JPH09239365A - Method for generating strongly acidic water - Google Patents
Method for generating strongly acidic waterInfo
- Publication number
- JPH09239365A JPH09239365A JP7806696A JP7806696A JPH09239365A JP H09239365 A JPH09239365 A JP H09239365A JP 7806696 A JP7806696 A JP 7806696A JP 7806696 A JP7806696 A JP 7806696A JP H09239365 A JPH09239365 A JP H09239365A
- Authority
- JP
- Japan
- Prior art keywords
- water
- acidic water
- strongly acidic
- raw water
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、強酸性水の生成方
法に係り、特に強い殺菌力を有し殺菌や洗浄に用いられ
る強酸性水の生成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing strongly acidic water, and more particularly to a method for producing strongly acidic water having a strong sterilizing power and used for sterilization and washing.
【0002】[0002]
【従来の技術】近年、様々な機能水の中で電解酸性水が
強い殺菌力などの特性を有することから注目されてい
る。希薄食塩水の隔膜電解によって生成された酸性水の
殺菌力はそのpH、ORP及び残留塩素に依存する。使
用目的に応じて必要最少限の残留塩素をもつ酸性水が望
まれる。従来、水道水に塩化ナトリウム又は塩化カリウ
ムを添加して隔膜電解することにより、pH2.5〜
3.0、ORP1000mV以上、残留塩素20〜60
mg/リットルの強酸性水を生成し、それを殺菌や洗浄
に用いる技術がある。しかし、前記強酸性水を生成する
に際し、電解装置及び生成した強酸性水より塩素ガスが
発生して、人体に有害であったり、強酸性水が高濃度の
塩素イオン及び残留塩素のために、ステンレス鋼に対し
て強い腐食性を示す等の問題があった。2. Description of the Related Art In recent years, attention has been paid to the fact that electrolyzed acidic water has various properties such as strong sterilizing power among various functional waters. The sterilizing power of acidic water produced by diaphragm electrolysis of dilute saline depends on its pH, ORP and residual chlorine. Acidic water with the minimum required residual chlorine is desired depending on the purpose of use. Conventionally, by adding sodium chloride or potassium chloride to tap water and subjecting it to diaphragm electrolysis, a pH of 2.5 to
3.0, ORP 1000 mV or more, residual chlorine 20-60
There is a technique of producing mg / liter of strongly acidic water and using it for sterilization and washing. However, when the strongly acidic water is produced, chlorine gas is generated from the electrolyzer and the strongly acidic water produced, and it is harmful to the human body, or the strongly acidic water has a high concentration of chlorine ions and residual chlorine, There were problems such as showing strong corrosiveness to stainless steel.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、強酸性水の使用目的に応じて必要
最少限の残留塩素の強酸性水を生成することができ、塩
素ガスの発生とか、腐食性の問題のない強酸性水の生成
方法を提供することを課題とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and is capable of producing a strong acid water having a minimum residual chlorine content required according to the purpose of use of the strong acid water. It is an object of the present invention to provide a method for producing strongly acidic water that does not generate gas or corrosiveness.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、イオン透過性隔膜によって仕切られた
陰極室と陽極室とを有する電解槽に、原水を通水して電
解することによる強酸性水の生成方法において、前記原
水に塩化ナトリウム又は塩化カリウムと、硫酸ナトリウ
ム又は硫酸カリウムとを添加して電解することとしたも
のである。前記生成方法において、塩化ナトリウム又は
塩化カリウムは、原水塩素イオン濃度が10〜500m
g/リットルの範囲内の濃度となるように添加し、また
硫酸ナトリウム又は硫酸カリウムは、原水導電率が15
00〜2000μS/cmとなるように添加するのがよ
い。また、前記電解槽は、強酸性水の生成流量1リット
ル/分当たり、電解電流値を5〜20アンペアの範囲で
負荷するのがよく、前記陽極室には、陽極として塩素発
生型不溶性電極を用いるのがよい。In order to solve the above problems, in the present invention, raw water is passed through an electrolytic cell having a cathode chamber and an anode chamber partitioned by an ion-permeable diaphragm to electrolyze. In the method for producing strongly acidic water according to 1., sodium chloride or potassium chloride and sodium sulfate or potassium sulfate are added to the raw water for electrolysis. In the production method, sodium chloride or potassium chloride has a chlorine ion concentration of raw water of 10 to 500 m.
It is added so that the concentration is within the range of g / liter, and sodium sulfate or potassium sulfate has a raw water conductivity of 15
It is advisable to add it so that it is from 00 to 2000 μS / cm. Further, the electrolysis tank is preferably loaded with an electrolysis current value within a range of 5 to 20 amperes per 1 liter / min of a strongly acidic water generation flow rate, and a chlorine generation type insoluble electrode as an anode is provided in the anode chamber. Good to use.
【0005】[0005]
【発明の実施の形態】本発明は、次のような知見に基づ
いて完成するに至った。 強酸性水の殺菌力は、そのpH、ORP及び残留塩
素に依存する。通常、強酸性水の生成において原水の導
電率向上と、生成する酸及びアルカリのカウンタイオン
の供給と、塩素発生のための塩素イオンの供給という目
的で、塩化ナトリウム又は塩化カリウムを添加する。本
発明では、導電率向上とカウンタイオンの供給を硫酸ナ
トリウム又は硫酸カリウムの添加で、塩素イオンの供給
を塩化ナトリウム又は塩化カリウムの添加で分担する。 原水に、原水塩素イオン濃度が、10〜500mg
/リットルの範囲内のある所定濃度となるように、塩化
ナトリウム又は塩化カリウムを添加し、原水導電率が、
1500〜2000μS/cmとなるように、硫酸ナト
リウム又は硫酸カリウムを添加する。例えば、塩化ナト
リウムの添加量は15〜750mg/リットルの範囲、
硫酸ナトリウムの添加量は0〜1200mg/リットル
の範囲が良い。BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been completed based on the following findings. The bactericidal power of strongly acidic water depends on its pH, ORP and residual chlorine. Usually, sodium chloride or potassium chloride is added for the purpose of improving the conductivity of raw water in the production of strongly acidic water, supplying counter ions of the acid and alkali produced, and supplying chlorine ions for chlorine generation. In the present invention, the conductivity improvement and the counter ion supply are shared by the addition of sodium sulfate or potassium sulfate, and the chloride ion supply is shared by the addition of sodium chloride or potassium chloride. Raw water has a chloride ion concentration of 10 to 500 mg
Sodium chloride or potassium chloride is added so that the raw water conductivity becomes
Sodium sulfate or potassium sulfate is added so as to be 1500 to 2000 μS / cm. For example, the amount of sodium chloride added is in the range of 15 to 750 mg / liter,
The addition amount of sodium sulfate is preferably in the range of 0 to 1200 mg / liter.
【0006】 強酸性水の生成流量1リットル/分当
たりに負荷する電解電流値を5〜20アンペアの範囲と
する。 陽極に塩素発生型電極を用いる。 上記のように、原水の塩素イオン濃度は、10〜500
mg/リットルの範囲が望ましい。塩素イオン濃度が1
0mg/リットル以下だと、強酸性水の残留塩素濃度が
2mg/リットル以下、ORPが1000mVになり、
十分な殺菌力が得られない場合がある。また、塩素イオ
ン濃度が500mg/リットル以上だと、塩素ガス発生
問題と腐食性問題が顕著になる。The electrolysis current value applied per 1 liter / minute of the strongly acidic water production flow rate is set to a range of 5 to 20 amperes. A chlorine-generating electrode is used as the anode. As described above, the chlorine ion concentration of raw water is 10 to 500.
The range of mg / liter is desirable. Chloride concentration is 1
When it is 0 mg / liter or less, the residual chlorine concentration of strongly acidic water is 2 mg / liter or less, and the ORP is 1000 mV.
In some cases, sufficient bactericidal power cannot be obtained. If the chlorine ion concentration is 500 mg / liter or more, the chlorine gas generation problem and the corrosive problem become remarkable.
【0007】また、塩化ナトリウム又は塩化カリウムを
添加して、所定の塩素イオン濃度に調整した原水の導電
率は、1500〜2000μS/cmとなるように、硫
酸ナトリウム又は硫酸カリウムを添加することが望まし
い。導電率が1500μS/cm以下だと、必要な電解
電流を維持するための電解電圧が上昇し、エネルギー効
率が低下する。一方、導電率が2000μS/cm以上
にすると、硫酸ナトリウム又は硫酸カリウムの添加量が
増加し、薬品代がかさむ。硫酸ナトリウム及び硫酸カリ
ウムが、安価で電解において分解しないことから好まし
いが、硫酸ナトリウムは食品添加物として認定されてい
るのでより好ましい。強酸性水の生成流量1リットル/
分当たりの電解電流値は、5〜20アンペアの範囲が望
ましい。強酸性水の生成流量1リットル/分当たりの電
流値が5アンペア以下だと、酸性水のpHを3.0以下
に低下させることが難しい。一方、電流値を20アンペ
ア以上にすると、単位電気量当たりの強酸性水の生成量
が少なくなる問題と、電解効率が低下する問題が生じ
る。Further, it is desirable to add sodium sulfate or potassium sulfate so that the conductivity of the raw water adjusted to a predetermined chlorine ion concentration by adding sodium chloride or potassium chloride is 1500 to 2000 μS / cm. . When the electrical conductivity is 1500 μS / cm or less, the electrolysis voltage for maintaining the required electrolysis current increases, and the energy efficiency decreases. On the other hand, when the conductivity is 2000 μS / cm or more, the amount of sodium sulfate or potassium sulfate added increases, and the chemical cost increases. Sodium sulfate and potassium sulfate are preferable because they are inexpensive and do not decompose in electrolysis, but sodium sulfate is more preferable because it is certified as a food additive. Generation flow rate of strongly acidic water 1 liter /
The electrolytic current value per minute is preferably in the range of 5 to 20 amperes. If the current value per 1 liter / min of the strongly acidic water generation flow rate is 5 amperes or less, it is difficult to reduce the pH of the acidic water to 3.0 or less. On the other hand, if the current value is 20 amperes or more, there arises a problem that the amount of strongly acidic water produced per unit amount of electricity decreases and a problem that electrolysis efficiency decreases.
【0008】陽極には、塩素発生型不溶性電極を用いる
ことが望ましい。塩素イオンのアノード酸化効率が高い
塩素発生型不溶性陽極は、他の種類の陽極に比べて、よ
り少ない原水塩素イオン濃度で、同じ酸性水残留塩素濃
度を生成することができ、本発明の目的に合致する。塩
素発生効率が高い不溶性電極であれば何でもよく、例え
ば、チタンの基材に、酸化ルテニウムの皮膜を焼成して
なる電極が好ましい。上記の条件範囲においては、生成
する強酸性水の残留塩素濃度〔Cl〕が、原水の塩素イ
オン濃度〔Cl- 〕と電解電流(I)に正比例し、強酸
性水生成流量(Q)に逆比例する関係が成立する。 〔Cl〕=K〔Cl- 〕I/Q ここで、Kは電極の特性によって決定する定数である。
塩素発生型電極は他の種類の電極より大きいK値を有す
る。It is desirable to use a chlorine-generating insoluble electrode as the anode. The chlorine-generating insoluble anode having a high anodic oxidation efficiency of chlorine ions can produce the same residual chlorine concentration in acidic water with a lower concentration of raw water chloride ions as compared with other types of anodes. Match. Any insoluble electrode having a high chlorine generation efficiency may be used. For example, an electrode formed by firing a ruthenium oxide film on a titanium base material is preferable. In the above condition range, the residual chlorine concentration [Cl] of the strongly acidic water produced is directly proportional to the chlorine ion concentration [Cl − ] of the raw water and the electrolytic current (I), and is inverse to the strongly acidic water production flow rate (Q). A proportional relationship is established. [Cl] = K [Cl − ] I / Q Here, K is a constant determined by the characteristics of the electrode.
Chlorine-generating electrodes have higher K values than other types of electrodes.
【0009】[0009]
【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 図1に本発明の強酸性水の生成方法に用いた実験装置の
構成図を示す。図1において、1は原水タンク、2は原
水ポンプ、3は洗浄水タンク、4は洗浄水ポンプ、5は
酸性水電解槽、6は洗浄水電解槽であり、7は直流電源
を示す。このように、図1においては、カソードスケー
ル除去機構として電解洗浄方式を採用している。即ち、
洗浄時において、タンクに貯めた酸性水を別の電解槽に
てさらに隔膜電解することにより、その酸性度と温度を
高める。そして、この酸性温水をカソードスケールの洗
浄に用いる方式である。The present invention will be described below in more detail with reference to examples. Example 1 FIG. 1 shows a block diagram of an experimental apparatus used in the method for producing strongly acidic water of the present invention. In FIG. 1, 1 is a raw water tank, 2 is a raw water pump, 3 is a wash water tank, 4 is a wash water pump, 5 is an acidic water electrolysis tank, 6 is a wash water electrolysis tank, and 7 is a DC power supply. Thus, in FIG. 1, the electrolytic cleaning method is adopted as the cathode scale removing mechanism. That is,
At the time of cleaning, the acidity stored in the tank is further electrolyzed by a diaphragm in another electrolytic cell to increase its acidity and temperature. Then, this acidic hot water is used for cleaning the cathode scale.
【0010】酸性水生成用電解槽と洗浄水生成用電解槽
にそれぞれ12セルと2セルの円筒型電解槽を用いた。
通常、酸性水の電解生成において、原水の電導度向上
と、生成する酸及びアルカリのカウンタイオンの供給
と、塩素発生のための塩素イオンの供給という目的で食
塩を添加する。ここで、使用目的に応じた必要最少限の
残留塩素の酸性水を生成するために、電導度向上とカウ
ンタイオンの供給をNa2 SO4 添加で、塩素イオンの
供給をNaCl添加で分担する方法で行った。具体的に
は、NaClを添加して、原水塩素イオンを10〜50
0mg/リットルの範囲で変え、そして原水電導度が
1.6mS/cm以上となるように、Na2 SO4 を添
加して酸性水電解を行った。Cylindrical electrolytic cells of 12 cells and 2 cells were used as the electrolytic cell for producing acidic water and the electrolytic cell for producing washing water, respectively.
Usually, in the electrolytic production of acidic water, salt is added for the purpose of improving the electric conductivity of raw water, supplying counter ions of the generated acid and alkali, and supplying chlorine ions for chlorine generation. Here, how to generate the acid water residual chlorine required minimum in accordance with the intended use, the supply of the electric conductivity increased and the counter ions Na 2 SO 4 addition, sharing the supply of chlorine ions in NaCl added I went there. Specifically, NaCl is added to adjust chlorine ion in the raw water to 10 to 50.
Acidic water electrolysis was carried out by adding Na 2 SO 4 so that the electric conductivity of raw water was 1.6 mS / cm or more while changing the range of 0 mg / liter.
【0011】その結果を図2と図3のグラフに示す。図
2はpH3.0以下の強酸性水の場合、同じ電解強度
(酸性水単位流量(リットル/min)当たりの電流値
(A))において、原水の塩素イオン濃度(mg/リッ
トル)に対し酸性水の残留塩素濃度(mg/リットル)
をプロットしたもので、両者に正比例関係が得られた。
また、図3は、塩素イオン濃度と電解強度の積に対し残
留塩素濃度をプロットしたものであり、異なる電解強度
のデータがほぼ同一直線上に乗り、残留塩素濃度を下記
の実験式によって表すことができた。 〔Cl〕=0.012〔Cl- 〕I/Q (1)The results are shown in the graphs of FIGS. 2 and 3. Fig. 2 shows that, in the case of strongly acidic water having a pH of 3.0 or less, the same electrolytic strength (current value (A) per unit flow rate of acidic water (liter / min)) is acidic with respect to the chlorine ion concentration (mg / liter) of raw water. Residual chlorine concentration in water (mg / liter)
It was plotted, and a direct proportional relationship was obtained for both.
Further, FIG. 3 is a plot of the residual chlorine concentration against the product of the chlorine ion concentration and the electrolytic strength. The data of different electrolytic strengths are plotted on almost the same straight line, and the residual chlorine concentration is expressed by the following empirical formula. I was able to. [Cl] = 0.012 [Cl -] I / Q (1)
【0012】[0012]
【発明の効果】本発明による強酸性水の生成方法を用い
れば、使用目的に応じて酸性水の残留塩素を確実にコン
トロールすることができ、塩素ガスと塩素イオンを必要
最少限に抑制でき、よって強酸性水の安全性を高め、腐
食性を抑制することができる。EFFECT OF THE INVENTION By using the method for producing strong acidic water according to the present invention, residual chlorine in acidic water can be reliably controlled according to the purpose of use, and chlorine gas and chlorine ions can be suppressed to the minimum necessary. Therefore, the safety of the strongly acidic water can be increased and the corrosiveness can be suppressed.
【図1】本発明の強酸性水の生成方法に用いた実施例1
の実験装置の構成図。FIG. 1 is an example 1 used in the method for producing strongly acidic water of the present invention.
Diagram of the experimental device.
【図2】酸性水残留塩素濃度と原水塩素イオン濃度の関
係を示すグラフ。FIG. 2 is a graph showing the relationship between the residual chlorine concentration in acidic water and the chlorine ion concentration in raw water.
【図3】塩素イオンと電解強度の積に対する酸性水残留
塩素濃度の関係を示すグラフ。FIG. 3 is a graph showing the relationship between the product of chloride ion and electrolytic strength and the residual chlorine concentration in acidic water.
1:原水タンク、2:原水ポンプ、3:洗浄水タンク、
4:洗浄水ポンプ、5:酸性水電解槽、6:洗浄水電解
槽、7:直流電源、1: Raw water tank, 2: Raw water pump, 3: Wash water tank,
4: Wash water pump, 5: Acidic water electrolyzer, 6: Wash water electrolyzer, 7: DC power supply,
───────────────────────────────────────────────────── フロントページの続き (72)発明者 築井 良治 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryoji Tsukii 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside EBARA CORPORATION
Claims (4)
極室と陽極室とを有する電解槽に、原水を通水して電解
することによる強酸性水の生成方法において、前記原水
に塩化ナトリウム又は塩化カリウムと、硫酸ナトリウム
又は硫酸カリウムとを添加して電解することを特徴とす
る強酸性水の生成方法。1. A method for producing strong acid water by passing raw water through an electrolytic cell having a cathode chamber and an anode chamber partitioned by an ion-permeable diaphragm to electrolyze the raw water, wherein sodium chloride or chloride is added to the raw water. A method for producing strongly acidic water, which comprises adding potassium and sodium sulfate or potassium sulfate to perform electrolysis.
は、原水塩素イオン濃度が10〜500mg/リットル
の範囲内の濃度となるように添加し、また硫酸ナトリウ
ム又は硫酸カリウムは、原水導電率が1500〜200
0μS/cmとなるように添加することを特徴とする請
求項1記載の強酸性水の生成方法。2. The sodium chloride or potassium chloride is added so that the chlorine ion concentration in the raw water is in the range of 10 to 500 mg / liter, and sodium sulfate or potassium sulfate has a raw water conductivity of 1500 to 200.
The method for producing strongly acidic water according to claim 1, wherein the method is added so that the concentration becomes 0 μS / cm.
ットル/分当たり、電解電流値を5〜20アンペアの範
囲で負荷することを特徴とする請求項1又は2記載の強
酸性水の生成方法。3. The strong acid water according to claim 1 or 2, wherein the electrolytic cell is loaded with an electrolysis current value within a range of 5 to 20 amperes per 1 liter / min of a strongly acidic water generation flow rate. How to generate.
不溶性電極を用いることを特徴とする請求項1、2又は
3記載の強酸性水の生成方法。4. The method for producing strong acidic water according to claim 1, wherein a chlorine-generating insoluble electrode is used as an anode in the anode chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7806696A JPH09239365A (en) | 1996-03-07 | 1996-03-07 | Method for generating strongly acidic water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7806696A JPH09239365A (en) | 1996-03-07 | 1996-03-07 | Method for generating strongly acidic water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09239365A true JPH09239365A (en) | 1997-09-16 |
Family
ID=13651480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7806696A Pending JPH09239365A (en) | 1996-03-07 | 1996-03-07 | Method for generating strongly acidic water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09239365A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010533785A (en) * | 2007-07-18 | 2010-10-28 | モノファルム・ハンデルスゲゼルシャフト・エムベーハー | Membrane electrolysis and use of the products obtained thereby |
JP2013215674A (en) * | 2012-04-09 | 2013-10-24 | Inamori Soichiro | Manufacturing method of washing water |
-
1996
- 1996-03-07 JP JP7806696A patent/JPH09239365A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010533785A (en) * | 2007-07-18 | 2010-10-28 | モノファルム・ハンデルスゲゼルシャフト・エムベーハー | Membrane electrolysis and use of the products obtained thereby |
JP2013215674A (en) * | 2012-04-09 | 2013-10-24 | Inamori Soichiro | Manufacturing method of washing water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2627100B2 (en) | Method and apparatus for producing sterilized water | |
JP3785219B2 (en) | Method for producing acidic water and alkaline water | |
JP2002336856A (en) | Electrolytic water production apparatus and electrolytic water production method | |
WO2004080901A1 (en) | Process for producing mixed electrolytic water | |
JPS6059995B2 (en) | Impure salt water electrolysis method and device | |
JP3520060B2 (en) | Hypochlorous acid generation method and apparatus | |
JPH09253650A (en) | Sterilized water making apparatus | |
JP3453414B2 (en) | Electrolyzed water generator | |
JPH0673675B2 (en) | Method for producing sterilized water containing hypochlorous acid by electrolysis | |
JPH09239365A (en) | Method for generating strongly acidic water | |
JP3548603B2 (en) | Manufacturing method of treatment liquid for sterilization | |
JP2627101B2 (en) | Additive chemicals for the production of electrolytic hypochlorous acid sterilized water | |
JP2006346650A (en) | Apparatus and method for producing alkali sterilization water | |
JPH05179475A (en) | Production of hypochlorite | |
JP3205527B2 (en) | Method for producing weakly acidic sterilized water and weakly alkaline water | |
JPH09206755A (en) | Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor | |
GB2113718A (en) | Electrolytic cell | |
JPH09262587A (en) | Method for simultaneously preparing hypochloric acid sterilizing water and strong alkali water in electrolytic cell and addition chemical solution used therein | |
JP4130763B2 (en) | Generation method of non-oxidizing strong acid water | |
JP2892121B2 (en) | Method for producing sterile water containing hypochlorous acid by electrolysis | |
CN110697949B (en) | Method for reducing residual quantity of chloride ions in diaphragm-free electrolyzed water | |
JPH11319831A (en) | Production of electrolytic function water and its apparatus | |
JPH09253651A (en) | Apparatus and method for making sterilized water | |
JP3677331B2 (en) | Electrolyzed water generator | |
JP3401294B2 (en) | Electrolytic water treatment method |