統電圧VACに応じて太陽電池動作電圧
の下限値VDMINを決定し、太陽電池動作電圧を下限値V
DMIN以下にしないように制御する。まず、図9に示すよ
うに、系統電圧VACと太陽電池動作電圧下限値VDMINと
の関係は比例関係にある。そこで、S241で系統電圧
VACに応じて太陽電池動作電圧下限値VDMINを決定す
る。次にS242で現在の太陽電池動作電圧VDNと太陽
電池動作電圧下限値VDMINを比較し、太陽電池動作電圧
VDNが小さい場合には、S243で太陽電池動作電圧V
DNを太陽電池動作電圧下限値VDMINで制限する。Next, in the operations of S241 to S243 , the lower limit value V DMIN of the solar cell operating voltage is determined according to the system voltage V AC of the commercial power system 4, and the solar cell operating voltage is set to the lower limit value V D.
Control so that it does not fall below DMIN . First, as shown in FIG. 9, the relationship between the system voltage V AC and the solar cell operating voltage lower limit value V DMIN is proportional. Therefore, in S241, the solar cell operating voltage lower limit value V DMIN is determined according to the system voltage V AC . Next, in S242, the current solar cell operating voltage V DN and the solar cell operating voltage lower limit value V DMIN are compared. If the solar cell operating voltage V DN is small, the solar cell operating voltage V DN is calculated in S243.
DN is limited by the solar cell operating voltage lower limit value V DMIN .
【0054】これにより、図14に示すように太陽電池
温度が低い状態から高い状態になり、最大電力点が点M
1AからM1Bにシフトした場合でも、太陽電池動作電
圧VDNを太陽電池動作電圧下限値VDMINで制限すること
により、系統電圧VACが低い場合は、最大電力点M1B
に近づくことができ、より多くの電力を太陽電池から取
り出すことができる。As a result, as shown in FIG. 14, the solar cell temperature changes from a low state to a high state, and the maximum power point is point M.
Even when shifting from 1A to M1B, by limiting the solar cell operating voltage V DN by the solar cell operating voltage lower limit value V DMIN , when the system voltage V AC is low, the maximum power point M1B
, And more power can be drawn from the solar cells.
【0055】なお、この実施の形態1では、現在の太陽
電池出力電流IS の値に応じて太陽電池動作電圧最大変
化幅VKMAXを設定し、太陽電池出力電流IS と太陽電池
動作電圧最大変化幅VKMAXとの関係は比例関係となるよ
うにする制御方法を示したが、現在の太陽電池の出力電
力、電力変換器の出力電流、または電力変換器の出力電
力のうちのいずれかの値に応じて太陽電池動作電圧最大
変化幅VKMAXを設定し、この現在の太陽電池の出力電
力、電力変換器の出力電流、または電力変換器の出力電
力のうちのいずれかの値と太陽電池動作電圧最大変化幅
VKMAXとの関係が比例関係になるように制御してもよ
い。[0055] In accordance with this embodiment 1, the solar cell operating voltage to set the maximum change width V KMAX, the solar cell operating voltage up to the solar cell output current I S in response to the current value of the solar cell output current I S Although the control method for making the relationship with the change width V KMAX to be a proportional relationship has been shown, any one of the current output power of the solar cell, the output current of the power converter, or the output power of the power converter is shown. The solar battery operating voltage maximum change width V KMAX is set according to the value, and any one of the current output power of the solar cell, the output current of the power converter, or the output power of the power converter and the solar cell is set. Control may be performed so that the relationship with the maximum change range V KMAX of the operating voltage is proportional.
【0056】また、実施の形態1では、制御開始時に、
太陽電池動作電圧を下降する方向から始めることに主眼
を置いて説明したが、太陽電池動作電圧を上昇する方向
から始めてもよく、同様の効果が得られる。In the first embodiment, at the start of control,
Although the description has been focused on starting from the direction of decreasing the solar cell operating voltage, the same effect can be obtained by starting from the direction of increasing the solar cell operating voltage.
【0057】[0057]
【発明の効果】以上のように、この発明によれば、太陽
電池出力電力が増加から減少、減少から増加へと反転す
る毎に太陽電池動作電圧の変化幅を小さくするように制
御するので、太陽電池動作電圧を短時間に最大電力点に
近づかせることができ、最終的に最大電力点との偏差も
少なく、ほぼ一致した動作点になり、太陽電池から最大
電力を取り出すことができるという効果がある。As described above, according to the present invention, the change width of the solar cell operating voltage is controlled to be small each time the solar cell output power is reversed from increasing to decreasing and vice versa. The effect that the operating voltage of the solar cell can be brought close to the maximum power point in a short time, and finally the deviation from the maximum power point is small, and the operating points are almost the same, and the maximum power can be extracted from the solar cell. There is.
【0058】また、所定時間毎の目標太陽電池動作電圧
の変化に伴い、太陽電池動作電圧が変化した時に、今回
の太陽電池出力電力が前回の太陽電池出力電力よりも所
定値以上変化した場合には、目標太陽電池動作電圧の変
化幅を大きくするので、最大電力点で運転中に日射量が
急変し、太陽電池の出力電力が急変した場合には、目標
太陽電池動作電圧の変化幅が大きくなり、太陽電池動作
電圧を新しい最大電力点に素早く移動できるという効果
がある。In addition, when the solar cell operating voltage changes with the change of the target solar cell operating voltage for each predetermined time, if the current solar cell output power changes by a predetermined value or more than the previous solar cell output power. Changes the target solar cell operating voltage, so if the amount of solar radiation suddenly changes during operation at the maximum power point and the output power of the solar cell suddenly changes, the target solar cell operating voltage changes significantly. Therefore, the solar cell operating voltage can be moved to a new maximum power point quickly.
【0059】さらに、所定時間毎の目標太陽電池動作電
圧の変化に伴い、太陽電池動作電圧が変化した時に、前
回の太陽電池動作電圧よりも今回の太陽電池動作電圧の
方が大きい、または小さいことが所定回数連続して生じ
た場合には、所定時間毎の目標太陽電池動作電圧の変化
幅を大きくするので、日射量の急変により、最大電力点
から遠く離れた太陽電池動作電圧になった場合でも、太
陽電池動作電圧を新しい最大電力点に素早く移動できる
という効果がある。Further, when the operating voltage of the solar cell changes with the change of the target operating voltage of the solar cell at every predetermined time, the operating voltage of this time is larger or smaller than the operating voltage of the previous time. If the above occurs continuously for a predetermined number of times, the change range of the target solar cell operating voltage for each predetermined time is increased, so when the solar cell operating voltage is far from the maximum power point due to a sudden change in the amount of solar radiation. However, there is an effect that the operating voltage of the solar cell can be quickly moved to a new maximum power point.
【0060】また、太陽電池の出力電流、太陽電池の出
力電力、電力変換器の出力電流、または電力変換器の出
力電力のいずれかの現在値に応じて目標太陽電池動作電
圧の変化幅の最大値を設定し、所定時間毎の目標太陽電
池動作電圧の変化時には、目標太陽電池動作電圧の変化
幅を最大値より大きくしないので、太陽電池動作電圧の
変化幅が制限され、太陽電池動作電圧変化幅が不必要に
大きくなることを防止できるという効果がある。Further, the maximum change width of the target solar cell operating voltage is determined according to the present value of the output current of the solar cell, the output power of the solar cell, the output current of the power converter, or the output power of the power converter. Set the value and when the target solar cell operating voltage changes every predetermined time, the range of change of the target solar cell operating voltage is not made larger than the maximum value. This has the effect of preventing the width from unnecessarily increasing.
【0061】また、目標太陽電池動作電圧の変化幅の最
大値は、太陽電池の出力電流、太陽電池の出力電力、電
力変換器の出力電流、または電力変換器出力電力のいず
れかの現在値に比例させるので、日射量が多い場合には
変化幅が大きくなり、日射量が少ない場合には変化幅が
小さくなり、特に日射量が少ない場合に太陽電池動作電
圧が最大電力点近傍で大きく振れることを防止できると
いう効果がある。Further, the maximum value of the change width of the target solar cell operating voltage is the present value of the output current of the solar cell, the output power of the solar cell, the output current of the power converter, or the output power of the power converter. Since it is proportional, the range of change is large when the amount of solar radiation is large, and the range of change is small when the amount of solar radiation is small, and the solar cell operating voltage swings largely near the maximum power point especially when the amount of solar radiation is small. There is an effect that can prevent.
【0062】また、所定時間毎の目標太陽電池動作電圧
の変化に伴い、太陽電池動作電圧が変化した時に、今回
の太陽電池出力電力が前回の太陽電池出力電力に比べて
所定値以上減少した場合には、今回が目標太陽電池動作
電圧を上昇する方向へ反転する場合に関係なく、目標太
陽電池動作電圧を降下させるので、所定値以上減少した
場合は、日射量が急減したと判定し、この場合は最大電
力となる太陽電池動作電圧が低くなるため、今回の太陽
電池動作電圧の変化方向が上昇する方向へ反転する場合
であっても、太陽電池動作電圧を降下させ、新しい最大
電力点を素早く検知でき、電力変換器が停止してしまう
ことがないという効果がある。Further, when the solar cell operating voltage changes with the change of the target solar cell operating voltage for each predetermined time, the current solar cell output power decreases by a predetermined value or more as compared with the previous solar cell output power. In this case, the target solar cell operating voltage is lowered regardless of the case where the target solar cell operating voltage is reversed to increase in this time.Therefore, when the target solar cell operating voltage is reduced by a predetermined value or more, it is determined that the amount of solar radiation has decreased sharply. In this case, the solar cell operating voltage, which is the maximum power, becomes low.Therefore, even when the direction of change in the solar cell operating voltage this time is reversed, the solar cell operating voltage is lowered and a new maximum power point is set. The effect is that detection can be performed quickly and the power converter will not stop.
【0063】また、所定時間毎の目標太陽電池動作電圧
の変化に伴い、太陽電池動作電圧が変化した時に、今回
の太陽電池出力電力が前回の太陽電池出力電力に比べて
所定値以上増加した場合には、今回が目標太陽電池動作
電圧を下降する方向へ反転する場合に関係なく、目標太
陽電池動作電圧を上昇させるので、所定値以上増加した
場合は、日射量が急増したと判定し、この場合は最大電
力となる太陽電池動作電圧は高くなるため、今回の太陽
電池動作電圧の変化方向が下降する方向へ反転する場合
であっても、太陽電池動作電圧を上昇させ、新しい最大
電力点を素早く検知できるという効果がある。In addition, when the solar cell operating voltage changes with the change of the target solar cell operating voltage at every predetermined time, the current solar cell output power increases by a predetermined value or more as compared with the previous solar cell output power. In this case, the target solar cell operating voltage is increased regardless of the case where the target solar cell operating voltage is reversed in this direction.Therefore, if the target solar cell operating voltage is increased by a predetermined value or more, it is determined that the amount of solar radiation has increased rapidly. In this case, the solar cell operating voltage, which is the maximum power, becomes high, so even if the change direction of the solar cell operating voltage this time is reversed, the solar cell operating voltage is increased and a new maximum power point is set. The effect is that it can be detected quickly.
【0064】また、制御部により商用電力系統の系統電
圧と系統周波数を検出し、この系統電圧と系統周波数に
同期した交流電力を発生させるように電力変換器を制御
するとともに、系統電圧に比例して太陽電池動作電圧下
限値を設定し、目標太陽電池動作電圧を太陽電池動作電
圧下限値以下にしないので、系統電圧が低い場合には、
太陽電池動作電圧下限値をより最大電力点に近づけ、よ
り多くの電力を太陽電池から取り出すことができるとい
う効果がある。Further, the control unit detects the system voltage and the system frequency of the commercial power system, controls the power converter so as to generate the AC power synchronized with the system voltage and the system frequency, and is proportional to the system voltage. Set the lower limit value of the solar cell operating voltage, and the target solar cell operating voltage is not lower than the lower limit value of the solar cell operating voltage, so when the system voltage is low,
There is an effect that the lower limit of the operating voltage of the solar cell can be brought closer to the maximum power point and more power can be taken out from the solar cell.
【図1】 この発明の実施の形態1による太陽光発電シ
ステムのブロック図である。FIG. 1 is a block diagram of a solar power generation system according to a first embodiment of the present invention.
【図2】 この発明の実施の形態1による太陽光発電シ
ステムの制御回路の動作を示すフローチャートである。FIG. 2 is a flowchart showing an operation of a control circuit of the solar power generation system according to the first embodiment of the present invention.
【図3】 この発明の実施の形態1による太陽光発電シ
ステムの制御回路の動作を示すフローチャートである。FIG. 3 is a flowchart showing an operation of a control circuit of the photovoltaic power generation system according to Embodiment 1 of the present invention.
【図4】 この発明の実施の形態1による太陽光発電シ
ステムの制御回路の動作を示すフローチャートである。FIG. 4 is a flowchart showing an operation of the control circuit of the solar power generation system according to the first embodiment of the present invention.
【図5】 太陽電池の出力電流−出力電圧特性を示す図
である。FIG. 5 is a diagram showing an output current-output voltage characteristic of a solar cell.
【図6】 この発明の実施の形態1による太陽光発電シ
ステムの動作を示すタイムチャートである。FIG. 6 is a time chart showing the operation of the solar power generation system according to the first embodiment of the present invention.
【図7】 この発明の実施の形態1による太陽光発電シ
ステムの太陽電池出力電流と太陽電池動作電圧最大変化
幅の関係を示す図である。FIG. 7 is a diagram showing a relationship between a solar cell output current and a solar cell operating voltage maximum change width of the solar power generation system according to the first embodiment of the present invention.
【図8】 この発明の実施の形態1による太陽光発電シ
ステムの動作を示すタイムチャートである。FIG. 8 is a time chart showing an operation of the solar power generation system according to the first embodiment of the present invention.
【図9】 この発明の実施の形態1による太陽光発電シ
ステムの商用電力系統の系統電圧と太陽電池動作電圧下
限値との関係を示す図である。FIG. 9 is a diagram showing a relationship between a system voltage of a commercial power system of the solar power generation system according to the first embodiment of the present invention and a solar cell operating voltage lower limit value.
【図10】 従来の太陽光発電システムの構成図であ
る。FIG. 10 is a configuration diagram of a conventional photovoltaic power generation system.
【図11】 従来の太陽光発電システムの動作を示すタ
イムチャートである。FIG. 11 is a time chart showing the operation of the conventional photovoltaic power generation system.
【図12】 日射量が大・小の場合の太陽電池の出力電
力−出力電圧特性を示す図である。FIG. 12 is a diagram showing output power-output voltage characteristics of a solar cell when the amount of solar radiation is large / small.
【図13】 日射量が大・中・小の場合の太陽電池の出
力電力−出力電圧特性を示す図である。FIG. 13 is a diagram showing output power-output voltage characteristics of a solar cell when the amount of solar radiation is large, medium, and small.
【図14】 太陽電池の温度が高・低の場合の太陽電池
の出力電力−出力電圧特性を示す図である。FIG. 14 is a diagram showing output power-output voltage characteristics of a solar cell when the temperature of the solar cell is high / low.
1 太陽電池、 2 電力変換器、 4 商用電力系
統、 10 制御回路1 solar cell, 2 power converter, 4 commercial power system, 10 control circuit
Claims (8)
電力に変換し、太陽電池電力として出力する電力変換器
と、 太陽電池の出力電圧、出力電流を検出して太陽電池の出
力電力を演算する制御部とを備え、 所定時間毎に前記制御部により太陽電池の目標太陽電池
動作電圧を演算し、前記電力変換器により太陽電池動作
電圧を目標太陽電池動作電圧に一致させるように太陽電
池出力電力を制御し、最大電力に推移させる太陽光発電
システムの最大電力制御方法であって、 所定時間毎の前記目標太陽電池動作電圧の変化に伴い、
太陽電池動作電圧が変化した時に、前回の太陽電池出力
電力よりも今回の太陽電池出力電力の方が大きい場合に
は前記目標太陽電池動作電圧の変化する方向を同じ方向
に設定し、小さい場合には変化する方向を反転させ、か
つ、反転させる毎に前記目標太陽電池動作電圧の変化幅
を小さくすることを特徴とする太陽光発電システムの最
大電力制御方法。1. A power converter that converts direct-current power generated by a solar cell into alternating-current power and outputs it as solar cell power, and calculates output power of the solar cell by detecting output voltage and output current of the solar cell. The control unit calculates a target solar cell operating voltage of the solar cell by the control unit every predetermined time, and the solar cell output power so that the solar cell operating voltage matches the target solar cell operating voltage by the power converter. Is a maximum power control method of the solar power generation system to control the maximum power, with the change of the target solar cell operating voltage every predetermined time,
When the solar cell operating voltage changes, if the current solar cell output power is larger than the previous solar cell output power, set the changing direction of the target solar cell operating voltage to the same direction, and if it is smaller, Is inverting the changing direction, and reducing the change width of the target solar cell operating voltage each time the inverting is performed, the maximum power control method of the solar power generation system.
変化に伴い、太陽電池動作電圧が変化した時に、今回の
太陽電池出力電力が前回の太陽電池出力電力よりも所定
値以上変化した場合には、前記目標太陽電池動作電圧の
変化幅を大きくすることを特徴とする請求項1記載の太
陽光発電システムの最大電力制御方法。2. When the solar cell operating voltage changes with the change of the target solar cell operating voltage at every predetermined time, the current solar cell output power changes by a predetermined value or more from the previous solar cell output power. The maximum power control method of the photovoltaic power generation system according to claim 1, wherein the change width of the target solar cell operating voltage is increased.
変化に伴い、太陽電池動作電圧が変化した時に、前回の
太陽電池動作電圧よりも今回の太陽電池動作電圧の方が
大きい、または小さいことが所定回数連続して生じた場
合には、所定時間毎の前記目標太陽電池動作電圧の変化
幅を大きくすることを特徴とする請求項1または請求項
2記載の太陽光発電システムの最大電力制御方法。3. The solar cell operating voltage of this time is larger or smaller than the previous solar cell operating voltage when the solar cell operating voltage changes with the change of the target solar cell operating voltage every predetermined time. The maximum power of the solar power generation system according to claim 1 or 2, wherein the change width of the target solar cell operating voltage for each predetermined time is increased when a predetermined number of consecutive occurrences occur. Control method.
力、前記電力変換器の出力電流、または前記電力変換器
の出力電力のいずれかの現在値に応じて前記目標太陽電
池動作電圧の変化幅の最大値を設定し、所定時間毎の前
記目標太陽電池動作電圧の変化時には、目標太陽電池動
作電圧の変化幅を前記変化幅の最大値より大きくしない
ことを特徴とする請求項2または請求項3記載の太陽光
発電システムの最大電力制御方法。4. The change of the target solar cell operating voltage according to the present value of the output current of the solar cell, the output power of the solar cell, the output current of the power converter, or the output power of the power converter. The maximum value of the width is set, and when the target solar cell operating voltage changes at every predetermined time, the change width of the target solar cell operating voltage is not made larger than the maximum value of the change width. Item 3. A maximum power control method for a solar power generation system according to Item 3.
値は、太陽電池の出力電流、太陽電池の出力電力、前記
電力変換器の出力電流、または前記電力変換器出力電力
のいずれかの現在値に比例させることを特徴とする請求
項4記載の太陽光発電システムの最大電力制御方法。5. The maximum value of the change width of the target solar cell operating voltage is any one of the output current of the solar cell, the output power of the solar cell, the output current of the power converter, and the output power of the power converter. The maximum power control method for a photovoltaic power generation system according to claim 4, wherein the method is proportional to the current value.
変化に伴い、太陽電池動作電圧が変化した時に、今回の
太陽電池出力電力が前回の太陽電池出力電力に比べて所
定値以上減少した場合には、今回が前記目標太陽電池動
作電圧を上昇する方向へ反転する場合に関係なく、前記
目標太陽電池動作電圧を降下させることを特徴とする請
求項1から請求項5記載の太陽光発電システムの最大電
力制御方法。6. The solar cell output power at this time is decreased by a predetermined value or more as compared with the previous solar cell output power when the solar cell operation voltage changes with the change of the target solar cell operation voltage at every predetermined time. In this case, the target solar cell operating voltage is lowered regardless of the case where the target solar cell operating voltage is reversed in the rising direction this time. System maximum power control method.
変化に伴い、太陽電池動作電圧が変化した時に、今回の
太陽電池出力電力が前回の太陽電池出力電力に比べて所
定値以上増加した場合には、今回が前記目標太陽電池動
作電圧を下降する方向へ反転する場合に関係なく、前記
目標太陽電池動作電圧を上昇させることを特徴とする請
求項1から請求項5記載の太陽光発電システムの最大電
力制御方法。7. The solar cell output power at this time increases by a predetermined value or more as compared with the previous solar cell output power when the solar cell operating voltage changes with the change of the target solar cell operating voltage at every predetermined time. In this case, the target solar cell operating voltage is increased regardless of the case where the target solar cell operating voltage is reversed in the decreasing direction this time. System maximum power control method.
力系統を備え、 前記制御部により前記商用電力系統の系統電圧と系統周
波数を検出し、この系統電圧と系統周波数に同期した交
流電力を発生させるように前記電力変換器を制御すると
ともに、前記系統電圧に比例して太陽電池動作電圧下限
値を設定し、前記目標太陽電池動作電圧を太陽電池動作
電圧下限値以下にしないことを特徴とする請求項1から
請求項7記載の太陽光発電システムの最大電力制御方
法。8. A commercial power system connected to the output of the power converter, wherein the control unit detects a system voltage and a system frequency of the commercial power system, and AC power synchronized with the system voltage and the system frequency. While controlling the power converter to generate the, the solar cell operating voltage lower limit value is set in proportion to the system voltage, the target solar cell operating voltage is not lower than the solar cell operating voltage lower limit value. The maximum power control method for the photovoltaic power generation system according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8072077A JPH09258838A (en) | 1996-03-27 | 1996-03-27 | Maximum electric power control method for photovolatic power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8072077A JPH09258838A (en) | 1996-03-27 | 1996-03-27 | Maximum electric power control method for photovolatic power generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09258838A true JPH09258838A (en) | 1997-10-03 |
Family
ID=13478993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8072077A Pending JPH09258838A (en) | 1996-03-27 | 1996-03-27 | Maximum electric power control method for photovolatic power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09258838A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100380774C (en) * | 2004-04-19 | 2008-04-09 | 佳能株式会社 | Electric power control apparatus, power generation system and power grid system |
JP2008226870A (en) * | 2007-03-08 | 2008-09-25 | Mitsubishi Electric Corp | Solar cell generation system |
JP2011146056A (en) * | 2006-12-26 | 2011-07-28 | Richtek Technology Corp | Analog photovoltaic power circuit |
JP2012235588A (en) * | 2011-04-28 | 2012-11-29 | Sanyo Electric Co Ltd | System interconnection apparatus |
KR101223611B1 (en) * | 2012-06-27 | 2013-01-17 | 채광식 | Control system of solar cell generation using pertubation and observation method tracking maximum power point and thereof method using variable voltage increment |
JP2014081739A (en) * | 2012-10-15 | 2014-05-08 | Origin Electric Co Ltd | Power conditioner system |
WO2016113838A1 (en) * | 2015-01-13 | 2016-07-21 | 東芝三菱電機産業システム株式会社 | Control device for inverter |
JP2017192243A (en) * | 2016-04-15 | 2017-10-19 | 日立アプライアンス株式会社 | Photovoltaic power generation system |
-
1996
- 1996-03-27 JP JP8072077A patent/JPH09258838A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100380774C (en) * | 2004-04-19 | 2008-04-09 | 佳能株式会社 | Electric power control apparatus, power generation system and power grid system |
JP2011146056A (en) * | 2006-12-26 | 2011-07-28 | Richtek Technology Corp | Analog photovoltaic power circuit |
JP2008226870A (en) * | 2007-03-08 | 2008-09-25 | Mitsubishi Electric Corp | Solar cell generation system |
JP4489087B2 (en) * | 2007-03-08 | 2010-06-23 | 三菱電機株式会社 | Solar power system |
JP2012235588A (en) * | 2011-04-28 | 2012-11-29 | Sanyo Electric Co Ltd | System interconnection apparatus |
KR101223611B1 (en) * | 2012-06-27 | 2013-01-17 | 채광식 | Control system of solar cell generation using pertubation and observation method tracking maximum power point and thereof method using variable voltage increment |
JP2014081739A (en) * | 2012-10-15 | 2014-05-08 | Origin Electric Co Ltd | Power conditioner system |
WO2016113838A1 (en) * | 2015-01-13 | 2016-07-21 | 東芝三菱電機産業システム株式会社 | Control device for inverter |
CN107155382A (en) * | 2015-01-13 | 2017-09-12 | 东芝三菱电机产业系统株式会社 | The control device of inverter |
JPWO2016113838A1 (en) * | 2015-01-13 | 2017-10-26 | 東芝三菱電機産業システム株式会社 | Inverter control device |
US9985553B2 (en) | 2015-01-13 | 2018-05-29 | Toshiba Mitsubishi—Electric Industrial Systems Corporation | Control device of inverter |
JP2017192243A (en) * | 2016-04-15 | 2017-10-19 | 日立アプライアンス株式会社 | Photovoltaic power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3382434B2 (en) | Battery power supply voltage control device and voltage control method | |
JP4457692B2 (en) | Maximum power tracking control method and power conversion device | |
EP0653692B1 (en) | Method and apparatus for controlling the power of a battery power source | |
EP0780750B1 (en) | Inverter control method and inverter apparatus using the method | |
JP4606935B2 (en) | Control method of photovoltaic power generation system | |
JP3499941B2 (en) | Solar power generator | |
US20060290317A1 (en) | Maximum power point motor control | |
JP2010231456A (en) | Power supply system | |
JPH09258838A (en) | Maximum electric power control method for photovolatic power generation system | |
JP6284342B2 (en) | Photovoltaic power generation apparatus and photovoltaic power generation control method | |
JPH07325635A (en) | Output controller for inverter | |
JPH08123561A (en) | Method and device for maximum output following control for photovoltaic power generation system | |
CN115411771B (en) | Photovoltaic power generation system and control method thereof | |
JP2000341959A (en) | Power generating system | |
CN117811086A (en) | Photovoltaic inversion energy storage system and control method thereof | |
JPS63181015A (en) | Maximum output control method for solar power generation equipment | |
JPH09179643A (en) | Power converter for photovoltatic power generation | |
JP3567807B2 (en) | Maximum power control method for solar cells | |
JP2017085762A (en) | Solar power generation control device and control method therefor | |
JP2022058076A (en) | Power supply device and power supply method therefor | |
JP3595211B2 (en) | Inverter control method | |
JPH07281775A (en) | Operation control method for photovoltaic power generation device | |
JP2000020149A (en) | Sunshine inverter device | |
JP3182230B2 (en) | Solar power generator | |
JP3567809B2 (en) | Maximum power control method for solar cells |