[go: up one dir, main page]

JPH09251036A - Optical electric-field sensor and transformer for optical instrument using sensor thereof - Google Patents

Optical electric-field sensor and transformer for optical instrument using sensor thereof

Info

Publication number
JPH09251036A
JPH09251036A JP8058774A JP5877496A JPH09251036A JP H09251036 A JPH09251036 A JP H09251036A JP 8058774 A JP8058774 A JP 8058774A JP 5877496 A JP5877496 A JP 5877496A JP H09251036 A JPH09251036 A JP H09251036A
Authority
JP
Japan
Prior art keywords
voltage
optical
field sensor
optical electric
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8058774A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katsukawa
裕幸 勝川
Yukio Mizuno
幸夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8058774A priority Critical patent/JPH09251036A/en
Publication of JPH09251036A publication Critical patent/JPH09251036A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the optical electric-field sensor, which has the simple structure without the limit on a dynamic range, and the transformer for an optical instrument having the high measuring accuracy using this sensor. SOLUTION: Transparent electrodes 9 are provided on both side surfaces of a Pockels element 3 such as LiNbO3 facing a polarizer 2 and an analyzer 5. Light is transmitted in the axial direction of a crystal (z). A voltage is applied on the same direction as the tranmitting direction of the light. When the voltage is applied, the pulse-shaped output waveform is generated, and the pulses are counted by a counter circuit 8. Furthermore, in this transformer for the optical instrument, the above described optical electric-field sensor is provided in the inside of a bushing, and the charged voltage is directly applied between both edges of the optical electric-field sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な光電界セン
サ及びこれを用いた光計器用変圧器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel optical electric field sensor and a transformer for optical instruments using the same.

【0002】[0002]

【従来の技術】従来一般の光電界センサは、図6に示さ
れるように光源31、偏光子32、ポッケルス素子33、1/4
波長板34、検光子35、受光素子36からなるものであり、
ポッケルス素子33の光透過方向に対して垂直な両側面に
電極37、37が設けられている。このような光電界センサ
の電極37、37間に測定しようとする電圧を印加すると、
x,y偏波成分に位相差Γが生じ、その位相差を検光子
35で強度変調に変換し、これを電気的な信号として取り
出して電圧を測定している。
2. Description of the Related Art As shown in FIG. 6, a conventional general optical electric field sensor has a light source 31, a polarizer 32, a Pockels element 33, and a 1/4.
The wave plate 34, the analyzer 35, the light receiving element 36,
Electrodes 37, 37 are provided on both side surfaces of the Pockels element 33 perpendicular to the light transmission direction. When a voltage to be measured is applied between the electrodes 37, 37 of such an optical electric field sensor,
The phase difference Γ is generated in the x and y polarization components, and the phase difference is analyzed by the analyzer.
It is converted to intensity modulation at 35, and this is taken out as an electrical signal to measure the voltage.

【0003】ここで用いられている1/4 波長板34は、こ
れがない場合の出力波形が図7の上段のようであるのを
下段のように変換するためのもので、一種の光学的なバ
イアス装置として機能するものである。また、受光素子
36の出力はハイパスフィルタ38とローパスフィルタ39に
よりAC成分とDC成分とに分離されたうえ、割り算回
路40でAC/DCを算出される。この割り算回路40を用
いることにより、光源31の発光パワーや光送路損失によ
らず、出力を一定にすることができる。このように、従
来の光電界センサには、1/4 波長板34を含む複雑な光学
系が必要であるのみならず、信号処理回路も割り算回路
40を含む複雑なものとなる問題があった。
The 1/4 wave plate 34 used here is for converting the output waveform in the case without the wave plate as shown in the upper stage of FIG. It functions as a bias device. Also, the light receiving element
The output of 36 is separated into an AC component and a DC component by a high pass filter 38 and a low pass filter 39, and AC / DC is calculated by a division circuit 40. By using this division circuit 40, the output can be made constant irrespective of the light emission power of the light source 31 and the optical path loss. Thus, the conventional optical electric field sensor requires not only a complicated optical system including the quarter-wave plate 34, but also the signal processing circuit and the division circuit.
There were complex issues, including 40.

【0004】また、図8は電圧と光電界センサの出力と
の関係を示すグラフである。この図のように、出力は電
圧に応じて図8に示すカーブを描いて変化し、電圧が半
波長電圧Vπを越えると低下する。電圧測定に好適なダ
イナミックレンジはこのカーブが直線に近い部分である
が、この半波長電圧Vπはポッケルス素子33の素子長
(電極37、37間の距離)によって決定されている。この
ため、測定可能なダイナミックレンジはポッケルス素子
33のサイズにより限界があり、その範囲を越えると誤差
が大きくなってしまうという問題があった。
FIG. 8 is a graph showing the relationship between the voltage and the output of the optical electric field sensor. As shown in this figure, the output changes in a curve shown in FIG. 8 according to the voltage, and decreases when the voltage exceeds the half-wave voltage Vπ. The dynamic range suitable for voltage measurement is a portion where this curve is close to a straight line, but the half-wave voltage Vπ is determined by the element length of the Pockels element 33 (distance between the electrodes 37, 37). Therefore, the measurable dynamic range is the Pockels element.
There was a limit depending on the size of 33, and there was a problem that the error would increase if it exceeded that range.

【0005】従って、このような光電界センサを用いた
従来の光計器用変圧器は、測定しようとする電圧が大き
いときには図9に示すようにコンデンサ41により測定電
圧を分圧したり、図10に示すように抵抗42により測定
電圧を分圧したうえで光電界センサに電圧を印加しなけ
ればならず、構造が複雑化するという問題があった。さ
らにこのような分圧電圧は、課電部を支持する碍管43の
表面の汚損状態や湿潤状態によっても影響を受け易く、
測定誤差を生じ易いという問題もあった。
Therefore, in the conventional transformer for an optical instrument using such an optical electric field sensor, when the voltage to be measured is large, the measured voltage is divided by the capacitor 41 as shown in FIG. As shown, the measurement voltage must be divided by the resistor 42 and then the voltage must be applied to the optical electric field sensor, which causes a problem that the structure becomes complicated. Further, such a divided voltage is easily affected by a dirty state or a wet state of the surface of the porcelain insulator 43 that supports the voltage applying unit,
There is also a problem that measurement errors are likely to occur.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、光学系及び信号処理回路が簡素化で
き、しかも実質的にダイナミックレンジに制限がない光
電界センサを提供することを第1の目的とするものであ
る。また、測定しようとする電圧を分圧することなく直
接光電界センサに印加することができ、構造の簡素化と
測定精度の向上を図ることができる光計器用変圧器を提
供することを第2の目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides an optical electric field sensor in which the optical system and the signal processing circuit can be simplified and the dynamic range is not substantially limited. Is the first purpose. Further, it is a second object of the present invention to provide a transformer for an optical instrument, which can directly apply the voltage to be measured to the optical electric field sensor without dividing the voltage, and can simplify the structure and improve the measurement accuracy. It is intended.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の光電界センサは、自然旋光性のな
いポッケルス素子の、偏光子及び検光子に面する両端面
に透明電極を設けて結晶Z軸方向に光を透過し、光の透
過方向と同一方向に電圧を印加できるようにするととも
に、その出力信号処理回路に、印加された電圧によって
生じるパルスをカウントするカウンタ回路を設けたこと
を特徴とするものである。また本発明の光計器用変圧器
は、碍管の内部に上記の光電界センサを設置し、この光
電界センサの両端面間に課電電圧を直接印加したことを
特徴とするものである。
The optical electric field sensor of the present invention made to solve the above problems has a transparent electrode on both end faces of a Pockels element having no natural optical rotatory power, which faces a polarizer and an analyzer. It is provided so that light can be transmitted in the crystal Z-axis direction and a voltage can be applied in the same direction as the light transmission direction, and a counter circuit for counting pulses generated by the applied voltage is provided in the output signal processing circuit. It is characterized by that. The optical instrument transformer of the present invention is characterized in that the above-mentioned optical electric field sensor is installed inside the porcelain tube, and the applied voltage is directly applied between both end faces of the optical electric field sensor.

【0008】[0008]

【発明の実施の形態】以下に本発明の好ましい実施の形
態を示す。図1に示すとおり、本発明の光電界センサは
光源1、偏光子2、ポッケルス素子3、検光子5、受光
素子6、アンプ7、カウンタ回路8からなるものであ
る。図2に示したように、従来の光電界センサのポッケ
ルス素子には光透過方向に対して垂直に電圧が印加され
ていたのに対して、本発明の光電界センサのポッケルス
素子3には偏光子2及び検光子5に面する両端面に透明
電極9、9を設け、結晶Z軸方向に光を透過し、光の透
過方向と同一方向に電圧が印加されている。ポッケルス
素子3としては自然旋光性のない素子を使用するものと
し、例えばLiNbO3等を使用すればよい。このように結晶
Z軸方向に光を透過し、光の透過方向と同一方向に電圧
を印加した場合には、半波長電圧Vπはポッケルス素子
の素子厚や素子長によっては決まらず、結晶材料によっ
て決定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. As shown in FIG. 1, the optical electric field sensor of the present invention comprises a light source 1, a polarizer 2, a Pockels element 3, an analyzer 5, a light receiving element 6, an amplifier 7, and a counter circuit 8. As shown in FIG. 2, the voltage is applied to the Pockels element of the conventional optical electric field sensor perpendicularly to the light transmission direction, whereas the polarization is applied to the Pockels element 3 of the optical electric field sensor of the present invention. Transparent electrodes 9, 9 are provided on both end surfaces facing the probe 2 and the analyzer 5, light is transmitted in the crystal Z-axis direction, and a voltage is applied in the same direction as the light transmission direction. As the Pockels element 3, an element having no natural optical rotatory power is used, and for example, LiNbO 3 or the like may be used. Thus, when light is transmitted in the crystal Z-axis direction and a voltage is applied in the same direction as the light transmission direction, the half-wave voltage Vπ is not determined by the element thickness or element length of the Pockels element, but by the crystal material. It is determined.

【0009】図3に示すように、上記の透明電極9、9
間に交流電圧V1 を印加すると、検光子5からの光出力
はパルス状の波形となる。パルスの周波数はセンサ印加
電圧によって決まり、印加電圧が低いと印加電圧1周期
間のパルス数は少なくなり、印加電圧が高くなると印加
電圧1周期間のパルス数は増加する。例えばこの波形の
半波長電圧Vπを1kVとすると、50kVO-P の電圧V
1 が印加されたときにはセンサ印加電圧1周期間あたり
100 山のパルスが生じることとなる。そこでカウンタ回
路8によってこのパルスをカウントすれば、電圧を測定
することが可能となる。この場合には、従来のように半
波長電圧Vπによる測定レンジの制限がなく、ポッケル
ス素子3の耐電圧特性の許容範囲内においては実質的に
無制限に電圧測定が可能である。
As shown in FIG. 3, the transparent electrodes 9 and 9 described above are used.
When an AC voltage V 1 is applied between them, the optical output from the analyzer 5 has a pulsed waveform. The frequency of the pulse is determined by the sensor applied voltage. When the applied voltage is low, the number of pulses in one cycle of the applied voltage decreases, and when the applied voltage is high, the number of pulses in one cycle of the applied voltage increases. For example, if the half-wave voltage Vπ of this waveform is 1 kV, the voltage V of 50 kV OP
When 1 is applied, per sensor applied voltage per cycle
A pulse of 100 peaks will occur. Therefore, if the counter circuit 8 counts this pulse, the voltage can be measured. In this case, the measurement range is not limited by the half-wave voltage Vπ as in the conventional case, and the voltage can be measured substantially unlimitedly within the allowable range of the withstand voltage characteristic of the Pockels element 3.

【0010】上記のように、本発明の光電界センサはパ
ルス数をカウントする方式を採用したため、従来のよう
な1/4 波長板や割り算回路が不要となり、光学系及び信
号処理回路が簡素化できる。また実質的にダイナミック
レンジに制限がないので、高電圧を直接測定することが
できる利点がある。
As described above, since the optical electric field sensor of the present invention adopts the method of counting the number of pulses, the conventional 1/4 wavelength plate and the dividing circuit are not required, and the optical system and the signal processing circuit are simplified. it can. Moreover, since the dynamic range is practically unlimited, there is an advantage that a high voltage can be directly measured.

【0011】図4は本発明の光計器用変圧器の実施形態
を示すもので、碍管10の内部に上記の光電界センサが
収納され、課電部11の電圧が直接光電界センサに印加
されている。図5はその要部を拡大した図であり、ポッ
ケルス素子3の上下両端にプリズムを兼ねる偏光子2及
び検光子5が設けられており、ロッドレンズ12、13
及び光ファイバ14、15により光が入出力されてい
る。
FIG. 4 shows an embodiment of a transformer for an optical instrument according to the present invention, in which the above-mentioned optical electric field sensor is housed inside the porcelain insulator 10 and the voltage of the power supply section 11 is directly applied to the optical electric field sensor. ing. FIG. 5 is an enlarged view of an essential part of the Pockels element 3. A polarizer 2 and an analyzer 5, which also function as prisms, are provided at both upper and lower ends of the Pockels element 3, and rod lenses 12, 13 are provided.
Light is input and output through the optical fibers 14 and 15.

【0012】これらの図に示されるように、本発明の光
計器用変圧器はポッケルス素子3に課電電圧を直接印加
することができるので、従来のような分圧コンデンサや
分圧抵抗は不要となり、構造を簡素化することができ
る。しかも課電電圧を直接ポッケルス素子3に印加して
電圧測定ができるので、碍管10の表面の汚損や湿潤の
影響を受けることがなく、高電圧を精度良く検出するこ
とができる利点がある。
As shown in these figures, the transformer for an optical instrument according to the present invention can directly apply a voltage to the Pockels element 3, so that a voltage dividing capacitor and a voltage dividing resistor as in the prior art are unnecessary. Therefore, the structure can be simplified. Moreover, since the voltage can be measured by directly applying the applied voltage to the Pockels element 3, there is an advantage that the high voltage can be accurately detected without being affected by the stain or the wetting of the surface of the porcelain insulator 10.

【0013】[0013]

【発明の効果】以上に説明したように、本発明の光電界
センサは1/4 波長板や割り算回路が不要となり、光学系
及び信号処理回路が簡素化できるうえ、実質的にダイナ
ミックレンジに制限がないので、高電圧を直接測定する
ことができる。また本発明の光計器用変圧器は、従来の
ような分圧コンデンサや分圧抵抗が不要となり、構造を
簡素化することができるとともに、碍管の表面の汚損や
湿潤の影響を受けることがなく、高電圧を精度良く検出
できる利点がある。
As described above, the optical electric field sensor of the present invention does not require a quarter-wave plate or a dividing circuit, which simplifies the optical system and the signal processing circuit and substantially limits the dynamic range. High voltage can be measured directly because there is no. Further, the optical instrument transformer of the present invention does not require a voltage dividing capacitor or a voltage dividing resistor as in the prior art, can simplify the structure, and is not affected by contamination or wetting of the surface of the insulator. There is an advantage that a high voltage can be detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電界センサの構成を示す図である。FIG. 1 is a diagram showing a configuration of an optical electric field sensor of the present invention.

【図2】ポッケルス素子の部分の拡大図である。FIG. 2 is an enlarged view of a portion of a Pockels element.

【図3】ポッケルス素子に電圧を印加したときの出力波
形図である。
FIG. 3 is an output waveform diagram when a voltage is applied to the Pockels element.

【図4】本発明の光計器用変圧器の断面図である。FIG. 4 is a sectional view of a transformer for an optical instrument according to the present invention.

【図5】要部の拡大図である。FIG. 5 is an enlarged view of a main part.

【図6】従来一般の光電界センサの構成を示す図であ
る。
FIG. 6 is a diagram showing a configuration of a conventional general optical electric field sensor.

【図7】1/4 波長板の有無による出力波形の違いを示す
グラフである。
FIG. 7 is a graph showing a difference in output waveform with and without a quarter-wave plate.

【図8】電圧と光電界センサの出力との関係を示すグラ
フである。
FIG. 8 is a graph showing the relationship between the voltage and the output of the optical electric field sensor.

【図9】従来のコンデンサ分圧型の光計器用変圧器の断
面図である。
FIG. 9 is a cross-sectional view of a conventional condenser voltage dividing type transformer for an optical meter.

【図10】従来の抵抗分圧型の光計器用変圧器の断面図
である。
FIG. 10 is a cross-sectional view of a conventional resistance-voltage-dividing transformer for an optical meter.

【符号の説明】[Explanation of symbols]

1 光源、2 偏光子、3 ポッケルス素子、5 検光
子、6 受光素子、7 アンプ、8 カウンタ回路、9
透明電極、10 碍管、11 課電部、12 ロッド
レンズ、13 ロッドレンズ、14 光ファイバ、15
光ファイバ
1 light source, 2 polarizer, 3 Pockels element, 5 analyzer, 6 light receiving element, 7 amplifier, 8 counter circuit, 9
Transparent electrode, 10 porcelain bushing, 11 power supply section, 12 rod lens, 13 rod lens, 14 optical fiber, 15
Optical fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 自然旋光性のないポッケルス素子の、偏
光子及び検光子に面する両端面に透明電極を設けて結晶
Z軸方向に光を透過し、光の透過方向と同一方向に電圧
を印加できるようにするとともに、その出力信号処理回
路に、印加された電圧によって生じるパルスをカウント
するカウンタ回路を設けたことを特徴とする光電界セン
サ。
1. A Pockels element having no natural optical rotatory power is provided with transparent electrodes on both end surfaces facing a polarizer and an analyzer to transmit light in the crystal Z-axis direction, and a voltage is applied in the same direction as the light transmission direction. An optical electric field sensor, which is capable of being applied, and whose output signal processing circuit is provided with a counter circuit for counting the pulses generated by the applied voltage.
【請求項2】 碍管の内部に請求項1に記載の光電界セ
ンサを設置し、この光電界センサの両端面間に課電部の
電圧を直接印加したことを特徴とする光計器用変圧器。
2. A transformer for an optical measuring instrument, wherein the optical electric field sensor according to claim 1 is installed inside a porcelain insulator, and a voltage of a voltage applying unit is directly applied between both end faces of the optical electric field sensor. .
JP8058774A 1996-03-15 1996-03-15 Optical electric-field sensor and transformer for optical instrument using sensor thereof Withdrawn JPH09251036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8058774A JPH09251036A (en) 1996-03-15 1996-03-15 Optical electric-field sensor and transformer for optical instrument using sensor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8058774A JPH09251036A (en) 1996-03-15 1996-03-15 Optical electric-field sensor and transformer for optical instrument using sensor thereof

Publications (1)

Publication Number Publication Date
JPH09251036A true JPH09251036A (en) 1997-09-22

Family

ID=13093906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8058774A Withdrawn JPH09251036A (en) 1996-03-15 1996-03-15 Optical electric-field sensor and transformer for optical instrument using sensor thereof

Country Status (1)

Country Link
JP (1) JPH09251036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275974A (en) * 2005-03-30 2006-10-12 Central Res Inst Of Electric Power Ind Transformer for optical application instrument with equipment abnormality monitoring function
US8791831B2 (en) 2011-09-23 2014-07-29 Eaton Corporation System including an indicator responsive to an electret for a power bus
US9093867B2 (en) 2011-09-23 2015-07-28 Eaton Corporation Power system including an electret for a power bus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275974A (en) * 2005-03-30 2006-10-12 Central Res Inst Of Electric Power Ind Transformer for optical application instrument with equipment abnormality monitoring function
JP4721328B2 (en) * 2005-03-30 2011-07-13 財団法人電力中央研究所 Optical applied instrument transformer
US8791831B2 (en) 2011-09-23 2014-07-29 Eaton Corporation System including an indicator responsive to an electret for a power bus
US8994544B2 (en) 2011-09-23 2015-03-31 Eaton Corporation System including an indicator responsive to an electret for a power bus
US9093867B2 (en) 2011-09-23 2015-07-28 Eaton Corporation Power system including an electret for a power bus

Similar Documents

Publication Publication Date Title
CA2262640C (en) Fiber optics apparatus and method for accurate current sensing
EP0361832B1 (en) Electro-optical differential voltage method and apparatus in a measuring system for phase shifted signals
EP0390581A2 (en) Instrument for concurrently optically measuring thermal and electric quantities
JPH0194270A (en) Surface potential detector
JPH04332878A (en) Electromagnetic field intensity measuring device
CN105182093A (en) Strong electric field sensor possessing temperature compensation and measurement method thereof
US4999570A (en) Device for making non-contacting measurements of electric fields which are statical and/or varying in time
US5247244A (en) Electro-optic voltage measuring system with temperature compensation
CN105021901A (en) High-voltage electric field measurement system and measurement method thereof
JPH09251036A (en) Optical electric-field sensor and transformer for optical instrument using sensor thereof
JPH067142B2 (en) Electrostatic voltage sensor
US6930475B2 (en) Method for the temperature-compensated, electro-optical measurement of an electrical voltage and device for carrying out the method
JPH03259753A (en) Dc voltage transformer of optical system
JP3489701B2 (en) Electric signal measuring device
WO1989009413A1 (en) Electro-optic probe
Hertz et al. Optical wideband high‐voltage measurement system
JPS5918366Y2 (en) Phototransformable electric field measuring device
JPH06242162A (en) Electric field sensor device
SU1718150A1 (en) Electrostatic field-strength meter
KR0177874B1 (en) Nonsinusoidal High Frequency Large Current Measuring Device Using Photocurrent Sensor
JPH02143173A (en) Optical dc transformer
Koo et al. Partial discharge detection technique using electro-optic effect
SU1626230A1 (en) Fiber optical voltage transducer
JPH0560818A (en) Optical electric field measuring instrument
SU1599786A1 (en) Apparatus for measuring high voltage

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603