[go: up one dir, main page]

JPH09242562A - Closed brayton cycle device, and operating method therefor - Google Patents

Closed brayton cycle device, and operating method therefor

Info

Publication number
JPH09242562A
JPH09242562A JP8047198A JP4719896A JPH09242562A JP H09242562 A JPH09242562 A JP H09242562A JP 8047198 A JP8047198 A JP 8047198A JP 4719896 A JP4719896 A JP 4719896A JP H09242562 A JPH09242562 A JP H09242562A
Authority
JP
Japan
Prior art keywords
compressor
gas
output
opening
air reserving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8047198A
Other languages
Japanese (ja)
Inventor
Takeshi Osako
雄志 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8047198A priority Critical patent/JPH09242562A/en
Publication of JPH09242562A publication Critical patent/JPH09242562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To follow and cope with fluctuation in load without deteriorating cycle efficiency by disposing, between a discharge side and intake side of a compressor, a control passage comprising an air reserving compressor, an air reserving tank and an opening/closing valve in order from upstream. SOLUTION: In a closed Brayton cycle device such as a gas turbine, operating gas 9 inside a system becomes high in temperature and pressure so as to drive a gas turbine 6. After being cooled, the operating gas is returned to a compressor 7. In this case, there are provided an air reserving tank 11 for output control, an air reserving pipeline 1 branched from a discharge side of the compressor 7 and adapted to connect the inside of the system to the air reserving tank 11, an air reserving compressor 15, a reflux pipeline 3 and an opening/closing valve 2. At the time of a decrease in output, the compressor 15 is operated to close the opening/closing valve 2, thereby separating part of the operating gas 9 inside the system and reserving it in the air reserving tank 11. In contrast, at the time of an increase in output, the gas inside the air reserving tank 11 is returned to the system by opening the opening/closing valve 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は負荷変動に応じて出
力を制御可能としたガスタービン等のクローズドブレイ
トンサイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a closed Brayton cycle device such as a gas turbine whose output can be controlled according to load fluctuations.

【0002】[0002]

【従来の技術】図2は従来のクローズドブレイトンサイ
クルガスタービンの系統図である。系内の作動ガス9は
圧縮機7で圧縮され、加熱器8で熱Q1 を加えられ加熱
されて高温高圧のガスとなる。
2. Description of the Related Art FIG. 2 is a system diagram of a conventional closed Brayton cycle gas turbine. Working gas 9 in the system is compressed by the compressor 7 is heated applied heat Q 1 becomes the high-temperature and high-pressure gas in the heater 8.

【0003】この高温高圧のガスは圧縮機7と同軸16
上のガスタービン6に導かれ、ガスのエネルギを回収す
ることにより出力を生み、圧縮機7の駆動力分を差し引
いた分が正味の出力となる。
This high temperature and high pressure gas is coaxial with the compressor 16
It is guided to the upper gas turbine 6 to generate an output by recovering the energy of the gas, and the net output is obtained by subtracting the driving force of the compressor 7.

【0004】エネルギを回収されて低温低圧となった作
動ガス9は、冷却器10で熱Q2 をうばわれてさらに冷
却され、再び圧縮機7に導かれて、系内が密閉され外部
と遮断されたクローズドブレイトンサイクルガスタービ
ンを構成している。
The working gas 9 whose energy has been recovered to have a low temperature and a low pressure is subjected to heat Q 2 in the cooler 10 to be further cooled, and then introduced into the compressor 7 again to seal the inside of the system and shut it off from the outside. It constitutes a closed Brayton cycle gas turbine.

【0005】そしてこの従来のものでは、ガスタービン
6の負荷の低減時は回転数を低下させ、負荷増加時は回
転数を増加させて圧力比を変化させることにより重量流
量を変化させることにより負荷変動に対応していた。
In this conventional type, when the load of the gas turbine 6 is reduced, the rotation speed is decreased, and when the load is increased, the rotation speed is increased to change the pressure ratio to change the weight flow rate. It was responding to fluctuations.

【0006】[0006]

【発明が解決しようとする課題】前記した従来のもので
は、同一軸上のガスタービン6、圧縮機7の回転数を変
化させると体積流量が変化するが、系内が密閉されてい
るため圧縮機入口側の圧力は常に一定で圧力比が変化
し、重量流量すなわち出力が変化する。
In the above-mentioned conventional one, the volume flow rate changes when the rotational speeds of the gas turbine 6 and the compressor 7 on the same shaft are changed, but the system is hermetically closed. The pressure at the machine inlet side is always constant and the pressure ratio changes, and the weight flow rate, that is, the output changes.

【0007】一方、サイクルの性能を示すサイクル効率
と圧力比との関係は図3に示すようにほぼ圧力比2付近
で効率最大となる関係があり、従来の回転数の変化によ
る出力制御法では各負荷点でサイクル効率が大きく変化
すること、特に低負荷時にサイクル効率が低下すること
が懸念される。
On the other hand, the relationship between the cycle efficiency, which indicates the cycle performance, and the pressure ratio is such that the efficiency becomes maximum near a pressure ratio of 2 as shown in FIG. 3, and in the conventional output control method by changing the rotational speed. There is a concern that the cycle efficiency will change significantly at each load point, and that the cycle efficiency will decrease especially when the load is low.

【0008】本発明はこのような従来のものにおける不
具合を解消し、負荷変動に対してサイクル効率を低下す
ることなく追随対処しうるものを提供することを課題と
するものである。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a device capable of coping with load fluctuations without lowering cycle efficiency.

【0009】[0009]

【課題を解決するための手段】本発明は、前記課題を解
決するべくなされたもので、圧縮機の吐出側と吸込側と
の間に、貯気用圧縮機と貯気タンクと開閉弁とを上流か
ら順次配列して構成した制御流路を設けたクローズドブ
レイトンサイクル装置を提供し、負荷の変動に応じて制
御流路を作動し、作動媒体を調整して同負荷変動に対応
させ、サイクル効率を何ら低下させることなくこの負荷
変動を対処するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a compressor for storing air, a storage tank, an on-off valve are provided between a discharge side and a suction side of a compressor. We provide a closed Brayton cycle device that has a control flow path that is configured by sequentially arranging from the upstream, operate the control flow path according to the change of the load, adjust the working medium to respond to the same load change, and cycle The load fluctuation is dealt with without any reduction in efficiency.

【0010】また、本発明は出力を低下させる際には系
内ガスの一部を圧縮機の吐出側から分岐して保存し、出
力を増加させる際には保存していた系内ガスを圧縮機吸
込側から系内に還流して運転するようにしたクローズド
ブレイトンサイクル装置の運転方法を提供し、負荷変動
で出力を低下するとき、又は増加するとき夫々に応じ
て、作動媒体の系内ガスの一部を、系から分岐して保存
するか又は保存していたものを還流復帰させて増加させ
た上で運転し、これによりサイクル効率を何ら低下させ
ることなく前記負荷変動を対処するものである。
Further, according to the present invention, when the output is reduced, a part of the system gas is branched from the discharge side of the compressor and stored, and when the output is increased, the stored system gas is compressed. Provided is a method for operating a closed Brayton cycle device that is operated by recirculating from the suction side of the machine to the system, and when the output decreases or increases due to load fluctuation, the working medium gas in the system Part of the load is branched from the system and stored, or the stored one is returned to reflux and increased to operate, thereby coping with the load fluctuation without any reduction in cycle efficiency. is there.

【0011】[0011]

【発明の実施の形態】本発明の実施の一形態を図1に基
づいて説明する。図1は本実施の形態の系統図であり、
前記した従来のものと同一部分には同一の符号を付して
示し、同従来のものと異る点に焦点を合せて説明して重
複する説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a system diagram of the present embodiment,
The same parts as those of the above-mentioned conventional one are designated by the same reference numerals, and the description will be made focusing on the points different from the conventional one and the duplicated description will be omitted.

【0012】本実施の形態では、通常の系統に加えて、
出力制御用に貯気タンク11を設け、出力低減時に系内
ガスの一部を分離、貯気するために圧縮機7の吐出側7
aから分岐して系内と貯気タンク11を連結する貯気管
路1および貯気用圧縮機15を設け、また、出力増加時
に貯気ガスを系内に還流するために貯気タンク11と圧
縮機7吸込側を連結する還流管路3および開閉弁2を設
けた。
In the present embodiment, in addition to the normal system,
The storage tank 11 is provided for output control, and the discharge side 7 of the compressor 7 is provided to separate and store a part of the system gas when the output is reduced.
A storage pipe 1 and a storage compressor 15 that branch from a to connect the inside of the system and the storage tank 11 are provided, and the storage tank 11 is provided to recirculate the stored gas into the system when the output increases. A reflux pipe 3 and an on-off valve 2 which connect the suction side of the compressor 7 are provided.

【0013】即ち、圧縮機7の吐出側7aと吸込側7b
との間には、ガスタービン6からはじまり冷却器10を
経て帰還するクローズドブレイトンサイクルの通常の系
に加えて、貯気管路1、及び還流管路3を夫々上流、下
流とし、上流側から下流側へ向かって貯気用圧縮機1
5、貯気タンク11、開閉弁2と順次配列して、この全
体で形成した制御流路を介装している。
That is, the discharge side 7a and the suction side 7b of the compressor 7
In addition to the normal system of the closed Brayton cycle, which starts from the gas turbine 6 and returns via the cooler 10, the storage pipe line 1 and the reflux pipe line 3 are upstream and downstream, respectively, and Compressor for storing air 1 toward the side
5, the air storage tank 11, and the on-off valve 2 are sequentially arranged, and a control flow path formed as a whole is interposed.

【0014】なお前記吐出側7aと吸込側7bとは、必
ずしも圧縮機7上に設けられていると限定されるもので
はなく、装置のロケイション等に応じ適宜管路を延ばし
て最適な位置を選びうることは勿論である。
The discharge side 7a and the suction side 7b are not necessarily limited to being provided on the compressor 7, and the optimum positions can be selected by appropriately extending the conduits depending on the location of the device. Of course

【0015】このように構成された本実施の形態では、
いま、出力を低減する場合は同一軸16上にあるガスタ
ービン6、圧縮機7の回転数を一定とし、貯気用圧縮機
15を作動させ、開閉弁2を閉じ貯気タンク11に系内
の作動ガス9の一部を分離、貯気するように運転するこ
とにより、作動ガス9は体積流量を変えず、すなわち圧
力比一定のまま重量流量を変化でき、ガスタービン6の
出力は低下する。
In the present embodiment configured as described above,
Now, when reducing the output, the gas turbine 6 and the compressor 7 on the same shaft 16 are kept at constant rotation speeds, the air storage compressor 15 is operated, the on-off valve 2 is closed, and the air storage tank 11 is connected to the system. By operating such that a part of the working gas 9 is separated and stored, the working gas 9 can change the volume flow rate, that is, the weight flow rate can be changed with the pressure ratio kept constant, and the output of the gas turbine 6 decreases. .

【0016】一方、出力を増加する場合は、同様にガス
タービン6、圧縮機7の回転数を一定とし、貯気用圧縮
機15を停止したまま貯気タンク11に貯気していたガ
スを開閉弁2を開くことにより系内に戻して運転するこ
とにより、体積流量を変えず、すなわち圧力比一定のま
ま重量流量を変化できガスタービン6の出力は増加す
る。
On the other hand, when the output is increased, similarly, the rotational speeds of the gas turbine 6 and the compressor 7 are made constant, and the gas stored in the storage tank 11 is kept with the storage compressor 15 stopped. By operating the valve by returning it to the system by opening the on-off valve 2, the volume flow rate is not changed, that is, the weight flow rate can be changed with the pressure ratio kept constant, and the output of the gas turbine 6 is increased.

【0017】そしてこの作動を通してサイクル効率を何
ら低下することなくガスタービンの出力を低下又は増加
させて負荷の変動に追従した運転を行うことができるも
のである。
Through this operation, the output of the gas turbine can be reduced or increased without any reduction in cycle efficiency, and operation can be performed in accordance with load fluctuations.

【0018】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various modifications may be made to the specific structure within the scope of the present invention.

【0019】[0019]

【発明の効果】以上本発明によれば、負荷の変動に応じ
て制御流路を作動し、全体のサイクル効率を低下するこ
となく前記負荷変動に追従してそれに対応した運転を行
うことができたものである。
As described above, according to the present invention, it is possible to operate the control flow passage in accordance with the load variation and follow the load variation without deteriorating the overall cycle efficiency to perform the corresponding operation. It is a thing.

【0020】また、請求項2の発明では、負荷変動で出
力を低下し又は増加するときには制御流路内に作動媒体
の系内ガスの一部を保存し、又はこの保存していたもの
を還流して復帰させ、全体のサイクル効率を低下するこ
となく前記負荷変動に追従する運転方法を得ることがで
きたものである。
Further, according to the second aspect of the invention, when the output is decreased or increased due to load fluctuation, a part of the system gas of the working medium is stored in the control flow path, or the stored gas is recirculated. Then, it is possible to obtain an operation method of following the load fluctuation without reducing the overall cycle efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態を得るクローズドブレイ
トンサイクルの系統図。
FIG. 1 is a system diagram of a closed Brayton cycle according to an embodiment of the present invention.

【図2】従来のクローズドブレイトンサイクルの系統
図。
FIG. 2 is a system diagram of a conventional closed Brayton cycle.

【図3】クローズドブレイトンサイクル効率と圧力比の
関係図。
FIG. 3 is a relational diagram of closed Brayton cycle efficiency and pressure ratio.

【符号の説明】[Explanation of symbols]

2 開閉弁 6 ガスタービン 7 圧縮機 11 貯気タンク 15 貯気用圧縮機 2 Open / close valve 6 Gas turbine 7 Compressor 11 Storage tank 15 Storage compressor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の吐出側と吸込側との間に、貯気
用圧縮機と貯気タンクと開閉弁とを上流から順次配列し
て構成した制御流路を設けたことを特徴とするクローズ
ドブレイトンサイクル装置。
1. A control flow path is provided between a discharge side and a suction side of the compressor, the control flow path being configured by sequentially arranging a storage compressor, a storage tank, and an opening / closing valve from the upstream side. Closed Brayton cycle device.
【請求項2】 出力を低下させる際には系内ガスの一部
を圧縮機の吐出側から分岐して保存し、出力を増加させ
る際には保存していた系内ガスを圧縮機吸込側から系内
に還流して運転するようにしたことを特徴とするクロー
ズドブレイトンサイクル装置の運転方法。
2. When reducing the output, a part of the system gas is branched from the discharge side of the compressor and stored, and when increasing the output, the stored system gas is stored on the compressor suction side. The method for operating a closed Brayton cycle device is characterized in that the system is operated by refluxing from the system.
JP8047198A 1996-03-05 1996-03-05 Closed brayton cycle device, and operating method therefor Pending JPH09242562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8047198A JPH09242562A (en) 1996-03-05 1996-03-05 Closed brayton cycle device, and operating method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8047198A JPH09242562A (en) 1996-03-05 1996-03-05 Closed brayton cycle device, and operating method therefor

Publications (1)

Publication Number Publication Date
JPH09242562A true JPH09242562A (en) 1997-09-16

Family

ID=12768441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8047198A Pending JPH09242562A (en) 1996-03-05 1996-03-05 Closed brayton cycle device, and operating method therefor

Country Status (1)

Country Link
JP (1) JPH09242562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020914A (en) * 2001-07-10 2003-01-24 Kobe Steel Ltd Closed cycle gas turbine and power generation system using the same
JP2013508619A (en) * 2009-10-27 2013-03-07 ゼネラル・エレクトリック・カンパニイ System and method for recovering carbon dioxide in an air compression expansion system
CN112360571A (en) * 2020-10-26 2021-02-12 北京动力机械研究所 Low heat dissipation closed Brayton cycle thermoelectric conversion system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020914A (en) * 2001-07-10 2003-01-24 Kobe Steel Ltd Closed cycle gas turbine and power generation system using the same
JP4647847B2 (en) * 2001-07-10 2011-03-09 株式会社神戸製鋼所 Closed cycle gas turbine and power generation system using the same
JP2013508619A (en) * 2009-10-27 2013-03-07 ゼネラル・エレクトリック・カンパニイ System and method for recovering carbon dioxide in an air compression expansion system
CN112360571A (en) * 2020-10-26 2021-02-12 北京动力机械研究所 Low heat dissipation closed Brayton cycle thermoelectric conversion system

Similar Documents

Publication Publication Date Title
KR100547321B1 (en) Capacity adjustable scroll compressor
US20040151964A1 (en) Fuel cell air supply
CN114856736B (en) A control method for supercritical carbon dioxide Brayton cycle system
JPS60261A (en) refrigeration cycle
CN212614894U (en) Supercritical carbon dioxide Brayton cycle power generation system
KR101674804B1 (en) Supercritical CO2 generation system
CN111594283A (en) Two-stage turbine gas suspension ORC power generation system and control method
US6145317A (en) Steam turbine, steam turbine plant and method for cooling a steam turbine
CN113137293B (en) Supercritical carbon dioxide circulation system and turbine adjusting and emergency shutdown method
CN211851943U (en) Brayton cycle power generation system
WO2013046783A1 (en) Waste heat recovery system
JPH02238185A (en) Composite compressor
CN212337391U (en) Supercritical carbon dioxide recompression cycle power generation system
CN104736952A (en) Centrifugal compressor inlet guide vane control
KR101692173B1 (en) Exhaust heat recovery system and exhaust heat recovery method
JPH09242562A (en) Closed brayton cycle device, and operating method therefor
US5024057A (en) Exhaust-driven electric generator system for internal combustion engines
JPH0777365A (en) Cooling equipment
JPH10169455A (en) Turbo charger engine
CN115750016A (en) Shutdown system and method of supercritical carbon dioxide recompression circulating system
CN212837970U (en) Two-stage turbine gas suspension ORC power generation system
JP3965706B2 (en) Air compressor
JP2790753B2 (en) Engine exhaust energy recovery device
JP2001141286A (en) Heat recovery power generation system and operation method thereof
JP3142267B2 (en) Pump device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720