[go: up one dir, main page]

JPH09256998A - Compressor wings - Google Patents

Compressor wings

Info

Publication number
JPH09256998A
JPH09256998A JP6884796A JP6884796A JPH09256998A JP H09256998 A JPH09256998 A JP H09256998A JP 6884796 A JP6884796 A JP 6884796A JP 6884796 A JP6884796 A JP 6884796A JP H09256998 A JPH09256998 A JP H09256998A
Authority
JP
Japan
Prior art keywords
blade
surface side
leading edge
compressor
pressure surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6884796A
Other languages
Japanese (ja)
Inventor
Takashi Hokari
高志 穂刈
Kaoru Chiba
薫 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK
Original Assignee
SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK filed Critical SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK
Priority to JP6884796A priority Critical patent/JPH09256998A/en
Publication of JPH09256998A publication Critical patent/JPH09256998A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

(57)【要約】 【課題】 翼の前縁部における流れの急加減速を低減
し、境界層の剥離現象を防止して高性能化を図るととも
に、前縁部の厚みを保持して耐衝撃性、耐摩耗性を保
つ。 【解決手段】 圧縮機の翼12の空気流入側の前縁部1
2aを、ミーンキャンバーラインLを中心として、負圧
面側が薄く正圧面側が厚くなるように非対称形状に形成
される構成を採用する。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To reduce the rapid acceleration / deceleration of the flow at the leading edge of a blade to prevent the separation phenomenon of the boundary layer to improve the performance and to maintain the thickness of the leading edge to improve the durability. Keeps impact and wear resistance. SOLUTION: A front edge portion 1 of an air inflow side of a blade 12 of a compressor.
2a is formed in an asymmetrical shape centering on the mean camber line L so that the negative pressure surface side is thin and the positive pressure surface side is thick.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機の翼に係
り、前縁部での流れの急激な変化を減少させて圧縮効率
を高める技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor blade, and more particularly to a technique for increasing a compression efficiency by reducing an abrupt change in a flow at a leading edge portion.

【0002】[0002]

【従来の技術】図4は、航空機に使用されるガスタービ
ンエンジン(ターボファンエンジン)の構造例を示すも
のである。図中符号1は空気取入口、2はファン・低圧
圧縮機、3はファン空気排出ダクト、4は高圧圧縮機、
5は燃焼室、6は高圧タービン、6aはタービン軸、7
は低圧タービン、8は排気ダクト、9はディスク、10
は動翼、11はケーシング、21は静翼である。
2. Description of the Related Art FIG. 4 shows a structural example of a gas turbine engine (turbo fan engine) used in an aircraft. In the figure, 1 is an air intake, 2 is a fan / low pressure compressor, 3 is a fan air discharge duct, 4 is a high pressure compressor,
5 is a combustion chamber, 6 is a high pressure turbine, 6a is a turbine shaft, 7
Is a low pressure turbine, 8 is an exhaust duct, 9 is a disk, 10
Is a moving blade, 11 is a casing, and 21 is a stationary blade.

【0003】このようなガスタービンエンジンにおける
ファン・低圧圧縮機2及び高圧圧縮機4等の軸流圧縮機
の部分では、ディスク9によって動翼10が回転させら
れることにより、空気を圧縮して後方に送り出すように
している。
In such an axial flow compressor portion as the fan / low pressure compressor 2 and the high pressure compressor 4 in the gas turbine engine, the rotor blade 10 is rotated by the disk 9 to compress the air to the rear side. I am sending it to.

【0004】[0004]

【発明が解決しようとする課題】ファンおよび両圧縮機
のディスク9とケーシング11との間(流路)に動翼1
0の回転により空気流が送り込まれ、静翼12の凹面側
が正圧面12Bとなり静翼12の凸面側が負圧面12A
となるが、前縁部では翼先端に当たった流れが加速さ
れ、図6に示す翼形マッハ数でわかるように、流れの急
激な加減速が発生する。ガスタービンエンジンの圧縮機
やその他の軸流圧縮機にあっては、翼列内で流れの急減
速が発生した場合には、静翼12の負圧面12Aで境界
層の剥離現象を誘発して、圧縮効率を低下させるという
課題がある。この翼の前縁部での流れの急加減速を押さ
える方法として、一般には前縁部の厚みを薄くする方法
が採られる。しかし、前縁部を薄くすると、空気流に混
入した異物が翼前縁部に衝突した場合の耐衝撃性や、空
気流中の砂、酸化物等に対する耐摩耗性が低下するとい
う課題が残る。
The blade 1 is provided between the disk 9 and the casing 11 (flow path) of the fan and both compressors.
The airflow is sent by the rotation of 0, and the concave side of the stationary blade 12 becomes the positive pressure surface 12B and the convex side of the stationary blade 12 becomes the negative pressure surface 12A.
However, at the leading edge, the flow hitting the blade tip is accelerated, and as shown by the airfoil Mach number shown in FIG. 6, a rapid acceleration / deceleration of the flow occurs. In a gas turbine engine compressor and other axial flow compressors, when a rapid deceleration of the flow occurs in the blade row, a boundary layer separation phenomenon is induced at the suction surface 12A of the stationary blade 12. However, there is a problem of reducing the compression efficiency. As a method for suppressing the rapid acceleration / deceleration of the flow at the leading edge of the blade, a method of reducing the thickness of the leading edge is generally adopted. However, if the leading edge is made thin, there remains a problem that impact resistance when foreign matter mixed in the air flow collides with the blade leading edge and abrasion resistance against sand, oxides, etc. in the air flow. .

【0005】本発明は、これらの課題に鑑みてなされた
もので、翼の前縁部での流れの急加減速を減少させて、
境界層の剥離現象を防止することにより高性能化を図
り、かつ翼の前縁部の厚みを保持して耐衝撃性、耐摩耗
性を保つことを目的としている。
The present invention has been made in view of these problems, and reduces the rapid acceleration / deceleration of the flow at the leading edge of the blade,
The purpose is to improve the performance by preventing the boundary layer from peeling, and to maintain the thickness of the leading edge of the blade to maintain impact resistance and wear resistance.

【0006】[0006]

【課題を解決するための手段】圧縮機の翼の空気流入側
の前縁部を、ミーンキャンバーラインを中心として、負
圧面側が薄く正圧面側が厚くなるように非対称形状に形
成される。翼の前縁部の非対称部分の長さMは、該翼の
コード長Cに対して、 0.01<(M/C)<0.05 の範囲に設定される。また、翼の前縁部の非対称部分に
おいて、前端からM×1/5の距離だけ後方へ入った位
置の、前記ミーンキャバーラインを境とした負圧面側の
半翼部の厚さtaと正圧面側の半翼部の厚さtbが、 0.1<(ta/tb)<0.9 の範囲に設定され、かつ、負圧面側の半翼部の曲率半径
Raと正圧面側の半翼部の曲率半径Rbとが Rb<Ra の関係となる。
The front edge of the compressor blade on the air inflow side is formed in an asymmetrical shape with the suction surface side thin and the pressure surface side thick with the mean camber line as the center. The length M of the asymmetric portion of the leading edge of the blade is set in the range of 0.01 <(M / C) <0.05 with respect to the cord length C of the blade. Further, in the asymmetrical portion of the leading edge portion of the blade, the thickness ta of the half blade portion on the suction surface side, which is located at a position M × 1/5 rearward from the front end, with the mean cabar line as a boundary, The thickness tb of the half blade on the pressure surface side is set in the range of 0.1 <(ta / tb) <0.9, and the radius of curvature Ra of the half blade on the suction surface side and the pressure surface side The radius of curvature Rb of the semi-wing portion has a relationship of Rb <Ra.

【0007】[0007]

【作用】前縁部を負圧面側が薄く正圧面側が厚くなるよ
うに非対称形状に形成していると、対称形状とした従来
のものに比べて負圧面側の空気のスムーズな流れが確保
できることとなり、これにより、該負圧面側の前縁部で
の流れの急加減速が減少する。このとき、翼の前縁部の
厚みは、正圧面を厚くすることで、従来のものと同程度
となり、耐衝撃性、耐摩耗性は低下しない。このように
特に負圧面側の流れの急加減速が減少することにより、
翼における背面の剥離現象の発生が抑制されるととも
に、翼の前縁部の厚みが保持され、耐衝撃性、耐摩耗性
は保たれる。
[Function] When the front edge is formed in an asymmetric shape so that the suction surface side is thinner and the pressure surface side is thicker, a smoother air flow on the suction surface side can be secured as compared with the conventional symmetrical one. As a result, the rapid acceleration / deceleration of the flow at the front edge portion on the suction surface side is reduced. At this time, the thickness of the front edge portion of the blade becomes approximately the same as that of the conventional one by increasing the thickness of the positive pressure surface, and the impact resistance and wear resistance do not decrease. In this way, especially by reducing the rapid acceleration / deceleration of the flow on the suction side,
The occurrence of the back surface peeling phenomenon in the blade is suppressed, the thickness of the leading edge portion of the blade is maintained, and the impact resistance and wear resistance are maintained.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る圧縮機の翼
を、ガスタービンエンジンの圧縮機の静翼に適用した場
合の実施の形態について、図1ないし図3に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment in which a compressor blade according to the present invention is applied to a stationary blade of a compressor of a gas turbine engine will be described with reference to FIGS.

【0009】図1に示すように、静翼12の横断面形状
は、前縁部12aと後縁部12bとを結ぶ腹面(正圧
面)12B及び背面(負圧面)12Aの横断曲線の組み
合わせにより設定される。静翼12の前縁部12aは、
従来一般的には、図2中2点鎖線で示すように、ミーン
キャンバーラインLを中心として負圧面側及び正圧面側
が共に同形状の、いわゆる左右対称形状に設定されてい
るが、本発明では、この前縁部12aを、ミーンキャン
バーラインLを中心として、負圧面側が薄く正圧面側が
厚くなるように非対称形状に形成している。
As shown in FIG. 1, the cross-sectional shape of the vane 12 is defined by a combination of transverse curves of an abdominal surface (positive pressure surface) 12B and a rear surface (negative pressure surface) 12A connecting the front edge portion 12a and the rear edge portion 12b. Is set. The leading edge portion 12a of the stationary blade 12 is
Conventionally, as shown by the chain double-dashed line in FIG. 2, generally, the negative pressure surface side and the positive pressure surface side have the same shape with the mean camber line L as the center. The front edge portion 12a is formed in an asymmetrical shape so that the suction surface side is thin and the pressure surface side is thick with the mean camber line L as the center.

【0010】具体的には、静翼12の前縁部12aの非
対称部分20の長さMは、該静翼のコード長Cに対し
て、下記の関係を有するように設定される。 0.01<(M/C)<0.05 ここで、非対称部分の長さMとコード長Cとの比を0.
01以下にすると、後述するように、前縁部での流れの
急加減速を減少させるという、非対称形状とする本来の
機能が薄れる点で好ましくなく、また逆に、非対称部分
の長さMとコード長Cとの比を0.05以上に設定する
と、静翼12の形状が初期の設計した形状と大きく異な
ることとなり、空気の圧縮性能が低下する点で好ましく
ない。なお、この非対称部分20の全体厚さtは、従来
のものとほぼ同一である。従って、空気流に混入した異
物が翼前縁部に衝突した場合の耐衝撃性や、空気中の
砂、酸化物等に対する耐摩耗性は低下しない。
Specifically, the length M of the asymmetric portion 20 of the leading edge portion 12a of the vane 12 is set so as to have the following relationship with the chord length C of the vane. 0.01 <(M / C) <0.05 where the ratio of the length M of the asymmetric portion to the cord length C is 0.
When it is 01 or less, as described later, it is not preferable in that the original function of making the asymmetric shape to reduce the rapid acceleration / deceleration of the flow at the front edge portion is diminished. When the ratio with the cord length C is set to 0.05 or more, the shape of the stationary blade 12 is significantly different from the initially designed shape, which is not preferable because the air compression performance is deteriorated. The total thickness t of the asymmetric portion 20 is almost the same as the conventional one. Therefore, the impact resistance when foreign matter mixed in the air flow collides with the blade leading edge portion and the wear resistance against sand, oxides, etc. in the air do not decrease.

【0011】また、静翼12の前縁部12aの非対称部
分20において、前端からM×1/5の距離Nだけ奥方
へ入った位置の、ミーンキャバーラインLを境とした負
圧面側の半翼部21Aの厚さtaと正圧面側の半翼部2
1Bの厚さtbが、下記の関係を有するように設定され
る。 0.1<(ta/tb)<0.9 ここで、負圧面側の半翼部21Aの厚さtaと正圧面側
の半翼部21Bの厚さtbとの比を0.1以下に設定す
ると、静翼12の前縁部12aの先端形状が初期の設計
形状と大きく異なり、空気の圧縮性能が低下するおそれ
がある点で好ましくなく、また逆に、負圧面側の半翼部
21Aの厚さtaと正圧面側の半翼部21Bの厚さtb
との比を0.9以上に設定すると、従来のものと差がな
くなり、前縁部のピークマッハ数を減少させるという本
来の機能を果たさなくなる点で好ましくない。
Further, in the asymmetrical portion 20 of the front edge portion 12a of the stationary blade 12, on the negative pressure surface side with the mean cabar line L as a boundary, at a position which is recessed from the front end by a distance N of M × 1/5. The thickness ta of the half-blade portion 21A and the half-blade portion 2 on the pressure surface side
The thickness tb of 1B is set to have the following relationship. 0.1 <(ta / tb) <0.9 Here, the ratio of the thickness ta of the half-blade portion 21A on the suction surface side to the thickness tb of the half-blade portion 21B on the pressure surface side is set to 0.1 or less. If set, the tip shape of the leading edge portion 12a of the stationary blade 12 is greatly different from the initial design shape, and this is not preferable in that the air compression performance may be deteriorated. Conversely, on the contrary, the suction surface side half blade portion 21A Thickness of the semi-wing portion 21B on the pressure side and the thickness tb
It is not preferable that the ratio is set to 0.9 or more because there is no difference from the conventional one and the original function of reducing the peak Mach number at the leading edge part is not fulfilled.

【0012】また、非対称部分20の負圧面側の半翼部
21Aの曲率半径Raと正圧面側の半翼部12Bの曲率
半径Rbとが、下記の関係を有するように設定される。 Rb<Ra
The radius of curvature Ra of the half-blade portion 21A on the suction surface side of the asymmetric portion 20 and the radius of curvature Rb of the half-blade portion 12B on the pressure surface side are set to have the following relationship. Rb <Ra

【0013】図3は、上述条件の実施の形態における静
翼12のコード長Cと翼面のマッハ数との関係の解析例
を示している。この図から明らかなように、負圧面側の
前縁部のピークマッハ数が従来のものに比べて大きく減
少している。すなわち、従来の負圧面側の衝撃波前のピ
ークマッハ数は1.1程度にあったが、本実施の形態で
はそれが0.97程度まで低下している。このように前
縁部のピークマッハ数が大きく減少していることから、
前縁部の前後の速度変化が低減し、もって、圧力損失を
低下させるとともに、円滑かつ効果的な減速により空気
が圧縮され、静翼12の負圧面(背面)12Aにおける
空気流の剥離現象の発生が抑止されていると推定され
る。
FIG. 3 shows an example of analysis of the relationship between the chord length C of the stationary blade 12 and the Mach number of the blade surface in the embodiment under the above conditions. As is clear from this figure, the peak Mach number at the front edge portion on the suction surface side is greatly reduced compared to the conventional one. That is, the conventional peak Mach number before the shock wave on the suction surface side was about 1.1, but in the present embodiment, it decreases to about 0.97. In this way, since the peak Mach number at the leading edge is greatly reduced,
The change in speed before and after the leading edge is reduced, thereby reducing the pressure loss, and the air is compressed by the smooth and effective deceleration, which causes the separation phenomenon of the air flow on the suction surface (back surface) 12A of the stationary blade 12. It is estimated that the outbreak is suppressed.

【0014】なお、上記した実施の形態では、本発明に
係る圧縮機の翼を、ガスタービンエンジンの圧縮機の静
翼に適用した場合について説明しているが、本発明はこ
れに限られることなく、動翼にも適用できるのは言うま
でもない。
In the above embodiment, the blade of the compressor according to the present invention is applied to the stationary blade of the compressor of the gas turbine engine, but the present invention is not limited to this. Needless to say, it can also be applied to moving blades.

【0015】[0015]

【発明の効果】本発明に係る軸流圧縮機の翼によれば、
以下のような効果を奏する。 (1) 圧縮機の翼の空気流入側の前縁部を、ミーンキ
ャンバーラインを中心として、負圧面側が薄く正圧面側
が厚くなるように非対称形状に形成することにより、前
縁部での翼の厚みを保持したまま負圧面での急加減速が
減少し、もって耐衝撃性、耐摩耗性を低下させることな
く圧縮効率向上を図ることができる。 (2) 翼の前縁部の非対称部分の長さを、翼のコード
長に対して、 0.01<(M/C)<0.05 の範囲に設定することにより、翼の性能を低下させるこ
となく、前縁部の急加減速を低減し、背面における境界
層の剥離現象を防止して、圧縮効率向上による高性能化
を図ることができる。 (3) 翼の前縁部の非対称部分において前端からM×
1/5の距離だけ後方へ入った位置の、ミーンキャバー
ラインを境とした負圧面側の半翼部の厚さと正圧面側の
半翼部の厚さを、 0.1<(ta/tb)<0.9 の範囲に設定し、かつ、負圧面側の半翼部の曲率半径と
正圧面側の半翼部の曲率半径とを Rb<Ra の関係に設定することにより、翼の性能を低下させるこ
となく、前縁部のピークマッハ数をより一層減少させる
ことができ、もって、圧縮機の構成材に対する過度な衝
撃の付与を抑制することができる。
According to the blade of the axial flow compressor according to the present invention,
The following effects are obtained. (1) By forming the leading edge portion of the compressor blade on the air inflow side in an asymmetrical shape with the suction surface side thin and the pressure surface side thick with the mean camber line as the center, the blade at the leading edge portion is formed. The rapid acceleration / deceleration on the negative pressure surface is reduced while maintaining the thickness, and thus the compression efficiency can be improved without lowering the impact resistance and wear resistance. (2) By setting the length of the asymmetric part of the leading edge of the blade to the range of 0.01 <(M / C) <0.05 with respect to the cord length of the blade, the performance of the blade is reduced. It is possible to reduce sudden acceleration / deceleration at the front edge portion, prevent the boundary layer from peeling off on the back surface, and improve the compression efficiency to improve the performance. (3) Mx from the front end in the asymmetric part of the leading edge of the wing
The thickness of the half-blade on the suction surface side and the half-blade on the pressure surface side of the mean cabar line as a boundary at a position 1/5 behind is 0.1 <(ta / tb) <0.9, and the radius of curvature of the half-blade on the suction side and the radius of curvature of the half-blade on the pressure side are set to Rb <Ra. It is possible to further reduce the peak Mach number of the leading edge portion without deteriorating the performance, and thus it is possible to suppress application of excessive impact to the constituent material of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る軸流圧縮機の静翼の実施の形態を
示す横断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a stationary blade of an axial flow compressor according to the present invention.

【図2】図1におけるX部分の拡大図である。FIG. 2 is an enlarged view of a portion X in FIG.

【図3】図1例の翼におけるコード方向位置と翼面マッ
ハ数との関係曲線図である。
FIG. 3 is a relationship curve diagram between a chord direction position and a blade surface Mach number in the blade of FIG. 1;

【図4】ガスタービンエンジンの構造例を示す正断面図
である。
FIG. 4 is a front sectional view showing a structural example of a gas turbine engine.

【図5】図4例における基本形の静翼の横断面図であ
る。
FIG. 5 is a cross-sectional view of a basic stationary vane in the example of FIG.

【図6】図4例の静翼におけるコード方向位置と翼面マ
ッハ数との関係曲線図である。
6 is a relationship curve diagram between a chord direction position and a blade surface Mach number in the stationary blade of FIG. 4;

【符号の説明】[Explanation of symbols]

2 ファン・低圧圧縮機 4 高圧圧縮機 9 ディスク(ハブ) 10 動翼 12A 背面(負圧面) 12B 腹面(正圧面) 20 非対称部分 21A 負圧面側の半翼部 21B 正圧面側の半翼部 C コード長 2 fan / low pressure compressor 4 high pressure compressor 9 disk (hub) 10 moving blade 12A back surface (negative pressure surface) 12B belly surface (positive pressure surface) 20 asymmetric portion 21A negative pressure surface side half blade portion 21B positive pressure surface side half blade portion C Cord length

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千葉 薫 東京都西多摩郡瑞穂町殿ケ谷229番地 石 川島播磨重工業株式会社瑞穂工場内株式会 社先進材料利用ガスジェネレータ研究所瑞 穂分室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kaoru Chiba, 229, Togaya, Mizuho-cho, Nishitama-gun, Tokyo Ishi Kawashima Harima Heavy Industries Ltd. Mizuho Plant Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の翼(10,12)の空気流入側
の前縁部(10a,12a)を、ミーンキャンバーライ
ン(L)を中心として、負圧面側が薄く正圧面側が厚く
なるように非対称形状に形成したことを特徴とする圧縮
機の翼。
1. A front edge portion (10a, 12a) of an air inflow side of a compressor blade (10, 12) is centered on a mean camber line (L) so that a suction surface side is thin and a pressure surface side is thick. A compressor blade characterized by having an asymmetrical shape.
【請求項2】 前記翼の前縁部の非対称部分(20)の
長さ(M)は、該翼のコード長(C)に対して、 0.01<(M/C)<0.05 の範囲に設定されていることを特徴とする圧縮機の翼。
2. The length (M) of the asymmetric portion (20) at the leading edge of the blade is 0.01 <(M / C) <0.05 with respect to the cord length (C) of the blade. A wing of a compressor, which is set in the range of.
【請求項3】 前記翼の前縁部の非対称部分において、
前端からM×1/5の距離だけ後方へ入った位置の、前
記ミーンキャバーラインを境とした負圧面側の半翼部
(12A)の厚さ(ta)と正圧面側の半翼部(21
B)の厚さ(tb)が、 0.1<(ta/tb)<0.9 の範囲に設定され、かつ、 負圧面側の半翼部の曲率半径(Ra)と正圧面側の半翼
部の曲率半径(Rb)とが Rb<Ra の関係にあることを特徴とする請求項2記載の圧縮機の
翼。
3. In the asymmetric portion of the leading edge of the wing,
The thickness (ta) of the half-blade portion (12A) on the suction surface side and the half-blade portion on the pressure surface side, which are located rearward from the front end by a distance of M × 1/5, and which demarcates the mean cabar line. (21
The thickness (tb) of B) is set in the range of 0.1 <(ta / tb) <0.9, and the radius of curvature (Ra) of the half blade on the suction surface side and the half on the pressure surface side are set. The blade of the compressor according to claim 2, wherein the blade has a curvature radius (Rb) of Rb <Ra.
JP6884796A 1996-03-25 1996-03-25 Compressor wings Withdrawn JPH09256998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6884796A JPH09256998A (en) 1996-03-25 1996-03-25 Compressor wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6884796A JPH09256998A (en) 1996-03-25 1996-03-25 Compressor wings

Publications (1)

Publication Number Publication Date
JPH09256998A true JPH09256998A (en) 1997-09-30

Family

ID=13385493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6884796A Withdrawn JPH09256998A (en) 1996-03-25 1996-03-25 Compressor wings

Country Status (1)

Country Link
JP (1) JPH09256998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056089B2 (en) 2003-03-25 2006-06-06 Honda Motor Co., Ltd. High-turning and high-transonic blade
JP2007298025A (en) * 2006-04-28 2007-11-15 Honda Motor Co Ltd Airfoil for an axial compressor that enables low loss in the low Reynolds number region
JP2010203456A (en) * 2010-06-21 2010-09-16 Honda Motor Co Ltd High deflection-high transonic wing
JP2012510018A (en) * 2008-11-24 2012-04-26 ロールス・ロイス・ピーエルシー How to optimize wing shape and corresponding wing
CN112576546A (en) * 2020-12-15 2021-03-30 华中科技大学 Optimization method of non-uniform-thickness airfoil axial flow blade

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056089B2 (en) 2003-03-25 2006-06-06 Honda Motor Co., Ltd. High-turning and high-transonic blade
DE102004013645B4 (en) * 2003-03-25 2016-05-12 Honda Motor Co., Ltd. Strongly diverting and highly transonic scoop
JP2007298025A (en) * 2006-04-28 2007-11-15 Honda Motor Co Ltd Airfoil for an axial compressor that enables low loss in the low Reynolds number region
US8152459B2 (en) 2006-04-28 2012-04-10 Honda Motor Co., Ltd. Airfoil for axial-flow compressor capable of lowering loss in low Reynolds number region
JP2012510018A (en) * 2008-11-24 2012-04-26 ロールス・ロイス・ピーエルシー How to optimize wing shape and corresponding wing
JP2010203456A (en) * 2010-06-21 2010-09-16 Honda Motor Co Ltd High deflection-high transonic wing
CN112576546A (en) * 2020-12-15 2021-03-30 华中科技大学 Optimization method of non-uniform-thickness airfoil axial flow blade

Similar Documents

Publication Publication Date Title
JP3876195B2 (en) Centrifugal compressor impeller
JP4307706B2 (en) Curved barrel airfoil
JP5384621B2 (en) Compressor impeller blades with varying elliptical connections
US5554000A (en) Blade profile for axial flow compressor
JP5172320B2 (en) Gas turbine engine including inclined vanes and method of assembling the same
JP4545009B2 (en) Centrifugal compressor
EP3378780B1 (en) Boundary layer ingestion engine with integrally bladed fan disk
JP3118136B2 (en) Axial compressor casing
US5031313A (en) Method of forming F.O.D.-resistant blade
JP3927886B2 (en) Axial flow compressor
KR19990063168A (en) How to prevent turbulence in seals and air
US4859145A (en) Compressor with supercritical diffuser
CN1024701C (en) A gas turbine engine blade and forming method
CN109844263B (en) Turbine wheel, turbine and turbocharger
JPH09256998A (en) Compressor wings
JP4115180B2 (en) Impeller and centrifugal compressor
US6543997B2 (en) Inlet guide vane for axial compressor
JPH09256997A (en) Axial compressor rotor blades
CN100494696C (en) Forward-swept large and small blade transphonic impellers and axial flow compressors and diagonal flow compressors
JPH08254156A (en) Axial compressor rotor blades
JPH11148497A (en) Axial compressor blade
CN113272520A (en) Turbine blade having maximum thickness law with high flutter margin
JPH11343998A (en) Axial compressor
CN209742975U (en) Turbo and Supercharger
JPH08121390A (en) Compressor airfoil for high speed fluids

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603