[go: up one dir, main page]

JPH09236782A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH09236782A
JPH09236782A JP4252196A JP4252196A JPH09236782A JP H09236782 A JPH09236782 A JP H09236782A JP 4252196 A JP4252196 A JP 4252196A JP 4252196 A JP4252196 A JP 4252196A JP H09236782 A JPH09236782 A JP H09236782A
Authority
JP
Japan
Prior art keywords
optical waveguide
electrode
semiconductor layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252196A
Other languages
Japanese (ja)
Inventor
Yuji Kishida
裕司 岸田
Koji Takemura
浩二 竹村
Ryuji Yoneda
竜司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4252196A priority Critical patent/JPH09236782A/en
Publication of JPH09236782A publication Critical patent/JPH09236782A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 容易なプロセスで温度ドリフトを極力抑える
ことができ、且つ直流駆動が可能である光導波路デバイ
スを提供すること。 【解決手段】 一主面に光導波路2が形成された焦電性
基板1と、焦電性基板1の一主面に形成されたバッファ
層3と、バッファ層3の一領域上に光導波路2に沿って
形成された電極層9と、バッファ層3の他領域上で且つ
電極層9の側端面から所定距離だけ隔てて形成した半導
体層5とから成る。
(57) An object of the present invention is to provide an optical waveguide device which can suppress temperature drift as much as possible by an easy process and can be driven by direct current. SOLUTION: A pyroelectric substrate 1 having an optical waveguide 2 formed on one main surface, a buffer layer 3 formed on one main surface of the pyroelectric substrate 1, and an optical waveguide on one region of the buffer layer 3. 2 and the semiconductor layer 5 formed on the other region of the buffer layer 3 and separated from the side end surface of the electrode layer 9 by a predetermined distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,光通信分野で用い
られる光変調器,光スイッチ等の光導波路デバイスに関
するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to an optical waveguide device such as an optical modulator and an optical switch used in the optical communication field.

【0002】[0002]

【従来の技術とその課題】次世代大容量光通信の実用化
にともない、高速光変調器,光スイッチ等の光制御デバ
イスが必要とされている。特に、ニオブ酸リチウム(L
iNbO3 )等から成る強誘電体基板の電気光学効果を
利用した導波路型光制御デバイス(以下、光導波路デバ
イスという)は、低挿入損失で且つ高速動作が可能であ
るため大変有望視されている。
2. Description of the Related Art With the practical use of next-generation large-capacity optical communication, optical control devices such as high-speed optical modulators and optical switches are required. In particular, lithium niobate (L
A waveguide-type optical control device (hereinafter, referred to as an optical waveguide device) using the electro-optic effect of a ferroelectric substrate made of iNbO 3 ) or the like is very promising because of its low insertion loss and high-speed operation. I have.

【0003】従来、この種の強誘電体基板を用いた光導
波路デバイスでは、基板の表面に形成された光導波路に
最も有効に電界が作用する基板方位としてZカットが主
に採用されてきた。
Conventionally, in an optical waveguide device using a ferroelectric substrate of this type, Z-cut has been mainly employed as a substrate orientation in which an electric field acts most effectively on an optical waveguide formed on the surface of the substrate.

【0004】ところが、強誘電体の特性として焦電性が
あるため、温度変化により分極の方位であるc面、すな
わち基板の(001)面に静電気が生じ、特性に経時変
化を与えるといった問題があった。
However, since the ferroelectric material has pyroelectricity, static electricity is generated on the c-plane, which is the direction of polarization, that is, the (001) plane of the substrate due to a temperature change, and the characteristics change over time. there were.

【0005】そのメカニズムについては、信学技報,OQ
E86-44 p115-121 佐脇他などに詳細に記載されている。
すなわち、光導波路に電界を印加するための複数の電極
が基板表面を覆う部分において、基板の分極に対応した
電荷が誘起されるのに対して、電極が基板表面を覆わな
い部分では、基板の分極に対応した電荷が基板表面に容
易に供給されない。このため、温度変化により基板の分
極が変化するので、電極が基板表面を覆わない部分で電
荷の不均一が生じ、光導波路にこのような不均一な電荷
による電界が印加されて、温度ドリフトが生ずるという
ものである。
For the mechanism, see IEICE Technical Report, OQ.
E86-44 p115-121 See Sawaki et al. In detail.
That is, in a portion where a plurality of electrodes for applying an electric field to the optical waveguide cover the substrate surface, charges corresponding to the polarization of the substrate are induced, whereas in a portion where the electrodes do not cover the substrate surface, The charge corresponding to the polarization is not easily supplied to the substrate surface. For this reason, the polarization of the substrate changes due to the temperature change, so that non-uniformity of electric charge occurs in a portion where the electrode does not cover the surface of the substrate, and an electric field due to such non-uniform electric charge is applied to the optical waveguide, which causes temperature drift. It will happen.

【0006】そこで、この問題を解決する方策として以
下に示すものが提案されている。図6は光導波路デバイ
スJ1において、焦電性の基板21の表面に形成された
光導波路22の入射方向に対して直交する方向で切断し
た断面図であるが、基板21の一主面にバッファ層2
3,半導電性膜24,電極25が順次積層された構造と
なっている。ここで、電極25が基板21の表面を覆わ
ない部分をITO等、ある程度導電性を有し且つ電極間
に電界が印加できる程度の抵抗率を有する半導電性膜2
4で覆い、電極25と接続させることにより、温度変化
により生じる基板21の表面電荷を均一化するものであ
る(例えば、特公平5−78016号公報を参照)。
Therefore, the following measures have been proposed as measures to solve this problem. FIG. 6 is a cross-sectional view of the optical waveguide device J1 taken in a direction orthogonal to the incident direction of the optical waveguide 22 formed on the surface of the pyroelectric substrate 21. Layer 2
3, a semi-conductive film 24 and an electrode 25 are sequentially laminated. Here, the semi-conductive film 2 having a certain degree of conductivity such as ITO in a portion where the electrode 25 does not cover the surface of the substrate 21 and having a resistivity such that an electric field can be applied between the electrodes.
The surface charge of the substrate 21 caused by the temperature change is made uniform by covering with No. 4 and connecting to the electrode 25 (see, for example, Japanese Patent Publication No. 5-78016).

【0007】しかしながら、このような半導電性膜は実
質的な導通を阻止する抵抗値を有するものの、電圧を印
加する電極間を導体で接続するため、直流から低周波の
電圧印加時には電圧が有効に印加されないといった問題
があった。
However, although such a semiconductive film has a resistance value that substantially prevents conduction, since the electrodes to which a voltage is applied are connected by a conductor, the voltage is effective when a DC to low frequency voltage is applied. There was a problem that it was not applied to.

【0008】これに対して、このような半導電性膜を信
号−GND電極間で分断することにより、直流駆動を可
能としたものが提案されている(例えば、特開平3−2
53815号公報を参照)が、やはり印加する電圧信号
の周波数によって上記電界が作用する領域において、電
界強度分布が変化し特性が変化するといった問題があっ
た。また、上記半導電性膜のパターンを容易に形成でき
る作製プロセスそのものが確立されていないという製造
上の問題もあった。
On the other hand, it has been proposed to divide such a semiconductive film between the signal and GND electrodes to enable direct current driving (for example, Japanese Patent Laid-Open No. 3-2.
However, there is a problem that the electric field strength distribution changes and the characteristics change in the region where the electric field acts depending on the frequency of the applied voltage signal. There is also a manufacturing problem that the manufacturing process itself for easily forming the pattern of the semiconductive film has not been established.

【0009】そこで、本発明は上述した諸問題を克服
し、容易なプロセスで温度ドリフトを極力抑えることが
でき、且つ直流駆動が可能である光導波路デバイスを提
供する。
Therefore, the present invention provides an optical waveguide device which overcomes the above-mentioned problems, can suppress the temperature drift as much as possible by an easy process, and can be driven by direct current.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する光導
波路デバイスは、一主面に光導波路が形成された焦電性
基板と、該焦電性基板の一主面に形成されたバッファ層
と、該バッファ層の一領域上に前記光導波路に沿って形
成された電極層と、バッファ層の他領域上で且つ電極層
の側端面から所定距離だけ隔てて形成した半導体層とか
ら成る。
An optical waveguide device for solving the above problems is a pyroelectric substrate having an optical waveguide formed on one principal surface, and a buffer layer formed on the one principal surface of the pyroelectric substrate. And an electrode layer formed along the optical waveguide on one region of the buffer layer, and a semiconductor layer formed on the other region of the buffer layer at a predetermined distance from the side end face of the electrode layer.

【0011】また、半導体層の幅をA、半導体層と前記
電極層の側端面との距離をBとしたとき、下記式を満足
することを特徴とする。
When the width of the semiconductor layer is A and the distance between the semiconductor layer and the side end surface of the electrode layer is B, the following formula is satisfied.

【0012】A/9 < B < 3A/7 すなわち、0.1 L < B < 0.3Lであり(ただし、
L=A+B)、距離Bは、半導体の幅Aと距離Bとの和
であるLの10%〜30%が好適な数値範囲となる。
A / 9 <B <3A / 7, that is, 0.1 L <B <0.3 L (however,
For L = A + B) and the distance B, 10% to 30% of L, which is the sum of the width A and the distance B of the semiconductor, is a suitable numerical range.

【0013】また、電極層が複数層であれば、光導波路
デバイスの製造を非常に容易にすることができる。例え
ば、光導波路が形成された焦電性基板の一主面にバッフ
ァ層を形成する工程と、該バッファ層の一領域上に光導
波路に沿って下地層と半導体層とを互いに並べて形成す
る工程と、下地層上に制御電極となる電極層を積層する
工程とを含む製造により迅速かつ簡便に製造を行うこと
ができる。
Further, if the electrode layers are plural layers, the manufacture of the optical waveguide device can be made very easy. For example, a step of forming a buffer layer on one main surface of the pyroelectric substrate on which the optical waveguide is formed, and a step of forming a base layer and a semiconductor layer side by side along the optical waveguide on one region of the buffer layer. And a step of laminating an electrode layer serving as a control electrode on the underlayer, the production can be carried out quickly and easily.

【0014】上記光導波路デバイスでは光導波路に電界
を作用させる領域において、電極層が基板表面を覆わな
い部分の電極層の側端部に沿ってギャップを設け、高周
波の伝送に支障のない程度の導電率を有する、いわゆる
半導体層を形成し、さらに、この半導体層は電界を作用
させる領域から十分離れた領域で信号電極に高抵抗で接
続するようにすると好適である。
In the above-mentioned optical waveguide device, a gap is provided along the side edge of the electrode layer where the electrode layer does not cover the substrate surface in the region where the electric field is applied to the optical waveguide, so that high frequency transmission is not hindered. It is preferable to form a so-called semiconductor layer having electrical conductivity, and to connect the semiconductor layer to the signal electrode with high resistance in a region sufficiently distant from a region in which an electric field is applied.

【0015】また、上記光導波路デバイスの製造方法に
よれば、リフトオフ法で半導体層及び下地層のパターン
を同時に形成した後、下地層上にのみ電極層を積層する
ことにより、非常に簡便で迅速な製造を実現させること
ができる。
Further, according to the above-mentioned method for manufacturing an optical waveguide device, the patterns of the semiconductor layer and the underlying layer are simultaneously formed by the lift-off method, and then the electrode layer is laminated only on the underlying layer, which is very simple and quick. It is possible to realize various manufacturing.

【0016】[0016]

【発明の実施の形態】本発明に係る一実施例を光導波路
デバイスのひとつである光変調器について図面に基づき
説明する。まず光変調器の概略構成について説明する。
光変調器S1は、図1(a)〜図1(c)に示すよう
に、一主面に光導波路2が形成された例えばニオブ酸リ
チウム,タンタル酸リチウム,もしくは四ほう酸リチウ
ム等から成る焦電性基板(以下、基板という)1と、こ
の基板1の一主面に形成されたSiO2 ,Al2 3
から成る誘電体であるバッファ層5と、バッファ層5の
一領域上に光導波路2に沿って形成された後記する下地
層上に後記する電極層を積層させて成るグランド電極1
0a,信号電極10b,グランド(以下、GND)電極
10cと、バッファ層5の他領域上に形成したSiやS
iOx (シリコンリッチの酸化シリコン)等から成る半
導体層5とから構成される。
BEST MODE FOR CARRYING OUT THE INVENTION An optical modulator, which is one of optical waveguide devices, will be described as an embodiment according to the present invention with reference to the drawings. First, the schematic configuration of the optical modulator will be described.
As shown in FIGS. 1 (a) to 1 (c), the optical modulator S1 is a focal point made of, for example, lithium niobate, lithium tantalate, or lithium tetraborate having an optical waveguide 2 formed on one main surface. An electrically conductive substrate (hereinafter referred to as “substrate”) 1, a buffer layer 5 formed on one main surface of the substrate 1 as a dielectric made of SiO 2 , Al 2 O 3, etc., and a region of the buffer layer 5 A ground electrode 1 formed by laminating an electrode layer described below on a base layer described below formed along the optical waveguide 2.
0a, the signal electrode 10b, the ground (hereinafter, GND) electrode 10c, and Si and S formed on the other region of the buffer layer 5.
The semiconductor layer 5 is made of iO x (silicon-rich silicon oxide) or the like.

【0017】また、図1(b)に示すように、半導体層
5の両端部においては半導体層5は信号電極10bと接
続されており、これにより半導体層5に電荷の供給を行
い、よりいっそう温度ドリフトを抑制することができ
る。
Further, as shown in FIG. 1B, the semiconductor layer 5 is connected to the signal electrodes 10b at both ends of the semiconductor layer 5, whereby electric charges are supplied to the semiconductor layer 5, and the semiconductor layer 5 is further improved. Temperature drift can be suppressed.

【0018】また、半導体層5は光導波路2に沿って、
例えばGND電極10a,信号電極10b,GND電極
10cのそれぞれの側端面から距離Bだけ隔てて帯状に
形成されている。ここで、距離Bは、0.1 L < B
< 0.3L( ただし、L=半導体層の幅A+距離B) を満
足する数値範囲にある。
The semiconductor layer 5 is formed along the optical waveguide 2,
For example, it is formed in a strip shape at a distance B from the respective side end faces of the GND electrode 10a, the signal electrode 10b, and the GND electrode 10c. Here, the distance B is 0.1 L <B
<0.3 L (where L = width A of semiconductor layer + distance B) is within the numerical range.

【0019】このように構成することにより、焦電性に
より基板1の表面部に生じた電荷を実質上ほぼ問題ない
程度にまで均一にすることができ、温度ドリフトを極力
抑えることができる。また、信号電極層とGND電極層
間は電気的に十分な絶縁性があり、低周波および直流駆
動も可能となる。さらに、半導体層5と各電極層との間
は高抵抗となるため、光導波路2に作用する電界強度分
布は周波数により変動しない。さらにまた、半導体層5
の抵抗率は高周波の伝搬に支障のない程度まで広く制御
範囲をとることができ、製造上、品質管理がきわめて容
易となる。
With this structure, the charges generated on the surface of the substrate 1 due to the pyroelectricity can be made uniform to the extent that there is practically no problem, and the temperature drift can be suppressed as much as possible. Further, the signal electrode layer and the GND electrode layer have an electrically sufficient insulating property, and low frequency and direct current driving are also possible. Furthermore, since the resistance between the semiconductor layer 5 and each electrode layer is high, the electric field intensity distribution acting on the optical waveguide 2 does not change depending on the frequency. Furthermore, the semiconductor layer 5
The resistivity of can be controlled over a wide range to the extent that high-frequency propagation is not hindered, and quality control becomes extremely easy in manufacturing.

【0020】次に、この光変調器S1の具体的且つ代表
的な作製方法について説明する。図2(a)に示すよう
に、両面鏡面研磨されたオプティカルグレードのニオブ
酸リチウム単結晶(Zカット;カット面すなわち表面が
(001) 面)の基板1上に、リフトオフ法を用いてTi薄
膜パターンを形成した後、このTi薄膜パターンから基
板1に約1050℃で熱拡散せしめ光導波路2を形成し
た。
Next, a specific and typical manufacturing method of the optical modulator S1 will be described. As shown in FIG. 2A, a double-sided mirror-polished optical-grade lithium niobate single crystal (Z-cut;
A Ti thin film pattern was formed on the (001) plane substrate 1 by the lift-off method, and then the optical waveguide 2 was formed by heat diffusion from the Ti thin film pattern to the substrate 1 at about 1050 ° C.

【0021】そして、基板1上にSiO2 薄膜のバッフ
ァ層3を約1μm程度にスパッタリングにより積層さ
せ、抵抗率を向上させる目的で約600℃の熱処理を施
した。その後、後記する半導体層のギャップ及びCPW
(コプレーナウエイヴガイド)型電極のリフトオフ用の
フォトリソグラフィを同一のフォトマスクを用いて一度
に行った。なお、図中4はフォトレジストである。
Then, a buffer layer 3 of a SiO 2 thin film was deposited on the substrate 1 to a thickness of about 1 μm by sputtering, and a heat treatment was carried out at about 600 ° C. for the purpose of improving the resistivity. After that, the gap of the semiconductor layer and CPW to be described later
Photolithography for lift-off of a (coplanar wave guide) type electrode was performed at once using the same photomask. In the figure, 4 is a photoresist.

【0022】次に、図2(b),(c)に示すように、
半導体層5としてシリコン(Si)を厚さ0.1μm 、
第1の下地層6としてクロム(Cr)を厚さ0.02μ
m 、第2の下地電極7として金(Au)を厚さ0.3を
順次蒸着した後リフトオフすることにより、半導体層5
のギャップパターンとCPW型電極の下地電極パターン
を同時に形成した。
Next, as shown in FIGS. 2B and 2C,
As the semiconductor layer 5, silicon (Si) having a thickness of 0.1 μm,
Chromium (Cr) as the first underlayer 6 has a thickness of 0.02 μm.
m and gold (Au) as the second base electrode 7 having a thickness of 0.3 are sequentially deposited and then lifted off to form the semiconductor layer 5
The gap pattern and the base electrode pattern of the CPW type electrode were simultaneously formed.

【0023】ここで、リフトオフ用のフォトリソグラフ
ィでは、パターンエッジ部の段切れを良好にするため、
通常、フォトレジストパターンの断面形状をパターンエ
ッジ部で逆テーパ形状にする必要があるが、上述のごと
く半導体層5と下地層との形成を一度で行ったことによ
り、フォトリソグラフィの露光時に基板1の裏面からの
露光を、従来のように薄膜等の遮光性の材料に遮られる
ことなく行うことができ、フォトレジストパターンの断
面形状を良好な逆テーパ形状に形成することができ、そ
の結果として、パターンエッジ部にバリ等を含まない良
好な薄膜パターンを形成することができた。
Here, in the lift-off photolithography, in order to improve the disconnection of the pattern edge portion,
Normally, it is necessary to make the cross-sectional shape of the photoresist pattern into an inverse taper shape at the pattern edge portion. However, since the semiconductor layer 5 and the underlayer are formed at once as described above, the substrate 1 is exposed at the time of photolithography. The back surface of the photoresist can be exposed without being blocked by a light-shielding material such as a thin film as in the conventional case, and the cross-sectional shape of the photoresist pattern can be formed into a good inverse taper shape. It was possible to form a good thin film pattern containing no burr and the like at the pattern edge portion.

【0024】そして、図2(d)〜(g)に示すよう
に、フォトリソグラフィにより電極部分を以外をフォト
レジスト8で覆い、下地層上に金の電極層9を積層して
メッキし、下地層の不要部分をエッチングして、電極層
9と電極層9との間に半導体層5を露出させて、最終的
にマッハツェンダー干渉計型の光(強度)変調器を作製
した。
Then, as shown in FIGS. 2D to 2G, the electrode portion is covered with a photoresist 8 by photolithography except for the electrode portion, and a gold electrode layer 9 is laminated on the underlayer and plated. An unnecessary portion of the ground layer was etched to expose the semiconductor layer 5 between the electrode layers 9 and 9, and finally a Mach-Zehnder interferometer type optical (intensity) modulator was manufactured.

【0025】なおここで、メッキに使用する下地層はダ
イシングライン上で信号電極とGND電極とを接続して
おり,ダイシング時に前記電極間を分離した。
The underlayer used for plating connects the signal electrode and the GND electrode on the dicing line, and the electrodes were separated during dicing.

【0026】また、半導体層5はアニール処理等は施し
ておらず、104 Ω・cmオーダーの抵抗率のものを使
用した。半導体層5をGND電極に幅100μm,長さ
20μmのラインで接続し、半導体層5とGND電極間
に約107 Ωオーダーの抵抗をもたせた。電極層と半導
体層5とのギャップ(B×100/L)〔%〕と温度ド
リフト△D〔%〕(△Dは図3に示すように、△D=△
V×100/Vπで定義される。ここで、△Vはドリフ
ト電圧、Vπは半波長電圧である。)との関係は図4に
示す通りであり、ギャップが10〜30%であれば、温
度ドリフトはほぼ±5%以内に収まることが判明した。
さらに、ギャップが12〜25%であれば、温度ドリフ
トはほぼ0となることが判明した。
The semiconductor layer 5 was not annealed and used with a resistivity of the order of 10 4 Ω · cm. The semiconductor layer 5 was connected to the GND electrode with a line having a width of 100 μm and a length of 20 μm, and a resistance of the order of 10 7 Ω was provided between the semiconductor layer 5 and the GND electrode. The gap (B × 100 / L) [%] between the electrode layer and the semiconductor layer 5 and the temperature drift ΔD [%] (ΔD is ΔD = Δ as shown in FIG.
It is defined by V × 100 / Vπ. Here, ΔV is a drift voltage, and Vπ is a half-wave voltage. 4) is as shown in FIG. 4, and it was found that the temperature drift was within approximately ± 5% when the gap was 10 to 30%.
Further, it was found that the temperature drift becomes almost zero when the gap is 12 to 25%.

【0027】この理由としては、温度ドリフトを引き起
こす焦電性による電界の要因に、信号−GND電極間に
生じる電位差から生じるものと、半導体層5のギャップ
の中心付近に中和せずに残留する電荷により生じるもの
との2つが考えられ、各々の作りだす電界強度分布がド
リフトの方向が逆になるよう光導波路に作用し、ギャッ
プの幅によりそのバランスが変化するものと考えられ
る。
The reason for this is that the electric field due to pyroelectricity that causes the temperature drift is caused by the potential difference generated between the signal and GND electrodes, and that it remains in the vicinity of the center of the gap of the semiconductor layer 5 without being neutralized. It is considered that the two are generated by electric charges, and that the electric field intensity distributions produced by each act on the optical waveguide so that the drift directions are opposite, and the balance changes depending on the width of the gap.

【0028】したがって、急激な温度変化によって生じ
た電荷のアンバランスは、図5(a),(b)に示すよ
うに、半導体層5を全面に装荷した場合(断面が例えば
図6)であっても、高抵抗の半導体層5中を移動するの
にはある程度時間がかかり、信号−GND電極間の焦電
性による電位差は直ぐには解消されないが、本発明によ
れば、信号−GND電極間の焦電性による電位差は、ギ
ャップの中心付近に中和せずに残留する電荷により生じ
る電界でもって急速に打ち消すことができ、温度ドリフ
ト特性は格段に向上することが考えられる。
Therefore, the imbalance of the electric charges caused by the rapid temperature change is as shown in FIGS. 5 (a) and 5 (b) when the semiconductor layer 5 is loaded on the entire surface (the cross section is, for example, FIG. 6). However, it takes some time to move in the high-resistance semiconductor layer 5, and the potential difference due to pyroelectricity between the signal and GND electrodes is not immediately eliminated. However, according to the present invention, the potential difference between the signal and GND electrodes is high. It is considered that the potential difference due to the pyroelectricity can be canceled out rapidly by the electric field generated by the electric charges remaining without being neutralized in the vicinity of the center of the gap, and the temperature drift characteristic is remarkably improved.

【0029】また、図6に示すような従来の光変調器と
比較してきわめて良好な温度特性を示し、ほぼ直流印加
に近い状態で測定した光変調器の印加電圧−光出力特性
もきわめて良好な静特性が得られ、直流駆動が可能であ
ることが確認できた。さらに、光変調器の半波長電圧V
πは周波数による変動はなく安定な動作を示した。
Further, compared with the conventional optical modulator as shown in FIG. 6, the optical modulator exhibits extremely good temperature characteristics, and the applied voltage-optical output characteristics of the optical modulator measured in a state close to DC application are also very good. It was confirmed that excellent static characteristics were obtained and that DC drive was possible. Furthermore, the half-wave voltage V of the optical modulator
π showed stable operation with no change due to frequency.

【0030】なお、本実施例以外においてもギャップの
幅を調整することにより、温度ドリフトを最小に抑える
ことができ、その趣旨を逸脱しない限り本発明の範囲に
含まれる。また、本実施例においては光導波路デバイス
として光変調器について説明したがこれに限定されるも
のではなく、光スイッチ等の各種焦電性基板上に光導波
路や電極等を形成させた各種光導波路デバイスに適用が
可能であり、本発明の要旨を逸脱しない範囲で適宜変更
し実施が可能である。
In addition to the present embodiment, the temperature drift can be suppressed to a minimum by adjusting the width of the gap, and the temperature drift is included in the scope of the present invention without departing from the spirit of the invention. Further, although the optical modulator has been described as the optical waveguide device in the present embodiment, the present invention is not limited to this, and various optical waveguides in which optical waveguides and electrodes are formed on various pyroelectric substrates such as optical switches. It can be applied to a device, and can be appropriately modified and implemented without departing from the scope of the present invention.

【0031】[0031]

【効果】以上の説明から明らかなように、本発明の光導
波路デバイスによれば、きわめて簡便な構成、及び容易
な製造工程でもって、急激な温度変化に対しても、温度
ドリフトをほぼ0に抑えることができるとともに、直流
からデバイスが動作する周波数までの全帯域で特性変動
のない安定な動作が可能で、かつ信頼性の非常に優れた
光導波路デバイスを提供することができる。
As is apparent from the above description, according to the optical waveguide device of the present invention, the temperature drift can be reduced to almost zero even with a sudden temperature change with the extremely simple structure and the easy manufacturing process. It is possible to provide an optical waveguide device that can be suppressed and can perform stable operation with no characteristic fluctuation in the entire band from direct current to the frequency at which the device operates, and that has excellent reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明に係る光導波路デバイスの一
例を示す平面図、(b)は(a)におけるB部分の拡大
図、(c)は(a)のc−c’線断面図。
1A is a plan view showing an example of an optical waveguide device according to the present invention, FIG. 1B is an enlarged view of a portion B in FIG. 1A, and FIG. 1C is a cc ′ line of FIG. Sectional view.

【図2】(a)〜(g)はそれぞれ本発明に係る光導波
路デバイス製造工程を示す断面図。
2A to 2G are cross-sectional views showing the steps of manufacturing an optical waveguide device according to the present invention.

【図3】光変調器の温度ドリフトを説明する図。FIG. 3 is a diagram illustrating temperature drift of an optical modulator.

【図4】電極層−半導体層間ギャップと温度ドリフトと
の関係を説明するグラフ。
FIG. 4 is a graph illustrating a relationship between an electrode layer-semiconductor interlayer gap and temperature drift.

【図5】(a)は温度変化の様子を示すグラフ、(b)
は温度変化とドリフト特性との関係を説明するグラフ。
FIG. 5A is a graph showing how the temperature changes; FIG.
Is a graph illustrating the relationship between temperature change and drift characteristics.

【図6】従来の光導波路デバイスの一例を示す断面図。FIG. 6 is a sectional view showing an example of a conventional optical waveguide device.

【符号の説明】[Explanation of symbols]

1 ・・・ 基板 2 ・・・ 光導波路 3 ・・・ バッファ層 4,8 ・・・ フォトレジスト 5 ・・・ 半導体層 6 ・・・ 第1の下地層 7 ・・・ 第2の下地層 9 ・・・ 電極層 10a,10c ・・・ GND電極 10b ・・・ 信号電極 S1 ・・・ 光変調器 1 ... Substrate 2 ... Optical waveguide 3 ... Buffer layer 4,8 ... Photoresist 5 ... Semiconductor layer 6 ... First underlayer 7 ... Second underlayer 9 ... Electrode layers 10a, 10c ... GND electrode 10b ... Signal electrode S1 ... Optical modulator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一主面に光導波路が形成された焦電性基
板と、該焦電性基板の一主面に形成されたバッファ層
と、該バッファ層の一領域上に前記光導波路に沿って形
成された電極層と、前記バッファ層の他領域上で且つ前
記電極層の側端面から所定距離だけ隔てて形成した半導
体層とから成る光導波路デバイス。
1. A pyroelectric substrate having an optical waveguide formed on one main surface, a buffer layer formed on one main surface of the pyroelectric substrate, and the optical waveguide provided on one region of the buffer layer. An optical waveguide device comprising an electrode layer formed along with the semiconductor layer, and a semiconductor layer formed on the other region of the buffer layer and separated from the side end surface of the electrode layer by a predetermined distance.
【請求項2】 請求項1に記載の光導波路デバイスであ
って、前記半導体層の幅をA、半導体層と前記電極層の
側端面との距離をBとしたとき、下記式を満足すること
を特徴とする光導波路デバイス。 A/9 < B < 3A/7
2. The optical waveguide device according to claim 1, wherein when the width of the semiconductor layer is A and the distance between the semiconductor layer and the side end surface of the electrode layer is B, the following formula is satisfied. An optical waveguide device characterized by: A / 9 <B <3A / 7
【請求項3】 請求項1に記載の光導波路デバイスであ
って、前記電極層が複数層から成ることを特徴とする光
導波路デバイス。
3. The optical waveguide device according to claim 1, wherein the electrode layer is composed of a plurality of layers.
JP4252196A 1996-02-29 1996-02-29 Optical waveguide device Pending JPH09236782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252196A JPH09236782A (en) 1996-02-29 1996-02-29 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252196A JPH09236782A (en) 1996-02-29 1996-02-29 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPH09236782A true JPH09236782A (en) 1997-09-09

Family

ID=12638395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252196A Pending JPH09236782A (en) 1996-02-29 1996-02-29 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPH09236782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385360B1 (en) * 1998-08-25 2002-05-07 Nec Corporation Light control device and a method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385360B1 (en) * 1998-08-25 2002-05-07 Nec Corporation Light control device and a method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7529433B2 (en) Humidity tolerant electro-optic device
US7408693B2 (en) Electro-optic device
EP2133733B1 (en) Optical Modulator based on the electro-optic effect
EP1022605A2 (en) Optical waveguide device
JPH07199134A (en) Structure and method for photoelecton device for reducing temperature effect in lightguide modulator
US8774565B2 (en) Electro-optic device
JPH1039266A (en) Light control device
JP2004070136A (en) Optical waveguide device and traveling waveform light modulator
US6891982B2 (en) Optical modulation device having excellent electric characteristics by effectively restricting heat drift
JPH10104559A (en) Optical waveguide device
JPH09236782A (en) Optical waveguide device
EP1441250A2 (en) Electrode systems for optical modulation and optical modulators
JPH0829745A (en) Optical waveguide device
JPH0651254A (en) Light control device
Aoki et al. High-performance optical modulator with a wide center electrode and thin x-cut LiNbO 3 substrate
JP2836568B2 (en) Light control element and method of manufacturing the same
JPH09269469A (en) Optical waveguide device
JP2006317550A (en) Optical modulator
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JPH09297289A (en) Optical control device and operating method therefor
JP3021888B2 (en) Optical waveguide functional element and method of manufacturing the same
JP4227595B2 (en) Light modulator
JP3222092B2 (en) Manufacturing method of ridge structure optical waveguide
JPH11316359A (en) Light control device
JP3275888B2 (en) Optical waveguide device