[go: up one dir, main page]

JPH09241038A - Photocatalytic hydrophilic member and its production - Google Patents

Photocatalytic hydrophilic member and its production

Info

Publication number
JPH09241038A
JPH09241038A JP8323516A JP32351696A JPH09241038A JP H09241038 A JPH09241038 A JP H09241038A JP 8323516 A JP8323516 A JP 8323516A JP 32351696 A JP32351696 A JP 32351696A JP H09241038 A JPH09241038 A JP H09241038A
Authority
JP
Japan
Prior art keywords
photocatalytic
surface layer
water
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323516A
Other languages
Japanese (ja)
Inventor
Eiichi Kojima
栄一 小島
Makoto Hayakawa
信 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP8323516A priority Critical patent/JPH09241038A/en
Publication of JPH09241038A publication Critical patent/JPH09241038A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain antifogging property, improved vision and easy cleaning property for a long time by forming a surface layer containing photocatalytic oxide particles having a specified grain size on the surface of a base body and exciting the layer with light to render the surface to be hydrophilic. SOLUTION: A surface layer containing photocatalytic oxide particles having 100 to 800nm average particle size (e.g. anatase-type titanium oxide) is formed on the surface of a substrate (e.g. glass and tile). A light source such as a fluorescent light and mercury lamp is used for excitation with light, and the illuminance of the exciting light is preferably >=0.01mW/cm<2> . As for hydrophilicity, it is preferable to obtain wettability of >10 deg. contact angle with water. The hydrophilic member is formed, for example, by preparing a co8ting liquid having dispersion of photocatalytic titanium oxide particles, applying the liquid by spray coating or the like on the substrate surface, calcining the layer at a temp. higher than the temp. that the layer can be changed into a photocatalytic oxide to fix the surface layer to the substrate. Metals such as Ag, Cu and Zn can be added to the surface layer to kill germs depositing on the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、部材表面を高度の
親水性になし、かつ維持する技術に関する。より詳しく
は、本発明は、鏡、レンズ、ガラス、プリズムその他の
透明部材の表面を高度に親水化することにより、部材の
曇りや水滴形成を防止する防曇技術に関する。本発明
は、また、建物や窓ガラスや機械装置や物品の表面を高
度に親水化することにより、表面が汚れるのを防止し、
又は表面を自己浄化(セルフクリーニング)し若しくは
容易に清掃する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for making a surface of a member highly hydrophilic. More specifically, the present invention relates to an antifogging technique for preventing fogging and formation of water droplets on a member such as a mirror, a lens, a glass, a prism and the like by making the surface of the transparent member highly hydrophilic. The present invention also prevents the surface from being stained by highly hydrophilizing the surface of a building, a window glass, a mechanical device or an article,
Alternatively, the present invention relates to a technique for self-cleaning (self-cleaning) or easily cleaning a surface.

【0002】[0002]

【従来の技術】寒冷時に自動車その他の乗物の風防ガラ
スや窓ガラス、建物の窓ガラス、眼鏡のレンズ、および
各種計器盤のカバーガラスが凝縮湿分で曇るのはしばし
ば経験されることである。また、浴室や洗面所の鏡や眼
鏡のレンズが湯気で曇ることも良く遭遇される。更に、
車両の風防ガラスや窓ガラス、建物の窓ガラス、車両の
バックミラー、眼鏡のレンズ、マスクやヘルメットのシ
ールドが降雨や水しぶきを受け、離散した多数の水滴が
表面に付着すると、それらの表面は翳り、ぼやけ、斑模
様になり、或いは曇り、やはり可視性が失われる。本発
明でいう“防曇”の用語は上記光学的障害を防止する技
術を広く意味する。言うまでもなく、上記“曇り”は安
全性や種々の作業の能率に深い影響を与える。例えば、
車両の風防ガラスや窓ガラス、車両のバックミラーが、
寒冷時や雨天に翳り或いは曇ると、視界の確保が困難と
なり、交通の安全性が損なわれる。内視鏡レンズや歯科
用歯鏡が曇ると、的確な診断、手術、処置の障害とな
る。計器盤のカバーガラスが曇るとデータの読みが困難
となる。
2. Description of the Related Art It is often experienced that in cold weather, windshields and windows of automobiles and other vehicles, window glasses of buildings, lenses of glasses, and cover glasses of various instrument panels are fogged by condensed moisture. In addition, mirrors and eyeglass lenses in bathrooms and washrooms are often fogged by steam. Furthermore,
Vehicle windshields and windows, building windows, vehicle rearview mirrors, eyeglass lenses, masks and helmet shields are subjected to rainfall and splashes, and when a large number of discrete droplets of water adhere to the surface, their surfaces become shaded. , Blurred, mottled, or cloudy, again losing visibility. The term "anti-fog" as used in the present invention broadly means a technique for preventing the above optical damage. Needless to say, the above-mentioned "cloudiness" has a profound effect on safety and efficiency of various operations. For example,
The windshield and window glass of the vehicle, the rearview mirror of the vehicle,
In cold weather, or in the rain or when it becomes cloudy, it becomes difficult to secure visibility and traffic safety is impaired. Fogging of the endoscope lens and the dental dentoscope hinders accurate diagnosis, surgery, and treatment. If the cover glass of the instrument panel becomes cloudy, it will be difficult to read the data.

【0003】上記“曇り”の解消のために、表面を親水
性にすることが提案されている。例えば、実開平3−1
29357号には、基材の表面にポリマー層を設け、こ
の層に紫外線を照射した後アルカリ水溶液により処理す
ることにより高密度の酸性基を生成し、これによりポリ
マー層の表面を親水性にすることからなる鏡の防曇方法
が開示されている。しかし、この方法で得られる程度の
酸性基では、表面極性が充分でなく、表面に付着する汚
染物質により時間が経つにつれて表面は親水性を失い、
防曇性能が次第に失われるものと考えられる。
It has been proposed to make the surface hydrophilic in order to eliminate the "clouding". For example, 3-1
No. 29357 discloses a method in which a polymer layer is provided on the surface of a base material, and this layer is irradiated with ultraviolet rays and then treated with an aqueous alkali solution to generate high-density acidic groups, thereby making the surface of the polymer layer hydrophilic. An anti-fogging method for a mirror is disclosed. However, with such acidic groups, the surface polarity is not sufficient and the surface loses hydrophilicity over time due to contaminants adhering to the surface,
It is considered that the anti-fog performance is gradually lost.

【0004】他方、建築及び塗料の分野においては、環
境汚染に伴い、建築外装材料や屋外建造物やその塗膜の
汚れが問題となっている。大気中に浮遊する煤塵や粒子
は晴天には建物の屋根や外壁に堆積する。堆積物は降雨
に伴い雨水により流され、建物の外壁を流下する。更
に、雨天には浮遊煤塵は雨によって持ち運ばれ、建物の
外壁や屋外建造物の表面を流下する。その結果、表面に
は、雨水の道筋に沿って汚染物質が付着する。表面が乾
燥すると、表面には縞状の汚れが現れる。建築外装材料
や塗膜の汚れは、カーボンブラックのような燃焼生成物
や、都市煤塵や、粘土粒子のような無機質物質の汚染物
質からなる。このような汚染物質の多様性が防汚対策を
複雑にしているものと考えられている(橘高義典著“外
壁仕上材料の汚染の促進試験方法”、日本建築学会構造
系論文報告集、第404号、1989年10月、p.1
5−24)。
[0004] On the other hand, in the fields of construction and paints, stains on building exterior materials, outdoor buildings and their coatings have become a problem with environmental pollution. Soot and particles floating in the atmosphere accumulate on the roof and outer walls of buildings in fine weather. Sediment is washed away by rainwater as it rains and flows down the building's outer walls. Furthermore, in the rain, the floating dust is carried by the rain and flows down on the outer wall of the building or the surface of the outdoor building. As a result, pollutants adhere to the surface along the path of rainwater. When the surface dries, striped stains appear on the surface. Dirt on building exterior materials and coatings consists of combustion products such as carbon black, and inorganic pollutants such as urban dust and clay particles. It is thought that such a variety of contaminants complicates antifouling measures (Yoshinori Tachibana, "Method for Accelerated Testing of Contamination of Exterior Wall Finishing Materials", Proc. No., October 1989, p.
5-24).

【0005】従来の通念では、上記建築外装などの汚れ
を防止するためにはポリテトラフルオロエチレン(PT
FE)のような撥水性の塗料が好ましいと考えられてい
たが、最近では、疎水性成分を多く含む都市煤塵に対し
ては、塗膜の表面を出来るだけ親水性にするのが望まし
いと考えられている(高分子、44巻、1995年5月
号、p.307)。そこで、親水性のグラフトポリマー
で建物を塗装することが提案されている(新聞“化学工
業日報”、1995年1月30日)。報告によれば、こ
の塗膜は水との接触角に換算して30〜40゜の親水性
を呈する。しかしながら、粘土鉱物で代表される無機質
塵埃の水との接触角は20゜から50゜であり、水との
接触角が30〜40゜のグラフトポリマーに対して親和
性を有しその表面に付着しやすいので、このグラフトポ
リマーの塗膜は無機質塵埃による汚れを防止することが
できないと考えられる。
According to the conventional wisdom, polytetrafluoroethylene (PT) is used to prevent stains on the building exterior and the like.
Although water-repellent paints such as FE) were considered preferable, recently it has been considered that it is desirable to make the surface of the paint film as hydrophilic as possible for urban dust containing a large amount of hydrophobic components. (Polymer, Vol. 44, May 1995, p. 307). Therefore, it has been proposed to paint a building with a hydrophilic graft polymer (newspaper "Chemical Industry Daily", January 30, 1995). According to reports, this coating exhibits a hydrophilicity of 30 to 40 ° in contact angle with water. However, the contact angle of inorganic dust represented by clay minerals with water is from 20 ° to 50 °, and has an affinity for the graft polymer having a contact angle with water of 30 to 40 ° and adheres to the surface. Therefore, it is considered that this graft polymer coating film cannot prevent contamination by inorganic dust.

【0006】[0006]

【発明が解決しようとする課題】上記の如く、部材表面
を親水性にすることにより、部材の曇りや水滴形成を防
止したり、また、建物や窓ガラスや機械装置や物品の表
面が汚れるのを防止し、又は表面を自己浄化(セルフク
リーニング)し若しくは容易に清掃することができる提
案は存在するものの、表面を高度の親水性に長期にわた
り維持できないため、その効果は充分でなかった。そこ
で、本発明では、上記事情に鑑み、表面を長期にわたり
高度の親水性に維持できる部材を提供することを目的と
する。
As described above, by making the surface of the member hydrophilic, it is possible to prevent fogging of the member and formation of water droplets, and to prevent the surface of the building, window glass, machinery, and articles from becoming dirty. Although there is a proposal that can prevent the above, or can self-clean the surface (self-cleaning) or easily clean it, its effect is not sufficient because the surface cannot be kept highly hydrophilic for a long period of time. In view of the above circumstances, an object of the present invention is to provide a member capable of maintaining a surface with a high degree of hydrophilicity for a long period of time.

【0007】[0007]

【課題を解決するための手段、及び作用】本発明では、
基材表面に、平均結晶子径800nm未満、より好まし
くは平均結晶子径300nm以下の光触媒性酸化チタン
粒子を含有する表面層が形成されており、前記光触媒性
酸化チタンの光励起に応じて前記表面層が親水性を呈す
ることを特徴とする光触媒性親水性部材を提供する。こ
のようにすることで、光触媒性酸化チタン粒子を光励起
すると、部材の表面が親水化されるようになる。この現
象は以下に示す機構により進行すると考えられる。すな
わち、光触媒の価電子帯上端と伝導電子帯下端とのエネ
ルギーギャップ以上のエネルギーを有する光が光触媒性
酸化物に照射されると、光触媒の価電子帯中の電子が励
起されて伝導電子と正孔が生成し、そのいずれかまたは
双方の作用により、おそらく表面に極性が付与され、水
や水酸基等の極性成分が集められる。そして伝導電子と
正孔のいずれかまたは双方と、上記極性成分の協調的な
作用により、吸着表面と表面に化学的に吸着した汚染物
質との化学結合を切断すると共に、表面に化学吸着水が
吸着し、さらに物理吸着水層がその上に形成されるので
ある。
[Means and Actions for Solving the Problems] In the present invention,
A surface layer containing photocatalytic titanium oxide particles having an average crystallite size of less than 800 nm, more preferably an average crystallite size of 300 nm or less is formed on the surface of the base material, and the surface is formed in response to photoexcitation of the photocatalytic titanium oxide. Provided is a photocatalytic hydrophilic member, wherein the layer exhibits hydrophilicity. By doing so, when the photocatalytic titanium oxide particles are photoexcited, the surface of the member becomes hydrophilic. This phenomenon is considered to proceed by the following mechanism. That is, when light having energy equal to or more than the energy gap between the upper end of the valence band of the photocatalyst and the lower end of the conduction electron band is irradiated on the photocatalytic oxide, the electrons in the valence band of the photocatalyst are excited to become conductive electrons and positive electrons. Pores are created, and either or both actions may possibly impart polarity to the surface, collecting polar components such as water and hydroxyl groups. Then, one or both of the conduction electrons and holes and the above-mentioned polar components cooperate to cut the chemical bond between the adsorption surface and the contaminant chemically adsorbed on the surface, and the chemically adsorbed water on the surface. It adsorbs and a physisorbed water layer is formed on it.

【0008】[0008]

【発明の実施の形態】本発明における親水性とは、水と
の接触角に換算して30゜以下、好ましくは10゜以下
の水濡れ性を呈する状態をいう。部材表面が水との接触
角に換算して、30゜以下、より好ましくは10゜以下
の状態であれば、空気中の湿分や湯気が結露しても、凝
縮水が個々の水滴を形成せずに一様な水膜になる傾向が
顕著になる。従って、表面に光散乱性の曇りを生じない
傾向が顕著になる。同様に、窓ガラスや車両用バックミ
ラーや車両用風防ガラスや眼鏡レンズやヘルメットのシ
ールドが降雨や水しぶきを浴びた場合に、離散した目障
りな水滴が形成されずに、高度の視界と可視性を確保
し、車両や交通の安全性を保証し、種々の作業や活動の
能率を向上させる効果が飛躍的に向上する。また、部材
表面が水との接触角に換算して30゜以下の状態であれ
ば、都市煤塵、自動車等の排気ガスに含有されるカーボ
ンブラック等の燃焼生成物、油脂、シーラント溶出成分
等の疎水性汚染物質が付着しにくく、付着しても降雨や
水洗により簡単に落せる状態になる。
BEST MODE FOR CARRYING OUT THE INVENTION The term "hydrophilic" as used in the present invention means a state of exhibiting water wettability of 30 ° or less, preferably 10 ° or less in terms of contact angle with water. If the surface of the member is in a state of 30 ° or less, more preferably 10 ° or less in terms of contact angle with water, the condensed water forms individual water droplets even if moisture or steam in the air is condensed. The tendency of becoming a uniform water film without it becomes remarkable. Therefore, the tendency that light scattering fogging does not occur on the surface becomes remarkable. Similarly, when windowpanes, vehicle rearview mirrors, vehicle windshields, spectacle lenses, or helmet shields are exposed to rain or splashes, a high degree of visibility and visibility is achieved without discrete and unsightly water droplets. As a result, the effects of ensuring the safety of vehicles and traffic, and improving the efficiency of various tasks and activities are dramatically improved. Further, when the surface of the member is in a state where the contact angle with water is 30 ° or less, combustion products such as urban dust, carbon black contained in exhaust gas of automobiles, oils and fats, sealant elution components, etc. Hydrophobic contaminants are difficult to attach, and even if they are attached, they can be easily removed by rainfall or washing with water.

【0009】部材表面が上記高度の親水性を維持できれ
ば、上記防曇効果、表面清浄化効果の他、帯電防止効果
(ほこり付着防止効果)、断熱効果、水中での気泡付着
防止効果、熱交換器における効率向上効果、生体親和性
効果等が発揮されるようになる。
If the surface of the member can maintain the above-mentioned high hydrophilicity, in addition to the antifogging effect and the surface cleaning effect, an antistatic effect (dust adhesion preventing effect), a heat insulating effect, a bubble adhesion preventing effect in water, and heat exchange. The efficiency improvement effect and biocompatibility effect in the container can be exhibited.

【0010】本発明が適用可能な基材としては、上記防
曇効果を期待する場合には透明な部材であり、その材質
はガラス、プラスチック等が好適に利用できる。適用可
能な基材を用途でいえば、車両用バックミラー、浴室用
鏡、洗面所用鏡、歯科用鏡、道路鏡のような鏡;眼鏡レ
ンズ、光学レンズ、写真機レンズ、内視鏡レンズ、照明
用レンズ、半導体用レンズ、複写機用レンズのようなレ
ンズ;プリズム;建物や監視塔の窓ガラス;自動車、鉄
道車両、航空機、船舶、潜水艇、雪上車、ロープウエイ
のゴンドラ、遊園地のゴンドラ、宇宙船のような乗物の
窓ガラス;自動車、鉄道車両、航空機、船舶、潜水艇、
雪上車、スノーモービル、オートバイ、ロープウエイの
ゴンドラ、遊園地のゴンドラ、宇宙船のような乗物の風
防ガラス;防護用ゴーグル、スポーツ用ゴーグル、防護
用マスクのシールド、スポーツ用マスクのシールド、ヘ
ルメットのシールド、冷凍食品陳列ケースのガラス;計
測機器のカバーガラス、及び上記物品表面に貼付させる
ためのフィルムを含む。本発明が適用可能な基材として
は、上記表面清浄化効果を期待する場合にはその材質
は、例えば、金属、セラミックス、ガラス、プラスチッ
ク、木、石、セメント、コンクリート、繊維、布帛、そ
れらの組合せ、それらの積層体が好適に利用できる。適
用可能な基材を用途でいえば、建材、建物外装、建物内
装、窓枠、窓ガラス、構造部材、乗物の外装及び塗装、
機械装置や物品の外装、防塵カバー及び塗装、交通標
識、各種表示装置、広告塔、道路用防音壁、鉄道用防音
壁、橋梁、ガードレールの外装及び塗装、トンネル内装
及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カ
バー、ビニールハウス、車両用照明灯のカバー、住宅設
備、便器、浴槽、洗面台、照明器具、照明カバー、台所
用品、食器、食器洗浄器、食器乾燥器、流し、調理レン
ジ、キッチンフード、換気扇、及び上記物品表面に貼付
させるためのフィルムを含む。本発明が適用可能な基材
としては、上記帯電防止効果を期待する場合にはその材
質は、例えば、金属、セラミックス、ガラス、プラスチ
ック、木、石、セメント、コンクリート、繊維、布帛、
それらの組合せ、それらの積層体が好適に利用できる。
適用可能な基材を用途でいえば、ブラウン管、磁気記録
メディア、光記録メディア、光磁気記録メディア、オー
ディオテープ、ビデオテープ、アナログレコード、家庭
用電気製品のハウジングや部品や外装及び塗装、OA機
器製品のハウジングや部品や外装及び塗装、建材、建物
外装、建物内装、窓枠、窓ガラス、構造部材、乗物の外
装及び塗装、機械装置や物品の外装、防塵カバー及び塗
装、及び上記物品表面に貼付させるためのフィルムを含
む。
The substrate to which the present invention can be applied is a transparent member when the above antifogging effect is expected, and its material is preferably glass, plastic or the like. Speaking of applicable base materials, mirrors such as rearview mirrors for vehicles, mirrors for bathrooms, mirrors for toilets, dental mirrors, road mirrors; spectacle lenses, optical lenses, camera lenses, endoscope lenses, Lenses such as illumination lenses, semiconductor lenses, and copier lenses; prisms; windows of buildings and towers; automobiles, rail vehicles, aircraft, ships, submersibles, snowmobiles, ropeway gondolas, and amusement park gondolas. , Windowpanes for vehicles such as spacecraft; cars, railcars, aircraft, ships, submarines,
Windshields for vehicles such as snowmobiles, snowmobiles, motorcycles, ropeway gondola, amusement park gondola, spaceships; protective goggles, sports goggles, shields for protective masks, shields for sports masks, shields for helmets , A frozen food display case; a cover glass of a measuring instrument; and a film to be attached to the surface of the article. As a substrate to which the present invention can be applied, when the above surface cleaning effect is expected, the material is, for example, metal, ceramics, glass, plastic, wood, stone, cement, concrete, fiber, cloth, and the like. Combinations and their laminates can be suitably used. Speaking of applicable base materials, building materials, building exteriors, building interiors, window frames, window glasses, structural members, vehicle exteriors and coatings,
Exterior of machinery and equipment, dust cover and paint, traffic signs, various display devices, advertising towers, road noise barriers, railway noise barriers, bridges, guard rail exterior and paint, tunnel interior and paint, insulators, solar cell covers , Solar water heater heat collecting cover, greenhouse, vehicle lighting cover, housing equipment, toilet bowl, bathtub, wash basin, lighting equipment, lighting cover, kitchenware, tableware, dishwasher, dish dryer, sink, cooking It includes a range, a kitchen hood, a ventilation fan, and a film to be attached to the surface of the article. As a substrate to which the present invention can be applied, when the above antistatic effect is expected, the material is, for example, metal, ceramics, glass, plastic, wood, stone, cement, concrete, fiber, cloth,
Combinations thereof and laminates thereof can be suitably used.
Speaking of applicable base materials, cathode ray tubes, magnetic recording media, optical recording media, magneto-optical recording media, audio tapes, video tapes, analog records, housing and parts for household electrical appliances, exterior and coating, OA equipment Product housing, parts, exterior and painting, building materials, building exterior, building interior, window frames, window glass, structural members, vehicle exterior and painting, machinery and articles exterior, dustproof cover and painting, and on the above article surface Includes film to be applied.

【0011】光触媒性酸化物とは、酸化物結晶の伝導電
子帯と価電子帯との間のエネルギーギャップよりも大き
なエネルギー(すなわち短い波長)の光(励起光)を照
射したときに、価電子帯中の電子の励起(光励起)によ
って、伝導電子と正孔を生成しうる酸化物をいい、アナ
ターゼ型酸化チタン、ルチル型酸化チタン、酸化錫、酸
化亜鉛、三酸化二ビスマス、三酸化タングステン、酸化
第二鉄、チタン酸ストロンチウム等が好適に利用でき
る。ここで光触媒性酸化物の光励起に用いる光源として
は、蛍光灯、白熱電灯、メタルハライドランプ、水銀ラ
ンプのような室内照明、太陽、それらの光源からの光を
低損失のファイバーで誘導した光源等が好適に利用でき
る。光触媒性酸化物の光励起により、基材表面が高度に
親水化されるためには、励起光の照度は、0.001m
W/cm2 以上あればよいが、0.01mW/cm2
上だと好ましく、0.1mW/cm2 以上だとより好ま
しい。
The photocatalytic oxide is a valence electron when it is irradiated with light (excitation light) having an energy (that is, a short wavelength) larger than the energy gap between the conduction electron band and the valence band of the oxide crystal. An oxide that can generate conduction electrons and holes by excitation of electrons in the band (photoexcitation). Anatase type titanium oxide, rutile type titanium oxide, tin oxide, zinc oxide, dibismuth trioxide, tungsten trioxide, Ferric oxide, strontium titanate and the like can be preferably used. Here, as a light source used for photoexcitation of the photocatalytic oxide, indoor lighting such as a fluorescent lamp, an incandescent lamp, a metal halide lamp, and a mercury lamp, the sun, and a light source in which light from those light sources is guided by a low-loss fiber are used. It can be suitably used. In order for the substrate surface to be highly hydrophilized by photoexcitation of the photocatalytic oxide, the illuminance of the excitation light is 0.001 m
W suffices / cm 2 or more, but preferably that it 0.01 mW / cm 2 or more, and more preferably it 0.1 mW / cm 2 or more.

【0012】上記表面層の膜厚は,特に基材が透明であ
る場合は、200nm以下にするのが好ましい。そうす
れば、光の干渉による表面層の発色を防止することがで
きる。また表面層が薄ければ薄いほど部材の透明度を確
保することができる。更に、膜厚を薄くすれば表面層の
耐摩耗性が向上する。上記表面層の表面に、更に、親水
化可能な耐摩耗性又は耐食性の保護層や他の機能膜を設
けてもよい。上記表面層は、基材と比較して屈折率があ
まり高くないのが好ましい。好ましくは表面層の屈折率
は2以下であるのがよい。そうすれば、基材と表面層と
の界面における光の反射を抑制できる。基材がナトリウ
ムのようなアルカリ網目修飾イオンを含むガラスや施釉
タイルの場合には、基材と上記表面層との間にシリカ等
の中間層を形成してもよい。そうすれば、焼成中にアル
カリ網目修飾イオンが基材から表面層へ拡散するのが防
止され、光触媒機能がよりよく発揮される。上記表面層
にはAg、Cu、Znのような金属を添加することがで
きる。前記金属を添加した表面層は、表面に付着した細
菌を死滅させることができる。更に、この表面層は、
黴、藻、苔のような微生物の成長を抑制する。従って、
微生物起因の部材表面の汚れ付着がより有効に抑制され
るようになる。上記表面層にはPt、Pd、Rh、R
u、Os、Irのような白金族金属を添加することがで
きる。前記金属を添加した表面層は、光触媒による酸化
活性を増強させることができ、部材表面に付着した汚染
物質の分解を促進する。
The thickness of the surface layer is preferably 200 nm or less, especially when the substrate is transparent. Then, it is possible to prevent the surface layer from being colored by light interference. Also, the thinner the surface layer, the more transparent the member can be. Further, when the film thickness is reduced, the wear resistance of the surface layer is improved. The surface of the surface layer may be further provided with a wear-resistant or corrosion-resistant protective layer capable of being made hydrophilic and other functional films. Preferably, the surface layer does not have a very high refractive index as compared to the substrate. Preferably, the refractive index of the surface layer is 2 or less. Then, light reflection at the interface between the base material and the surface layer can be suppressed. When the substrate is a glass or glazed tile containing an alkali network modifying ion such as sodium, an intermediate layer such as silica may be formed between the substrate and the surface layer. Then, the diffusion of the alkali network modifying ions from the base material to the surface layer during the firing is prevented, and the photocatalytic function is more effectively exhibited. Metals such as Ag, Cu, and Zn can be added to the surface layer. The metal-added surface layer can kill bacteria attached to the surface. Furthermore, this surface layer is
Inhibits the growth of microorganisms such as mold, algae and moss. Therefore,
Contamination of the surface of the member due to microorganisms can be suppressed more effectively. Pt, Pd, Rh, and R are used for the surface layer.
A platinum group metal such as u, Os, Ir can be added. The surface layer to which the metal is added can enhance the oxidizing activity of the photocatalyst, and promote the decomposition of contaminants attached to the member surface.

【0013】親水性部材の形成方法は、例えば光触媒性
酸化チタン粒子を分散した塗布液を調製し、前記塗布液
を基材表面上に、スプレーコーティング、フローコーテ
ィング、スピンコーティング、ディップコーティング、
ロールコーティング等の方法で塗布後、焼成等の方法で
表面層を基材に固定する。
The hydrophilic member can be formed by, for example, preparing a coating liquid in which photocatalytic titanium oxide particles are dispersed, and spraying, flow coating, spin coating, dip coating, the coating liquid on the surface of the substrate.
After coating by a method such as roll coating, the surface layer is fixed to the substrate by a method such as firing.

【0014】親水性部材を形成する他の方法において
は、例えばテトラエトキシチタン、テトラメトキシチタ
ン、テトラプロポキシチタン、テトラブトキシチタン等
のテトラアルコキシチタン;チタンキレート、アセテー
トチタン;硫酸チタン、四塩化チタン等の溶解性無機チ
タン化合物;水酸化チタン;無定型酸化チタンなどの結
晶性酸化チタンの前駆体を基材表面上に、スプレーコー
ティング、フローコーティング、スピンコーティング、
ディップコーティング、ロールコーティング、電子ビー
ム蒸着等の方法で塗布、乾燥後、さらに光触媒性酸化チ
タンの上記前駆体が、光触媒性酸化物に変化する温度
(アナターゼ型酸化チタンの結晶化温度)以上の温度で
焼成し、表面層を基材に固定する。
Other methods for forming hydrophilic members include tetraalkoxytitanium such as tetraethoxytitanium, tetramethoxytitanium, tetrapropoxytitanium and tetrabutoxytitanium; titanium chelate, titanium acetate; titanium sulfate, titanium tetrachloride and the like. Soluble titanium compound of titanium; titanium hydroxide; crystalline titanium oxide precursor such as amorphous titanium oxide, spray coating, flow coating, spin coating,
After coating by a method such as dip coating, roll coating, electron beam evaporation, etc., and drying, the temperature at which the above-mentioned precursor of photocatalytic titanium oxide is changed to a photocatalytic oxide (crystallization temperature of anatase type titanium oxide) or higher. And the surface layer is fixed to the base material.

【0015】[0015]

【実施例】【Example】

実施例1.15cm角の施釉タイル表面に、アンモニア
解膠型のアナターゼ型酸化チタンゾル(多木化学製A−
6、溶質濃度6重量%、平均結晶子径8nm)をスプレ
ーコーティング法にて塗布し、110〜900℃で焼成
し試料を得た。このときの膜厚は0.24μmになるよ
うにした。焼成直後の試料の親水性は図1に示すように
いずれの温度でも20゜を下回った。得られた試料を暗
所に1週間放置した後、三共電気のブラックライトブル
ー(BLB)ランプを紫外線照度0.3mW/cm2
照射し、照射時間に対する水との接触角の変化を測定し
た。水との接触角の測定は接触角測定器(協和界面科
学、CA−X150)により、マイクロシリンジから水
滴を滴下後、30秒後の値で求めた。ここで比較のた
め、通常の施釉タイルについても同様に紫外線照度0.
3mW/cm2 のBLBランプを照射し、照射時間に対
する水との接触角の変化を測定した。
Example 1. Ammonia deflocculation type anatase type titanium oxide sol (A-made by Taki Chemical Co., Ltd.
6, solute concentration 6% by weight, average crystallite diameter 8 nm) was applied by a spray coating method, and baked at 110 to 900 ° C. to obtain a sample. The film thickness at this time was set to 0.24 μm. The hydrophilicity of the sample immediately after firing was below 20 ° at any temperature as shown in FIG. The obtained sample was left in a dark place for 1 week, and then irradiated with a Sankyo Denki black light blue (BLB) lamp at an ultraviolet illuminance of 0.3 mW / cm 2 , and the change in the contact angle with water with respect to the irradiation time was measured. . The contact angle with water was measured by a contact angle measuring device (Kyowa Interface Science, CA-X150), and the value was obtained 30 seconds after dropping a water droplet from a microsyringe. Here, for comparison, UV illuminance is 0.
A BLB lamp of 3 mW / cm 2 was irradiated and the change in the contact angle with water with respect to the irradiation time was measured.

【0016】その結果、図2に示すように、通常の施釉
タイルについては変化が認められなかったのに対し、実
施試料では110〜800℃で焼成した試料については
1時間以上のBLBランプ照射で20゜未満まで親水性
が回復した。また900℃で焼成した試料も施釉タイル
と比較すると若干親水性が回復する傾向を示した。
As a result, as shown in FIG. 2, no change was observed in the normal glazed tile, whereas in the practical sample, the sample fired at 110 to 800 ° C. was exposed to the BLB lamp for 1 hour or more. The hydrophilicity was restored up to less than 20 °. Further, the sample fired at 900 ° C. also showed a tendency that the hydrophilicity was slightly recovered as compared with the glazed tile.

【0017】また、表1に110〜900℃で焼成した
試料におけるアナターゼ型酸化チタン(A−6)の平均
結晶子径を示す。ここで平均結晶子径は粉末X線回折法
により、アナターゼ型酸化チタンの最強ピークの積分幅
を求め、その値をシェラー式に代入することより算出し
た。その結果、900℃では平均結晶子径が800nm
程度まで成長しており、このことが親水性回復力を弱め
たと考えられる。したがって、焼成後の部材を構成する
酸化チタンの平均結晶子径は800nm未満であること
が好ましいといえる。
Table 1 shows the average crystallite diameter of the anatase type titanium oxide (A-6) in the sample fired at 110 to 900 ° C. Here, the average crystallite size was calculated by determining the integral width of the strongest peak of anatase type titanium oxide by the powder X-ray diffraction method and substituting the value into the Scherrer equation. As a result, at 900 ° C, the average crystallite size is 800 nm.
It has grown to a certain degree, and this is thought to have weakened the hydrophilicity recovery ability. Therefore, it can be said that the average crystallite size of titanium oxide constituting the member after firing is preferably less than 800 nm.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例2.15cm角の施釉タイル表面
に、アンモニア解膠型のアナターゼ型酸化チタンゾル
(石原産業製STS−11、溶質濃度35重量%、平均
結晶子径17nm、比表面積60m2/g))をスプレ
ーコーティング法にて塗布し、110〜1000℃で焼
成し試料を得た。このときの膜厚は0.80μmになる
ようにした。焼成直後の試料の親水性は図5に示すよう
にいずれの温度でも30゜を下回った。得られた試料を
暗所に1週間放置した後、紫外線照度0.3mW/cm
2 のBLBランプを照射し、照射時間に対する水との接
触角の変化を測定した。
Example 2. Ammonia deflocculating anatase type titanium oxide sol (STS-11 made by Ishihara Sangyo, solute concentration 35% by weight, average crystallite diameter 17 nm, specific surface area 60 m 2 / g) was applied to the surface of a glazed tile of 2.15 cm square. )) Was applied by a spray coating method and baked at 110 to 1000 ° C. to obtain a sample. The film thickness at this time was 0.80 μm. The hydrophilicity of the sample immediately after firing was lower than 30 ° at any temperature as shown in FIG. After leaving the obtained sample in the dark for 1 week, the UV illuminance was 0.3 mW / cm
The BLB lamp of No. 2 was irradiated and the change of the contact angle with water with respect to the irradiation time was measured.

【0020】その結果、図6に示すように、110〜9
00℃で焼成した試料については1時間以上のBLBラ
ンプ照射で15゜未満まで親水性が回復した。また、表
1に110〜900℃で焼成した試料における酸化チタ
ン(STS−11)の平均結晶子径を示す。その結果、
900℃では平均結晶子径が300nm程度まで成長し
ているにもかかわらず、良好な親水性回復性を示すこと
が判明した。したがって、焼成後の部材を構成する酸化
チタンの平均結晶子径が少なくとも300nm以下なら
ば、良好な親水性回復性を示すといえる。
As a result, as shown in FIG.
Regarding the sample baked at 00 ° C., the hydrophilicity was restored to less than 15 ° by irradiation with the BLB lamp for 1 hour or more. Table 1 shows the average crystallite diameter of titanium oxide (STS-11) in the sample fired at 110 to 900 ° C. as a result,
It was found that at 900 ° C., good hydrophilicity recovery was exhibited even though the average crystallite size grew to about 300 nm. Therefore, it can be said that if the average crystallite diameter of titanium oxide constituting the member after firing is at least 300 nm or less, good hydrophilicity recoverability is exhibited.

【0021】次に、800℃で焼成した試料について、
表面にサラダ油を塗布し、試料表面を水平姿勢に保持し
ながら試料を水槽に満した水の中に浸漬し、指で軽く擦
ったところ、サラダ油は丸まって油滴となり、試料表面
から釈放されて浮上した。
Next, for the sample fired at 800 ° C.,
Apply salad oil to the surface, immerse the sample in water filled with water while holding the sample surface in a horizontal position, and rub it lightly with your finger.The salad oil curls into oil droplets and is released from the sample surface. Surfaced.

【0022】実施例3.15cm角の施釉タイル表面
に、実施例1で用いた酸化チタンゾルを塗布し、110
〜900℃で焼成し試料を得た。このときの膜厚は0.
80μmになるようにした。焼成直後の試料の親水性は
図3に示すようにいずれの温度でも20゜を下回った。
得られた試料を暗所に1週間放置した後、紫外線照度
0.3mW/cm2 のBLBランプを照射し、照射時間
に対する水との接触角の変化を測定した。ここで比較の
ため、通常の施釉タイルについても同様に紫外線照度
0.3mW/cm2 のBLBランプを照射し、照射時間
に対する水との接触角の変化を測定した。
Example 3 The titanium oxide sol used in Example 1 was applied to the surface of a 15 cm square glazed tile to form 110
A sample was obtained by firing at ~ 900 ° C. The film thickness at this time is 0.
It was set to 80 μm. The hydrophilicity of the sample immediately after firing was below 20 ° at any temperature as shown in FIG.
The obtained sample was allowed to stand in the dark for 1 week, then irradiated with a BLB lamp having an ultraviolet illuminance of 0.3 mW / cm 2 , and the change in the contact angle with water with respect to the irradiation time was measured. For comparison, a normal glazed tile was similarly irradiated with a BLB lamp having an ultraviolet illuminance of 0.3 mW / cm 2 and the change in the contact angle with water with respect to the irradiation time was measured.

【0023】その結果、図4に示すように、通常の施釉
タイルについては変化が認められなかったのに対し、実
施試料では110〜800℃で焼成した試料については
1時間以上のBLBランプ照射で20゜未満まで親水性
が回復した。また900℃で焼成した試料についても3
0゜程度まで親水性が回復した。
As a result, as shown in FIG. 4, no change was observed in the normal glazed tile, whereas in the practical sample, the sample fired at 110 to 800 ° C. was exposed to the BLB lamp for 1 hour or more. The hydrophilicity was restored up to less than 20 °. In addition, 3 for samples fired at 900 ° C
The hydrophilicity was restored up to about 0 °.

【0024】実施例4.15cm角の施釉タイル表面
に、硝酸解膠型の酸化チタンゾル(日産化学製TA−1
5、溶質濃度10重量%、平均結晶子径12nm)をス
プレーコーティング法にて塗布し、110〜800℃で
焼成し試料を得た。このときの膜厚は0.12μmにな
るようにした。焼成直後の試料の親水性は図7に示すよ
うにいずれの温度でも30゜を下回った。得られた試料
を暗所に1週間放置した後、紫外線照度0.3mW/c
2のBLBランプを照射し、照射時間に対する水との
接触角の変化を測定した。
Example 4. A nitric acid-peptized titanium oxide sol (TA-1 manufactured by Nissan Kagaku Co., Ltd.) was formed on the surface of a 15 cm square glazed tile.
5, solute concentration 10% by weight, average crystallite diameter 12 nm) was applied by a spray coating method and baked at 110 to 800 ° C. to obtain a sample. The film thickness at this time was set to 0.12 μm. The hydrophilicity of the sample immediately after firing was below 30 ° at any temperature as shown in FIG. After leaving the obtained sample in the dark for 1 week, the UV illuminance was 0.3 mW / c
irradiating the m 2 of BLB lamp was measured change in contact angle with water for the irradiation time.

【0025】その結果、図8に示すように、110〜8
00℃で焼成した試料について、1時間以上のBLBラ
ンプ照射で15゜未満まで親水性が回復した。また、実
施例1、2、4を比較することにより、以下2つのこと
が判明した。 (1)少なくとも膜厚0.12〜0.80μmにおいて
は、膜厚に関係なく、紫外線の照射により親水性が回復
する。 (2)アルカリ解膠型の酸化チタンゾル、酸性解膠型の
酸化チタンゾルのいずれを用いても、紫外線の照射によ
り親水性は回復する。
As a result, as shown in FIG.
With respect to the sample baked at 00 ° C., the hydrophilicity was restored to less than 15 ° by irradiation with the BLB lamp for 1 hour or more. In addition, by comparing Examples 1, 2, and 4, the following two things were revealed. (1) At least at a film thickness of 0.12 to 0.80 μm, hydrophilicity is restored by irradiation of ultraviolet rays regardless of the film thickness. (2) Whether the alkali peptization type titanium oxide sol or the acidic peptization type titanium oxide sol is used, the hydrophilicity is restored by the irradiation of ultraviolet rays.

【0026】実施例5.15cm角の施釉タイル表面
に、アンモニア解膠型の酸化チタンゾル(多木化学製A
−6、溶質濃度6重量%、平均結晶子径8nm)を、ス
プレーコーティング法にて塗布し、800℃で1時間焼
成し試料を得た。このときの膜厚は0.3μmになるよ
うにした。焼成直後の試料の水との接触角は15゜であ
った。得られた試料を暗所に1週間放置した後、紫外線
照度0.03mW/cm2のBLBランプを照射し、照
射時間に対する水との接触角の変化を測定した。その結
果、図9に示すように、かかる微弱な紫外線照度におい
ても、1日程度のBLBランプ照射で19゜程度まで親
水性が回復した。
Example 5 Ammonia deflocculating titanium oxide sol (Taki Kagaku A
-6, solute concentration 6% by weight, average crystallite size 8 nm) was applied by a spray coating method and baked at 800 ° C. for 1 hour to obtain a sample. The film thickness at this time was set to 0.3 μm. The contact angle with water of the sample immediately after firing was 15 °. The obtained sample was left in a dark place for 1 week, then irradiated with a BLB lamp having an ultraviolet illuminance of 0.03 mW / cm 2 , and the change in the contact angle with water with respect to the irradiation time was measured. As a result, as shown in FIG. 9, even with such a weak UV illuminance, the hydrophilicity was restored to about 19 ° by irradiation with the BLB lamp for about one day.

【0027】実施例6.10cm角の石英ガラス基材表
面に、アンモニア解膠型のアナターゼ型酸化チタンゾル
(石原産業製STS−11、溶質濃度35重量%、平均
結晶子径17nm、比表面積60m2/g))をスプレ
−コ−ティング法にて塗布し、800℃で焼成し試料を
得た。このときの膜厚は0.12μmになるようにし
た。焼成直後の試料の水との接触角は8゜であった。得
られた試料を暗所に1週間放置した後、紫外線照度0.
3mW/cm2のBLBランプを照射し、照射時間に対
する水との接触角の変化を測定した。1時間のBLBラ
ンプ照射で10゜まで親水性が回復した。またこの実施
試料に息をふきかけたところ曇りは生じなかった。
Example 6 Ammonia deflocculating type anatase type titanium oxide sol (STS-11 made by Ishihara Sangyo, solute concentration 35% by weight, average crystallite diameter 17 nm, specific surface area 60 m2 / g)) was applied by a spray-coating method and baked at 800 ° C. to obtain a sample. The film thickness at this time was set to 0.12 μm. The contact angle of the sample immediately after firing with water was 8 °. After leaving the obtained sample in the dark for 1 week, the ultraviolet illuminance was 0.
A BLB lamp of 3 mW / cm 2 was irradiated and the change in the contact angle with water with respect to the irradiation time was measured. The hydrophilicity was restored up to 10 ° by irradiation with the BLB lamp for 1 hour. Further, when the sample of this example was breathed, no clouding occurred.

【0028】[0028]

【発明の効果】本発明によれば、光触媒を励起する光を
照射する毎に、部材の表面は親水性を呈するようになる
ので、防曇性、視界向上性、水洗や降雨による易洗浄性
等が長期にわたり発揮されるようになる。
According to the present invention, the surface of the member becomes hydrophilic each time the light for exciting the photocatalyst is irradiated, so that the antifogging property, the visibility improving property, and the easy cleaning property by washing with water or rain. Etc. will be exhibited for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る、焼成直後の試料表面の
水との接触角と、焼成温度との関係を示す図。
FIG. 1 is a diagram showing the relationship between the contact angle of water on the surface of a sample immediately after firing and the firing temperature according to an example of the present invention.

【図2】本発明の実施例に係る、試料表面の水との接触
角と、紫外線照射時間との関係を示す図。
FIG. 2 is a diagram showing a relationship between a contact angle of water on a sample surface and ultraviolet irradiation time according to an example of the present invention.

【図3】本発明の実施例に係る、焼成直後の試料表面の
水との接触角と、焼成温度との関係を示す図。
FIG. 3 is a diagram showing the relationship between the contact angle of water on the surface of a sample immediately after firing and the firing temperature according to the example of the present invention.

【図4】本発明の実施例に係る、試料表面の水との接触
角と、紫外線照射時間との関係を示す図。
FIG. 4 is a diagram showing a relationship between a contact angle of a sample surface with water and an ultraviolet irradiation time according to an example of the present invention.

【図5】本発明の実施例に係る、焼成直後の試料表面の
水との接触角と、焼成温度との関係を示す図。
FIG. 5 is a graph showing the relationship between the contact angle of water on the surface of a sample immediately after firing and the firing temperature according to the example of the present invention.

【図6】本発明の実施例に係る、試料表面の水との接触
角と、紫外線照射時間との関係を示す図。
FIG. 6 is a diagram showing a relationship between a contact angle of water on a sample surface and ultraviolet irradiation time according to an example of the present invention.

【図7】本発明の実施例に係る、焼成直後の試料表面の
水との接触角と、焼成温度との関係を示す図。
FIG. 7 is a diagram showing the relationship between the contact angle of water on the surface of a sample immediately after firing and the firing temperature according to the example of the present invention.

【図8】本発明の実施例に係る、試料表面の水との接触
角と、紫外線照射時間との関係を示す図。
FIG. 8 is a diagram showing the relationship between the contact angle of water on the surface of a sample and the ultraviolet irradiation time according to the example of the present invention.

【図9】本発明の実施例に係る、試料表面の水との接触
角と、紫外線照射時間との関係を示す図。
FIG. 9 is a diagram showing the relationship between the contact angle of water on the surface of a sample and the ultraviolet irradiation time according to the example of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に、平均結晶子径800nm未
満の光触媒性酸化物粒子を含有する表面層が形成されて
おり、前記光触媒性酸化物の光励起に応じて前記表面層
が親水性を呈することを特徴とする光触媒性親水性部
材。
1. A surface layer containing photocatalytic oxide particles having an average crystallite size of less than 800 nm is formed on the surface of a substrate, and the surface layer is rendered hydrophilic in response to photoexcitation of the photocatalytic oxide. A photocatalytic hydrophilic member characterized by exhibiting.
【請求項2】 基材表面に、平均結晶子径300nm以
下の光触媒性酸化物粒子を含有する表面層が形成されて
おり、前記光触媒性酸化物の光励起に応じて前記表面層
が親水性を呈することを特徴とする光触媒性親水性部
材。
2. A surface layer containing photocatalytic oxide particles having an average crystallite size of 300 nm or less is formed on the surface of a substrate, and the surface layer is rendered hydrophilic in response to photoexcitation of the photocatalytic oxide. A photocatalytic hydrophilic member characterized by exhibiting.
【請求項3】 前記表面層の膜厚は100〜800nm
であることを特徴とする請求項1、2に記載の光触媒性
親水性部材。
3. The surface layer has a thickness of 100 to 800 nm.
The photocatalytic hydrophilic member according to claim 1, wherein
【請求項4】 前記光触媒性酸化物粒子の比表面積は3
0m2/g以上であることを特徴とする請求項1、2に
記載の光触媒性親水性部材。
4. The specific surface area of the photocatalytic oxide particles is 3
It is 0 m < 2 > / g or more, The photocatalytic hydrophilic member of Claim 1 or 2 characterized by the above-mentioned.
【請求項5】 前記基材は耐熱性材料であることを特徴
とする請求項1〜4に記載の光触媒性親水性部材。
5. The photocatalytic hydrophilic member according to claim 1, wherein the base material is a heat resistant material.
【請求項6】 前記基材はタイルであることを特徴とす
る請求項5に記載の光触媒性親水性部材。
6. The photocatalytic hydrophilic member according to claim 5, wherein the base material is a tile.
【請求項7】 前記基材はガラスであることを特徴とす
る請求項5に記載の光触媒性親水性部材。
7. The photocatalytic hydrophilic member according to claim 5, wherein the base material is glass.
【請求項8】 基材表面を酸化チタンゾルで被覆する工
程、900℃以下の温度で焼成する工程を含む請求項1
〜6に記載の光触媒性親水性部材の製造方法。
8. The method according to claim 1, further comprising a step of coating the surface of the base material with titanium oxide sol and a step of firing at a temperature of 900 ° C. or lower.
7. The method for producing a photocatalytic hydrophilic member according to any one of 6 to 6.
JP8323516A 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production Pending JPH09241038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323516A JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35464995 1995-12-22
JP7-354649 1995-12-22
JP8323516A JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000181284A Division JP2001048679A (en) 1995-12-22 2000-06-16 Photocatalytic hydrophilic tile and its production

Publications (1)

Publication Number Publication Date
JPH09241038A true JPH09241038A (en) 1997-09-16

Family

ID=93155475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323516A Pending JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production

Country Status (1)

Country Link
JP (1) JPH09241038A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046154A1 (en) * 1999-02-04 2000-08-10 Japan Science And Technology Corporation Process for producing anatase titania or composite oxide containing anatase titania
JP2000262905A (en) * 1999-03-18 2000-09-26 Inax Corp Photocatalytic tile
JP2006240333A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Rocket parts
JP2006240320A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Flying object
JP2006241477A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Railway vehicle
US7718270B2 (en) 2005-02-24 2010-05-18 Central Research Institute Of Electric Power Industry Multifunctional material
US7722923B2 (en) 2005-02-24 2010-05-25 Central Research Institute Of Electric Power Industry Process for producing multifunctional material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046154A1 (en) * 1999-02-04 2000-08-10 Japan Science And Technology Corporation Process for producing anatase titania or composite oxide containing anatase titania
JP2000262905A (en) * 1999-03-18 2000-09-26 Inax Corp Photocatalytic tile
US7718270B2 (en) 2005-02-24 2010-05-18 Central Research Institute Of Electric Power Industry Multifunctional material
US7722923B2 (en) 2005-02-24 2010-05-25 Central Research Institute Of Electric Power Industry Process for producing multifunctional material
JP2006240333A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Rocket parts
JP2006240320A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Flying object
JP2006241477A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Railway vehicle

Similar Documents

Publication Publication Date Title
JP3786365B2 (en) Member with hydrophilic surface
JP2000095969A (en) Method for rendering surface of car body hydrophilic with photocatalytic hydrophilic coating composition
JP3003593B2 (en) Photocatalytic hydrophilic member
JPH10114545A (en) Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
JP3264317B2 (en) Photocatalytic hydrophilic member and method for producing the same
JP3255346B2 (en) Method for forming photocatalytic hydrophilic member, and photocatalytic hydrophilic member
JP3087682B2 (en) Photocatalytic hydrophilic member
JPH09241038A (en) Photocatalytic hydrophilic member and its production
JP3266535B2 (en) Photocatalytic hydrophilic member, method for producing the same, and photocatalytic hydrophilic coating composition
JP3266526B2 (en) Photocatalytic hydrophilic member and method for producing the same
JPH09227805A (en) Photocatalytic hydrophilic coating composition
JP3613085B2 (en) Photocatalytic hydrophilic member
JPH1085610A (en) Photocatalytic hydrophilic member and its production
JP3266523B2 (en) Photocatalytic hydrophilic member and method for producing the same
JP2001098187A (en) Photocatalytic hydrophilic coating composition and method for preparing photocatalytic hydrophilic member
JPH09225387A (en) Hydrophilic member and method to make surface of member hydrophilic
JP3298440B2 (en) Photocatalytic hydrophilic coating liquid
JPH10235204A (en) Photocatalytic hydrophilic member
JP3173391B2 (en) Hydrophilic film, and method for producing and using the same
JPH10237357A (en) Coating composition
JP2001129916A (en) Photocatalytic hydrophilic member
JP3303696B2 (en) Photocatalytic hydrophilic coating composition
JPH09188850A (en) Photocatalytic hydrophilic coating composition
JP3844182B2 (en) Hydrophilic film and method for producing and using the same
JPH1067543A (en) Photocatalytic hydrophilic parts material