JPH09246328A - Diamond coated bonding tool - Google Patents
Diamond coated bonding toolInfo
- Publication number
- JPH09246328A JPH09246328A JP8053090A JP5309096A JPH09246328A JP H09246328 A JPH09246328 A JP H09246328A JP 8053090 A JP8053090 A JP 8053090A JP 5309096 A JP5309096 A JP 5309096A JP H09246328 A JPH09246328 A JP H09246328A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- sintered body
- substrate
- bonding tool
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Wire Bonding (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体チップの製造
過程で使用されるTAB(Tape Automated Bonding)用
ボンディングツールに関する。更に詳しくは多結晶ダイ
ヤモンド被膜が先端に形成されたボンディングツールに
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a TAB (Tape Automated Bonding) bonding tool used in a semiconductor chip manufacturing process. More specifically, it relates to a bonding tool having a polycrystalline diamond coating formed on its tip.
【0002】[0002]
【従来の技術】近年、半導体分野の技術進歩は著しく、
IC,LSIなどを用いた応用製品の生産は年々増加し
ている。これらの半導体素子の持つ電気的特性を引出す
ためには、テープに配線されたリードを半導体素子に接
続する必要がある。この接続には加熱したボンディング
ツールでリード接合部を加圧し、熱圧着する方式が広く
採用されている。このボンディングツールの先端には極
めて平滑で高硬度な単結晶ダイヤモンドが熱圧着時に付
着残留がなく耐久性の高いことから使用される。しかし
単結晶ダイヤモンドは高価で高々数mm角の面積のもの
しか得られないため、より大面積の接合部を一度に熱圧
着することができない。2. Description of the Related Art In recent years, technological progress in the semiconductor field has been remarkable,
The production of applied products using IC, LSI, etc. is increasing year by year. In order to bring out the electrical characteristics of these semiconductor elements, it is necessary to connect the leads wired on the tape to the semiconductor elements. For this connection, a method in which a lead bonding portion is pressed by a heated bonding tool and thermocompression bonding is widely adopted. An extremely smooth and high hardness single crystal diamond is used at the tip of this bonding tool because it has high durability because it does not remain after thermocompression bonding. However, since single crystal diamond is expensive and only an area of several mm square at most can be obtained, it is not possible to thermocompression bond a larger area joint at a time.
【0003】この点を解決するため、近年では先端に気
相合成法(CVD法)により多結晶ダイヤモンドを析出
させたボンディングツールが提案されている(特開平2
−224349)。このボンディングツールはSi又は
Si3N4,SiC,AlNのいずれかを主成分とする焼
結体又はこれらの複合体からなる基体にCVD法で析出
させた多結晶ダイヤモンドが厚さ方向に(100)面又
は(110)面に配向してなるツール先端部がツールの
金属母材にろう付けされて構成される。In order to solve this point, in recent years, a bonding tool has been proposed in which polycrystalline diamond is deposited on the tip by a vapor phase synthesis method (CVD method) (Japanese Patent Laid-Open No. HEI-2).
-224349). In this bonding tool, polycrystalline diamond deposited by a CVD method on a substrate made of a sintered body containing Si or any one of Si 3 N 4 , SiC, and AlN as a main component or a composite body of these is used in the thickness direction (100 ) Plane or (110) plane oriented tool tip is brazed to the metal base material of the tool.
【0004】[0004]
【発明が解決しようとする課題】その基体表面にCVD
法で多結晶ダイヤモンド膜を析出させた上記焼結体又は
複合体からなるツール先端部をツールの金属母材にろう
付けして形成したボンディングツールで実際にボンディ
ングを行う場合、通常ツール先端部及びツールの金属母
材は接合に必要な高温に保持されているが、リード接合
時にはツール先端部は急に冷やされ熱衝撃を受ける。こ
のような場合、上記基体に用いるSiC焼結体が緻密で
あるとポーラスな焼結体に比較し熱伝導性がよいことか
ら、ろう付け部まで温度低下による熱衝撃を受ける。こ
れが電子液晶ディスプレイ用ICの接合用に代表される
大面積型のボンディングツールになると、この熱的衝撃
の影響を一層大きく受け、ろう付け接合部の接合精度の
低下や激しい場合にはツールの金属母材から基体の脱落
が生じるなどの不具合が発生する。また上記基体に用い
るSiC焼結体が緻密であるとポーラスな焼結体に比較
し基体表面が平滑すぎて、多結晶ダイヤモンド被膜の基
体に対する密着強度が十分高くならず上記のような熱衝
撃を受けると比較的容易に被膜の損傷や剥離の問題が発
生する。CVD on the surface of the substrate
When actually bonding with a bonding tool formed by brazing the tool tip made of the above-mentioned sintered body or composite in which a polycrystalline diamond film is deposited by the method to the metal base material of the tool, usually the tool tip and The metal base material of the tool is kept at the high temperature necessary for joining, but the tip of the tool is suddenly cooled and subjected to thermal shock during lead joining. In such a case, if the SiC sintered body used for the substrate is dense, the thermal conductivity is better than that of the porous sintered body, so that the brazed portion is also subjected to thermal shock due to the temperature decrease. If this becomes a large area type bonding tool typified by the bonding of ICs for electronic liquid crystal displays, it will be greatly affected by this thermal shock, and if the bonding accuracy of the brazing bonding part is reduced or if it is severe, the tool metal Problems such as the dropping of the substrate from the base material occur. If the SiC sintered body used for the above-mentioned substrate is dense, the surface of the substrate is too smooth as compared with the porous sintered body, and the adhesion strength of the polycrystalline diamond coating to the substrate is not sufficiently high, so that the above-mentioned thermal shock may occur. If it is received, problems such as damage and peeling of the coating occur relatively easily.
【0005】本発明の目的は、多結晶ダイヤモンド被膜
の基体に対する密着強度がより一層高く、耐久性に優れ
たダイヤモンド被覆ボンディングツールを提供すること
にある。An object of the present invention is to provide a diamond-coated bonding tool having a higher adhesion strength of a polycrystalline diamond coating to a substrate and excellent durability.
【0006】[0006]
【課題を解決するための手段】請求項1に係る発明は、
SiCを主成分とする焼結体からなる基体とこの基体の
表面に主として(110)面に配向して形成された多結
晶ダイヤモンド被膜とからなるダイヤモンド被覆基材を
ツール先端部にろう付けしてなるダイヤモンド被覆ボン
ディングツールにおいて、この焼結体が5〜35%の気
孔率を有することを特徴とするダイヤモンド被覆ボンデ
ィングツールである。本明細書で、「気孔率」とは焼結
体に含まれる気孔容積の全容積に対する割合をいい、
「気孔」は閉じている閉気孔のみならず、外気に通じる
開気孔を含む。The invention according to claim 1 is
A diamond-coated base consisting of a sintered body containing SiC as a main component and a polycrystalline diamond coating formed mainly on the surface of the base with a (110) orientation is brazed to the tool tip. The diamond-coated bonding tool according to claim 1, wherein the sintered body has a porosity of 5 to 35%. In the present specification, "porosity" means the ratio of the volume of pores contained in the sintered body to the total volume,
The "pores" include not only closed pores that are closed but also open pores that communicate with the outside air.
【0007】請求項2に係る発明は、請求項1に係る発
明であって、多結晶ダイヤモンド被膜が基体に接する非
晶質カーボンを含む0.5〜10μm厚の第1ダイヤモ
ンド層とこのダイヤモンド層に(110)面に配向して
積層された10〜200μm厚の実質的に100%純粋
な第2ダイヤモンド層とからなる請求項1記載のダイヤ
モンド被覆ボンディングツールである。The invention according to claim 2 is the invention according to claim 1, wherein the first diamond layer having a thickness of 0.5 to 10 μm and containing amorphous carbon in which the polycrystalline diamond film is in contact with the substrate, and the diamond layer. A diamond coated bonding tool according to claim 1 which comprises a substantially 100% pure second diamond layer having a thickness of 10 to 200 µm and oriented in the (110) plane.
【0008】本発明の基体である気孔率が5〜35%の
SiC焼結体は、緻密なSiC焼結体と比較して熱伝導
率が低い特徴があるとともに、その表面が開気孔その他
により、微細な凹凸で覆われる。また基体に接する0.
5〜10μm厚の第1ダイヤモンド層は非晶質カーボン
を含むためその熱伝導率は第2ダイヤモンド層に比較し
て低い。焼結体の表面に多結晶ダイヤモンド被膜を形成
すると、この被膜の一部が微細な凹凸に侵入し、これら
の凹凸に多結晶ダイヤモンド被膜が係留する。このため
多結晶ダイヤモンド被膜はより確実に基体である焼結体
により高い強度で密着する。多結晶ダイヤモンド被膜を
(110)面に配向して形成することにより、耐摩耗性
及び耐溶着性に優れ、加工性が良好となる。The SiC sintered body having a porosity of 5 to 35%, which is the substrate of the present invention, has a characteristic that the thermal conductivity is lower than that of a dense SiC sintered body, and the surface thereof has open pores or the like. , Covered with fine irregularities. In addition, 0.
Since the first diamond layer having a thickness of 5 to 10 μm contains amorphous carbon, its thermal conductivity is lower than that of the second diamond layer. When a polycrystalline diamond coating is formed on the surface of the sintered body, a part of this coating penetrates into fine irregularities, and the polycrystalline diamond coating is anchored in these irregularities. For this reason, the polycrystalline diamond film is more surely adhered to the sintered body, which is the base, with high strength. By forming the polycrystalline diamond film with the (110) plane oriented, the wear resistance and the welding resistance are excellent, and the workability is good.
【0009】本発明のボンディングツールでは、高温で
保持されたツール先端がリード接合時に低温のリードに
より熱的衝撃を受けたときに、基体の熱伝導率が低いた
めに、ツールろう付け層及びツールの金属母材は温度の
変化を受けにくく熱衝撃が緩和される。第1ダイヤモン
ド層を有する場合には、より熱衝撃が緩和される。また
本発明のボンディングツールでは、熱圧着によりツール
先端が圧縮応力を受けたときには、多結晶ダイヤモンド
被膜の基体への高い密着強度により、多結晶ダイヤモン
ド被膜が基体から剥離しない。第1ダイヤモンド層を有
する場合には、圧縮応力が緩和され、剥離現象がより一
層抑制される。この結果、従来基体とろう付け層及びツ
ールの金属母材の熱膨張率の差或いは被膜と基体との密
着強度不足に起因して、基体や被膜に生じていたクラッ
ク現象や、基体がろう付け層又は被膜から剥離していた
現象はなくなる。In the bonding tool of the present invention, when the tip of the tool held at a high temperature is thermally shocked by the low temperature lead at the time of joining the leads, the thermal conductivity of the substrate is low, so that the tool brazing layer and the tool are The metal base material is less susceptible to temperature changes and thermal shock is mitigated. In the case of having the first diamond layer, the thermal shock is further mitigated. Further, in the bonding tool of the present invention, when the tool tip is subjected to compressive stress due to thermocompression bonding, the polycrystalline diamond coating does not peel off from the substrate due to the high adhesion strength of the polycrystalline diamond coating to the substrate. When the first diamond layer is provided, the compressive stress is relieved, and the peeling phenomenon is further suppressed. As a result, the cracking phenomenon that occurs in the base and the coating due to the difference in the coefficient of thermal expansion between the base and the brazing layer and the metal base material of the tool or the insufficient adhesion between the coating and the base, and the brazing of the base The phenomenon of separation from the layer or coating disappears.
【0010】基体の気孔率が5%未満の場合上記作用効
果が現れず、また気孔率が35%を越えると焼結体の強
度が低下し、ボンディングツールの耐久性が劣るように
なる。この気孔率は15〜35%が好ましい。また第1
ダイヤモンド層の厚さが0.5μm未満ではその効果が
現れず、10μmを越えると被膜全体の強度や耐摩耗性
が低下する。更に第2ダイヤモンド層の厚さが10μm
未満では被覆面の研摩中又はツールとして使用中に亀裂
が入り易い。また200μmを越えると、その形成に時
間がかかり過ぎ、また200μm以上でもその効果は殆
ど不変である。If the porosity of the substrate is less than 5%, the above-mentioned effects are not exhibited, and if the porosity exceeds 35%, the strength of the sintered body is lowered and the durability of the bonding tool is deteriorated. The porosity is preferably 15 to 35%. Also the first
If the thickness of the diamond layer is less than 0.5 μm, the effect does not appear, and if it exceeds 10 μm, the strength and wear resistance of the entire coating deteriorate. Furthermore, the thickness of the second diamond layer is 10 μm
If it is less than 3, cracking is likely to occur during polishing of the coated surface or during use as a tool. Further, when it exceeds 200 μm, it takes too long to form it, and even when it is 200 μm or more, its effect is almost unchanged.
【0011】[0011]
【発明の実施の形態】本発明のボンディングツールはツ
ール作製時及びツールとしての使用時に400〜700
℃程度の高温に曝されるため、本発明の焼結体は熱膨張
係数がダイヤモンドの熱膨張係数に近くかつ耐熱性を有
することが必要である。そのために本発明の焼結体に
は、SiCが選ばれる。この焼結体はSiC100%の
ものに限らず、SiCを主成分とするもの、例えばSi
Cが95重量%以上であるものを含む。焼結体は必要形
状に成形加工されて基体となる。BEST MODE FOR CARRYING OUT THE INVENTION The bonding tool of the present invention is 400 to 700 when the tool is manufactured and used.
Since the sintered body of the present invention is exposed to a high temperature of about ° C, it is necessary that the coefficient of thermal expansion be close to that of diamond and have heat resistance. Therefore, SiC is selected for the sintered body of the present invention. This sintered body is not limited to one made of 100% SiC, but one having SiC as a main component, such as Si.
Including those in which C is 95% by weight or more. The sintered body is formed into a required shape and becomes a base.
【0012】この基体である焼結体の表面にはCVD法
により多結晶ダイヤモンド被膜が形成される。ツール作
製時に被膜面を研摩仕上げし、またその加工性を容易に
するために、多結晶ダイヤモンドは厚さ方向に主として
(110)面に配向するように合成される。この配向割
合は被覆面の50%以上である。被覆面の(110)面
配向割合が50%以下の場合、適正な加工面が得られず
被加工性が悪くなる。前述したように焼結体との密着性
を向上するために合成初期には非晶質カーボンを含む第
1ダイヤモンド層を合成し、外層となる表面層には10
0%純粋な第2ダイヤモンド層を形成することもでき
る。焼結体からなる基体と多結晶ダイヤモンド被膜によ
り構成されたダイヤモンド被覆基材はろう付けにより母
材であるツールの先端に接合される。CVD法で多結晶
ダイヤモンド被膜を合成後、又はダイヤモンド被覆基材
をろう付けした後、被膜表面を研摩して表面粗さ(Rma
x)が単結晶ダイヤモンド並の0.1μm以下にする。A polycrystalline diamond film is formed on the surface of the sintered body, which is the base, by the CVD method. In order to polish the coated surface at the time of making a tool and to facilitate its workability, polycrystalline diamond is synthesized so as to be oriented mainly in the (110) plane in the thickness direction. This orientation ratio is 50% or more of the coated surface. When the (110) plane orientation ratio of the coated surface is 50% or less, an appropriate machined surface cannot be obtained and the machinability deteriorates. As described above, in order to improve the adhesion with the sintered body, the first diamond layer containing amorphous carbon is synthesized in the initial stage of the synthesis, and the outer surface layer has 10 layers.
It is also possible to form a 0% pure second diamond layer. A diamond-coated substrate composed of a sintered body and a polycrystalline diamond coating is joined to the tip of a tool as a base material by brazing. After synthesizing a polycrystalline diamond coating by the CVD method or brazing a diamond-coated substrate, the coating surface is polished to obtain a surface roughness (Rma
x) is 0.1 μm or less, which is comparable to that of single crystal diamond.
【0013】[0013]
【実施例】次に本発明の実施例を比較例とともに説明す
る。本発明は以下に述べる実施例に限定されるものでは
ない。 <実施例1〜11>SiC粉末を焼結することによりS
iCを主成分とする焼結体を作製した。即ち、SiC粉
末に焼結助剤としてB(ボロン)粉末を1重量%加えて
均一に混合した。この混合粉を所定の型により密度が理
論密度の50〜60%になるようにプレス成形した。同
一条件で11個の成形体を得た。次の表1に示す6つの
条件で焼結し、たて10mm、よこ5mm、厚さ2mm
の基体となる焼結体を得た。Next, examples of the present invention will be described together with comparative examples. The present invention is not limited to the embodiments described below. <Examples 1 to 11> S is obtained by sintering SiC powder.
A sintered body containing iC as a main component was produced. That is, 1% by weight of B (boron) powder as a sintering aid was added to SiC powder and mixed uniformly. This mixed powder was press-molded by a predetermined mold so that the density was 50 to 60% of the theoretical density. Eleven compacts were obtained under the same conditions. Sintered under the six conditions shown in Table 1 below, vertical 10 mm, width 5 mm, thickness 2 mm
A sintered body as a base of was obtained.
【0014】[0014]
【表1】 [Table 1]
【0015】上記焼結体の表面を#270のダイヤモン
ド砥石で研摩して、表面粗さをRmaxで約3μm程度に
平坦化した。これら11枚の焼結体のうち、6枚を熱フ
ィラメントCVD法で、5枚をマイクロ波プラズマCV
D法でそれぞれ焼結体表面にダイヤモンドを被覆した。
ダイヤモンド被覆に際し、基体となる焼結体を石英ガラ
スからなる支持台上に固定した。熱フィラメントCVD
法によるダイヤモンド被覆は、フィラメントとして直径
0.4mmのTa線を用い、フィラメント温度2150
℃、圧力30Torr、及び基板温度900℃で行っ
た。マイクロ波プラズマCVD法によるダイヤモンド被
覆は、原料ガスであるH2の流量を200cc/分、C
H4の流量を4cc/分及びArの流量を50cc/分
にして、圧力100Torrでマイクロ波発振機出力を
800Wで行った。熱フィラメントCVD法とマイクロ
波プラズマCVD法において、即ち実施例2、実施例
5、実施例8及び実施例11において、各焼結体の表面
に本願請求項2に係る発明の非晶質カーボンを含む第1
ダイヤモンド層を形成し、このダイヤモンド層上に10
0%純粋な第2ダイヤモンド層を積層した。The surface of the sintered body was polished with a # 270 diamond grindstone to flatten the surface roughness to about 3 μm in Rmax. Of these 11 sintered bodies, 6 are hot filament CVD methods and 5 are microwave plasma CVs.
The surface of each sintered body was coated with diamond by method D.
Upon coating with diamond, the sintered body as a base was fixed on a support made of quartz glass. Hot filament CVD
The diamond coating by the method uses a Ta wire with a diameter of 0.4 mm as a filament and a filament temperature of 2150
C., pressure 30 Torr, and substrate temperature 900.degree. In the diamond coating by the microwave plasma CVD method, the flow rate of the source gas H 2 is 200 cc / min, C
The flow rate of H 4 was 4 cc / min, the flow rate of Ar was 50 cc / min, and the microwave oscillator output was 800 W at a pressure of 100 Torr. In the hot filament CVD method and the microwave plasma CVD method, that is, in Example 2, Example 5, Example 8 and Example 11, the amorphous carbon of the invention according to claim 2 of the present invention is applied to the surface of each sintered body. First including
A diamond layer is formed and 10 is formed on this diamond layer.
A second diamond layer of 0% pure was deposited.
【0016】<比較例1>実施例1と同様にSiC粉末
を主成分とする混合粉を調製し、この混合粉を所定の型
により密度が理論密度の90%以上になるようにホット
プレス成形した。この高密度の成形体を次の表2に示す
条件Gで焼結し、実施例1と同じたて10mm、よこ5
mm、厚さ2mmの焼結体を得た。この焼結体の表面を
実施例1と同様に研摩して、表面粗さをRmaxで約3μ
m程度に平坦化した。この焼結体表面にマイクロ波プラ
ズマCVD法により実施例7と同じ条件で多結晶ダイヤ
モンド被膜を形成した。Comparative Example 1 A mixed powder containing SiC powder as a main component was prepared in the same manner as in Example 1, and this mixed powder was hot-press molded by a predetermined mold so that the density was 90% or more of the theoretical density. did. This high-density molded product was sintered under the condition G shown in Table 2 below and the same as in Example 1 with a vertical length of 10 mm and a width of 5.
A sintered body having a thickness of 2 mm and a thickness of 2 mm was obtained. The surface of this sintered body was polished in the same manner as in Example 1 to obtain a surface roughness of Rmax of about 3 μm.
It was flattened to about m. A polycrystalline diamond film was formed on the surface of this sintered body by the microwave plasma CVD method under the same conditions as in Example 7.
【0017】[0017]
【表2】 [Table 2]
【0018】<比較例2>SiC粉末の代わりにTa粉
末を用いて実施例1と同様にして混合粉を調製した。こ
の混合粉を比較例1と同じ条件で成形し、焼結して比較
例1と同形同大の焼結体を得た。この焼結体の表面を実
施例1と同様に研摩して、表面粗さをRmaxで約3μm
程度に平坦化した。この焼結体表面にマイクロ波プラズ
マCVD法により実施例7と同じ条件で多結晶ダイヤモ
ンド被膜を形成した。Comparative Example 2 A mixed powder was prepared in the same manner as in Example 1 except that Ta powder was used instead of SiC powder. The mixed powder was molded under the same conditions as in Comparative Example 1 and sintered to obtain a sintered body having the same shape and size as Comparative Example 1. The surface of this sintered body was polished in the same manner as in Example 1 to obtain a surface roughness of Rmax of about 3 μm.
It was flattened to some extent. A polycrystalline diamond film was formed on the surface of this sintered body by the microwave plasma CVD method under the same conditions as in Example 7.
【0019】<比較例3>SiC粉末の代わりにMo粉
末を用いて実施例1と同様にして混合粉を調製した。こ
の混合粉を比較例1と同じ条件で成形し、焼結して比較
例1と同形同大の焼結体を得た。この焼結体の表面を実
施例1と同様に研摩して、表面粗さをRmaxで約3μm
程度に平坦化した。この焼結体表面にマイクロ波プラズ
マCVD法により実施例7と同じ条件で多結晶ダイヤモ
ンド被膜を形成した。Comparative Example 3 A mixed powder was prepared in the same manner as in Example 1 except that Mo powder was used instead of SiC powder. The mixed powder was molded under the same conditions as in Comparative Example 1 and sintered to obtain a sintered body having the same shape and size as Comparative Example 1. The surface of this sintered body was polished in the same manner as in Example 1 to obtain a surface roughness of Rmax of about 3 μm.
It was flattened to some extent. A polycrystalline diamond film was formed on the surface of this sintered body by the microwave plasma CVD method under the same conditions as in Example 7.
【0020】<比較例4>SiC粉末の代わりにW粉末
を用いて実施例1と同様にして混合粉を調製した。この
混合粉を比較例1と同じ条件で成形し、焼結して比較例
1と同形同大の焼結体を得た。この焼結体の表面を実施
例1と同様に研摩して、表面粗さをRmaxで約3μm程
度に平坦化した。この焼結体表面に熱フィラメントCV
D法により実施例1と同じ条件で多結晶ダイヤモンド被
膜を形成した。<Comparative Example 4> A mixed powder was prepared in the same manner as in Example 1 except that W powder was used instead of SiC powder. The mixed powder was molded under the same conditions as in Comparative Example 1 and sintered to obtain a sintered body having the same shape and size as Comparative Example 1. The surface of this sintered body was polished in the same manner as in Example 1 to flatten the surface roughness to Rmax of about 3 μm. On the surface of this sintered body, a hot filament CV
A polycrystalline diamond film was formed by the method D under the same conditions as in Example 1.
【0021】<比較例5>SiC粉末の代わりにSi3
N4粉末を用いて実施例1と同様にして混合粉を調製し
た。この混合粉を比較例1と同じ条件で成形し、焼結し
て比較例1と同形同大の焼結体を得た。この焼結体表面
に熱フィラメントCVD法により実施例1と同じ条件で
多結晶ダイヤモンド被膜を形成した。<Comparative Example 5> Si 3 instead of SiC powder
A mixed powder was prepared in the same manner as in Example 1 using N 4 powder. The mixed powder was molded under the same conditions as in Comparative Example 1 and sintered to obtain a sintered body having the same shape and size as Comparative Example 1. A polycrystalline diamond film was formed on the surface of this sintered body by the hot filament CVD method under the same conditions as in Example 1.
【0022】<気孔率及びダイヤモンド被膜表面の結晶
配向性の測定結果>実施例1〜11及び比較例1〜5に
おいて、多結晶ダイヤモンド被膜を形成する前の焼結体
の実際の気孔率をポロシメータ法、密度測定及び表面の
顕微鏡写真観察により求めた。また各CVD法で合成し
た多結晶ダイヤモンドをX線回折によりその(220)
面と(111)面のピークの強度比(220)/(11
1)を求め、この値から(110)面の配向性を調べ
た。その結果を表3に示す。<Measurement Results of Porosity and Crystal Orientation of Diamond Coating Surface> In Examples 1 to 11 and Comparative Examples 1 to 5, the actual porosity of the sintered body before forming the polycrystalline diamond coating was measured by porosimeter. Method, density measurement, and microscopic observation of the surface. Moreover, the polycrystalline diamond synthesized by each CVD method was analyzed by X-ray diffraction (220).
Intensity ratio of the peaks of the (111) plane and the (220) / (11) plane
1) was obtained, and the orientation of the (110) plane was examined from this value. Table 3 shows the results.
【0023】[0023]
【表3】 [Table 3]
【0024】<熱サイクル試験>実施例1〜11及び比
較例1〜5で得られたダイヤモンド被覆基材をそれぞれ
空気中で200℃で15秒間保持した後、40℃/秒の
速度で600℃まで昇温し、600℃で10秒間保持し
た。その後5℃/秒の速度で200℃まで降温した。こ
の200℃と600℃との間の加熱と冷却を繰返し、1
00回行った。100回までの間にダイヤモンド被膜に
異常が見られたものはそこまでの回数を数えた。その結
果を表4に示す。<Heat Cycling Test> The diamond-coated substrates obtained in Examples 1 to 11 and Comparative Examples 1 to 5 were each held in air at 200 ° C. for 15 seconds and then at 600 ° C. at a rate of 40 ° C./second. The temperature was raised to and held at 600 ° C. for 10 seconds. Then, the temperature was lowered to 200 ° C at a rate of 5 ° C / sec. Repeat the heating and cooling between 200 and 600 ℃ 1
It was performed 00 times. The number of times when the diamond coating had an abnormality up to 100 times was counted. The results are shown in Table 4.
【0025】<耐久試験>実施例1〜11及び比較例1
〜5で得られたダイヤモンド被覆基材の基体裏面にTi
を3μm蒸着してメタライズ層を形成した後、ステンレ
ス製シャンク材の先端に市販のろう材を介してこのメタ
ライズ層を当接し、真空ろう付けを行った。シャンク材
にろう付けしたダイヤモンド被覆基材のダイヤモンド表
面をメッシュサイズ#200のダイヤモンド電着砥石に
より研摩した。すべての基材のダイヤモンド表面の粗さ
Rmaxは0.1μm以下であった。このようにして得ら
れたボンディングツールの耐久試験を行った。耐久試験
は、ツール先端温度を600℃、圧着時間を3秒とし、
リードが配線されたテープを100万回繰返しボンディ
ングすることにより行い、ダイヤモンド被膜及びろう付
け部の損傷程度を目視により観察した。その結果を表4
に示す。<Durability Test> Examples 1 to 11 and Comparative Example 1
Ti on the back surface of the substrate of the diamond-coated substrate obtained in
Was vapor-deposited to a thickness of 3 μm to form a metallized layer, the metallized layer was brought into contact with the tip of a stainless shank material via a commercially available brazing material, and vacuum brazing was performed. The diamond surface of the diamond-coated substrate brazed to the shank material was polished with a diamond electrodeposition grindstone of mesh size # 200. The roughness Rmax of the diamond surface of all the substrates was 0.1 μm or less. A durability test of the bonding tool thus obtained was conducted. Durability test, the tool tip temperature is 600 ℃, the crimping time is 3 seconds,
The tape on which the leads were wired was repeatedly bonded 1 million times, and the degree of damage to the diamond coating and the brazed portion was visually observed. Table 4 shows the results.
Shown in
【0026】[0026]
【表4】 [Table 4]
【0027】表4から明らかなように、熱サイクル試験
で比較例1〜5が15回〜80回でダイヤモンド被膜が
剥離するのに対して、実施例1〜11ではすべて全く損
傷がなかった。また耐久試験で比較例1〜5がろう付け
部の脱落やダイヤモンド膜の剥離損傷が見られたのに対
して、実施例1〜11では100万回試験してもすべて
全く損傷も損耗もなかった。特に表3から明らかなよう
に、比較例1及び比較例5は、多結晶ダイヤモンド被膜
の(110)面の配向性が実施例と同程度に優れていて
も、気孔率が1%以下であるため、上述したように実施
例1〜11に比べて熱的、機械的耐久性に劣っていた。As is clear from Table 4, in Comparative Examples 1 to 5 in the heat cycle test, the diamond coating peeled off after 15 to 80 times, while in Examples 1 to 11, there was no damage at all. Further, in the durability test, in Comparative Examples 1 to 5, falling of the brazed portion and peeling damage of the diamond film were observed, while in Examples 1 to 11, there was no damage or wear at all even after 1 million tests. It was In particular, as is clear from Table 3, in Comparative Example 1 and Comparative Example 5, the porosity is 1% or less even though the orientation of the (110) plane of the polycrystalline diamond film is as excellent as that of the example. Therefore, as described above, the thermal and mechanical durability was inferior to that of Examples 1 to 11.
【0028】[0028]
【発明の効果】以上述べたように、本発明によれば、多
結晶ダイヤモンド被膜の基体に対する密着強度がより一
層高く、耐久性に優れたボンディングツールが得られ
る。As described above, according to the present invention, it is possible to obtain a bonding tool having a higher adhesion strength of the polycrystalline diamond film to the substrate and excellent durability.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 實 東京都大田区大森北5丁目7番12号 オグ ラ宝石精機工業株式会社内 (72)発明者 梅沢 弘美 東京都大田区大森北5丁目7番12号 オグ ラ宝石精機工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minor Kojima 5-7-12 Omorikita, Ota-ku, Tokyo Ogura Gem Seiki Co., Ltd. (72) Inventor Hiromi Umezawa 5-7 Omorikita, Ota-ku, Tokyo No. 12 Ogura Gem Seiki Co., Ltd.
Claims (2)
体と前記基体の表面に主として(110)面に配向して
形成された多結晶ダイヤモンド被膜とからなるダイヤモ
ンド被覆基材をツール先端部にろう付けしてなるダイヤ
モンド被覆ボンディングツールにおいて、 前記焼結体が5〜35%の気孔率を有することを特徴と
するダイヤモンド被覆ボンディングツール。1. A tool tip portion of a diamond-coated base material comprising a base body made of a sintered body containing SiC as a main component, and a polycrystalline diamond coating film formed on the surface of the base body mainly oriented in the (110) plane. A diamond-coated bonding tool obtained by brazing, wherein the sintered body has a porosity of 5 to 35%.
非晶質カーボンを含む0.5〜10μm厚の第1ダイヤ
モンド層とこのダイヤモンド層に(110)面に配向し
て積層された10〜200μm厚の実質的に100%純
粋な第2ダイヤモンド層とからなる請求項1記載のダイ
ヤモンド被覆ボンディングツール。2. A first diamond layer having a thickness of 0.5 to 10 μm containing amorphous carbon which is in contact with a substrate, and a 10 to 200 μm thick layer of the polycrystalline diamond film oriented in the (110) plane on the diamond layer. The diamond coated bonding tool of claim 1 comprising a second diamond layer substantially 100% pure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8053090A JPH09246328A (en) | 1996-03-11 | 1996-03-11 | Diamond coated bonding tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8053090A JPH09246328A (en) | 1996-03-11 | 1996-03-11 | Diamond coated bonding tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09246328A true JPH09246328A (en) | 1997-09-19 |
Family
ID=12933093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8053090A Withdrawn JPH09246328A (en) | 1996-03-11 | 1996-03-11 | Diamond coated bonding tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09246328A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6171456B1 (en) * | 1997-03-28 | 2001-01-09 | Kulicke And Soffa Industries Inc. | Method for making improved long life bonding tools |
-
1996
- 1996-03-11 JP JP8053090A patent/JPH09246328A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6171456B1 (en) * | 1997-03-28 | 2001-01-09 | Kulicke And Soffa Industries Inc. | Method for making improved long life bonding tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2023933C (en) | Bonding tool | |
US5934542A (en) | High strength bonding tool and a process for production of the same | |
US5516027A (en) | Bonding tool having a diamond head and method of manufacturing the same | |
EP0090658A2 (en) | Abrasive bodies | |
JPH11228245A (en) | Bonding composition for bonding different kinds of members to each other, composite member comprising different kinds of members bonded with the composition, and production of the composite member | |
JPH08268799A (en) | Preparation of tool insert brazable in air and insert prepared thereby | |
JP2520971B2 (en) | Bonding tools | |
JPH09246328A (en) | Diamond coated bonding tool | |
JPH07507973A (en) | Thin film metallization and brazing of aluminum nitride | |
JPH04157157A (en) | Production of artificial diamond coated material | |
JPH0766930B2 (en) | Bonding tools | |
JP3247636B2 (en) | Bonding tool and manufacturing method thereof | |
JP2721258B2 (en) | Manufacturing method of ceramic substrate | |
JPH01225774A (en) | High-hardness polycrystalline diamond tool | |
JPH07196379A (en) | Tool for brazing synthetic diamond in gas phase and its production | |
JPS58176189A (en) | Metallization of silicon nitride and carbide sintered body surface | |
JPS631278B2 (en) | ||
JP2784695B2 (en) | Manufacturing method of bonding tool | |
JPS60246285A (en) | Metal silicide coating forming silicon carbide base sinteredbody and manufacture | |
JPH09134938A (en) | Bonding tool excellent in oxidation resistance | |
JPH05228624A (en) | Diamond Polycrystal Soldering Tool | |
KR0180485B1 (en) | Method for producing silicon nitride sintered body and metal joined body | |
JPH05299478A (en) | Bonding tool and manufacturing method thereof | |
JPH04306856A (en) | Manufacture of bonding tool for gold-gold bonding | |
JP3138222B2 (en) | Method for producing free-standing diamond film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030603 |