[go: up one dir, main page]

JPH09236637A - Voltage application current measuring circuit - Google Patents

Voltage application current measuring circuit

Info

Publication number
JPH09236637A
JPH09236637A JP8043435A JP4343596A JPH09236637A JP H09236637 A JPH09236637 A JP H09236637A JP 8043435 A JP8043435 A JP 8043435A JP 4343596 A JP4343596 A JP 4343596A JP H09236637 A JPH09236637 A JP H09236637A
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
output terminal
current measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8043435A
Other languages
Japanese (ja)
Other versions
JP3599256B2 (en
Inventor
Kenji Izawa
憲治 伊澤
Yoshihiro Hashimoto
好弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP4343596A priority Critical patent/JP3599256B2/en
Publication of JPH09236637A publication Critical patent/JPH09236637A/en
Application granted granted Critical
Publication of JP3599256B2 publication Critical patent/JP3599256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Logic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an accurate measurement of a steady current in a fast operation type IC with a short settling time by adding a current supply circuit in which a current flows into a voltage output terminal detecting that a voltage of the voltage output terminal drops below a prescribed value to a current attraction circuit to attract current from a voltage supply terminal by detecting that the voltage is higher than the steady value. SOLUTION: A current output circuit 30 which supplies a voltage of a voltage output terminal TO detecting that the voltage of the voltage output terminal falls below a specified value and a current attraction circuit 40 which attracts a current from the voltage output terminal TO by detecting that the voltage of the voltage output terminal TO is higher by a specified value are connected to the voltage output terminal TO of a voltage supply circuit 10 so arranged that a negative feedback 25 is applied to an operational amplifier 11 to output a fixed voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は例えばCMOS型
ICのように能動素子が反転動作するときだけ大きな負
荷電流を消費し、定常状態では微小電流しか消費しない
ICの、特に電源電圧供給端子に定常時の電圧を与えた
状態で流れる微小電流を測定する電圧印加電流測定回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IC such as a CMOS IC, which consumes a large load current only when an active element performs an inversion operation and consumes only a small current in a steady state, particularly in a power supply voltage supply terminal. The present invention relates to a voltage applied current measuring circuit that measures a minute current flowing in a state where a constant voltage is applied.

【0002】[0002]

【従来の技術】図5に従来から用いられている電圧印加
電流測定回路の概略の構成を示す。この電圧印加電流測
定回路は概略、電圧供給回路10と電流測定手段20と
によって構成される。電圧供給回路10は非反転入力端
子に一定電圧Vinが与えられた演算増幅器11と、この
演算増幅器11から出力される電圧V0 を出力し、この
出力電圧V0 を負荷25に供給する電圧出力端子TO
と、電圧出力端子TOに出力される電圧V0 を演算増幅
器11の反転入力端子に負帰還させる負帰還回路12
と、演算増幅器11の出力端子と電圧出力端子TOとの
間に直列に接続された電流測定用抵抗器13と、この電
流測定用抵抗器13と並列に接続されたダイオードの逆
並列回路14と、電流測定用抵抗器13及び逆並列接続
されたダイオードとの並列接続回路に更に並列接続した
位相補償コンデンサ15と、電圧出力端子TOと共通電
位点に接続されたバイパスコンデンサ16とによって構
成される。
2. Description of the Related Art FIG. 5 shows a schematic configuration of a voltage applied current measuring circuit which has been conventionally used. The voltage applied current measuring circuit is generally composed of a voltage supply circuit 10 and a current measuring means 20. The voltage supply circuit 10 outputs an operational amplifier 11 having a non-inverting input terminal to which a constant voltage V in is applied, and a voltage V 0 output from the operational amplifier 11, and supplies the output voltage V 0 to the load 25. Output terminal TO
And a negative feedback circuit 12 for negatively feeding back the voltage V 0 output to the voltage output terminal TO to the inverting input terminal of the operational amplifier 11.
A current measuring resistor 13 connected in series between the output terminal of the operational amplifier 11 and the voltage output terminal TO; and a diode anti-parallel circuit 14 connected in parallel with the current measuring resistor 13. , A phase compensation capacitor 15 which is further connected in parallel to a parallel connection circuit of a current measuring resistor 13 and an anti-parallel connected diode, and a bypass capacitor 16 which is connected to a voltage output terminal TO and a common potential point. .

【0003】電流測定手段20は電流測定用抵抗器13
に発生する電圧を取出す差動増幅器21と、この差動増
幅器21で検出した電圧値をAD変換して取出すAD変
換器22とによって構成することができる。尚、演算増
幅器11の非反転入力端子に一定電圧Vinを供給する電
圧源18は一般にDA変換器が用いられ、DA変換器に
与えるディジタル値によって演算増幅器11の非反転入
力端子に与える電圧値Vinを任意の電圧に設定できるよ
うに構成される。
The current measuring means 20 is a current measuring resistor 13
The differential amplifier 21 for taking out the voltage generated in the above and the AD converter 22 for taking out the AD value of the voltage value detected by the differential amplifier 21 can be constituted. A DA converter is generally used as the voltage source 18 for supplying a constant voltage V in to the non-inverting input terminal of the operational amplifier 11, and the voltage value given to the non-inverting input terminal of the operational amplifier 11 is a digital value given to the DA converter. It is configured so that V in can be set to an arbitrary voltage.

【0004】電圧出力端子TOと共通電位間に負荷25
が接続される。負荷25はここではCMOS型ICであ
るものとし、そのCMOS型ICの定常状態における消
費電流値を測定する。つまり、負荷25がCMOS型I
Cである場合、CMOS型IC内の能動素子(FET)
が反転動作する毎に、図6Aに示すような動作電流IP
が流れ、反転動作が終了すると、電流消費量は極端に少
なくなり、定常電流ΔIが流れる。動作電流IPと定常
電流ΔIとの比は例えば1000:1程度の大きな比率
を持つ。よって定常電流ΔIを正確に測定するには動作
電流IPが流れた後、定常電流ΔIに切替わった時点か
ら充分に時間が経過し、電圧出力端子TOの電圧V0
安定した時点(以下この電圧V0 が安定するまでの時間
をセットリングタイムと称す)で電流測定手段20でA
D変換動作を実行すればよい。
A load 25 is placed between the voltage output terminal TO and the common potential.
Is connected. The load 25 is assumed to be a CMOS IC here, and the current consumption value of the CMOS IC in a steady state is measured. That is, the load 25 is a CMOS type I
If it is C, an active element (FET) in the CMOS type IC
Every time the inverting operation is performed, the operating current IP as shown in FIG.
And the reversal operation ends, the current consumption becomes extremely small, and the steady current ΔI flows. The ratio between the operating current IP and the stationary current ΔI has a large ratio of, for example, about 1000: 1. Therefore, in order to accurately measure the steady-state current ΔI, after the operating current IP flows, a sufficient time has elapsed from the time when the steady-state current ΔI was switched and the voltage V 0 at the voltage output terminal TO became stable (hereinafter The time until the voltage V 0 stabilizes is called the settling time), and
The D conversion operation may be executed.

【0005】負荷25となる被試験ICの動作速度が遅
く、動作電流IPが流れる周期が充分長ければセットリ
ングタイムが長くても定常電流ΔIを正確に測定するこ
とはできる。然し乍ら、ICには高速化が要求されてお
り、動作電流IPが流れる周期は年々短かくなる傾向に
ある。従って従来より、この種の電圧印加電流測定回路
ではセットリングタイムを短かくする工夫を種々施して
いる。
If the operating speed of the IC under test serving as the load 25 is slow and the cycle of the operating current IP is sufficiently long, the steady current ΔI can be accurately measured even if the settling time is long. However, there is a demand for higher speeds in ICs, and the cycle in which the operating current IP flows tends to become shorter year by year. Therefore, conventionally, in this type of voltage applied current measuring circuit, various measures have been taken to shorten the settling time.

【0006】その1つとしては電圧出力端子TOにバイ
パスコンデンサ16を接続し、このバイパスコンデンサ
16に常時定常電圧V0 を充電しておき、動作電流IP
が負荷25に流れるとき、負荷25に流れる動作電流I
Pの大部分をこのバイパスコンデンサ16から放出さ
せ、負荷25で必要とする動作電流IPを過不足なく供
給できるようにしている。
As one of them, a bypass capacitor 16 is connected to the voltage output terminal TO, and the bypass capacitor 16 is always charged with a steady voltage V 0 to obtain an operating current IP.
When the current flows in the load 25, the operating current I flowing in the load 25
Most of P is discharged from the bypass capacitor 16 so that the operating current IP required by the load 25 can be supplied without excess or deficiency.

【0007】更に、電流測定用抵抗器13に対してダイ
オードの逆並列回路14を接続し、動作電流IPが流れ
ている最中に、電流測定用抵抗器13に大きな電圧降下
を発生させない工夫。動作電流IPが流れた際に、電圧
出力端子TOの電圧変動を小さくするためには、バイパ
スコンデンサ16の容量値を大きく設定するとよい。バ
イパスコンデンサ16の容量値を大きく設定すると、演
算増幅器11から成る負帰還回路の動作が不安定(発振
現象が見られる)になる。この現象を除去するために位
置補償コンデンサの容量値を大きく設定し、不安定現象
を除去している。
Further, a device for connecting a diode antiparallel circuit 14 to the current measuring resistor 13 so as not to cause a large voltage drop in the current measuring resistor 13 while the operating current IP is flowing. In order to reduce the voltage fluctuation of the voltage output terminal TO when the operating current IP flows, it is preferable to set the capacitance value of the bypass capacitor 16 large. If the capacitance value of the bypass capacitor 16 is set to be large, the operation of the negative feedback circuit including the operational amplifier 11 becomes unstable (oscillation phenomenon is observed). In order to eliminate this phenomenon, the capacitance value of the position compensation capacitor is set large to eliminate the unstable phenomenon.

【0008】[0008]

【発明が解決しようとする課題】ところで、位相補償コ
ンデンサ15の容量値を大きく採ると、電流測定用抵抗
器13の抵抗値も大きいことから、電流測定用抵抗器1
3と位相補償コンデンサ15の時定数が大きくなり、こ
の時定数に従って電圧出力端子TOの電圧が元の定常電
圧に復帰するから、時定数が大きい分だけセットリング
タイムが長くなり高速動作型のICの定常電流を測定で
きないことになる。
By the way, when the capacitance value of the phase compensation capacitor 15 is large, the resistance value of the current measuring resistor 13 is also large. Therefore, the current measuring resistor 1
3 and the phase compensation capacitor 15 have large time constants, and the voltage at the voltage output terminal TO returns to the original steady voltage in accordance with this time constant. Therefore, the settling time becomes longer as the time constant becomes larger, and the high-speed operation IC It means that the steady current of cannot be measured.

【0009】以下にセットリングタイムの一例を数値を
掲げて説明する。高速の負荷変動特性を得るためには演
算増幅器11を含む回路全体の周波数特性を高くするこ
とが要求される。また、微小の定常電流ΔIを測定する
ためには電流測定用抵抗器13の抵抗値Rm を大きなも
のが必要となる。CMOS型ICの動作時に流れる動作
電流IPはその流れている時間は通常数ns〜数10n
sであり、演算増幅器11を用いた負帰還型の電圧供給
回路10では動作電流IPが流れている期間内は負荷変
動を補償できない。従って従来よりバイパスコンデンサ
16を設け、動作電流IPが流れている期間はこのバイ
パスコンデンサ16から負荷25に電流を供給し、動作
電流IPの終了後、演算増幅器11側から消費した電荷
をバイパスコンデンサ16に供給している。
An example of the settling time will be described below with numerical values. In order to obtain high-speed load fluctuation characteristics, it is required to improve the frequency characteristics of the entire circuit including the operational amplifier 11. Further, in order to measure the minute steady current ΔI, the resistance value R m of the current measuring resistor 13 needs to be large. The operating current IP flowing during the operation of the CMOS type IC normally flows for several ns to several tens of nanoseconds.
In the negative feedback type voltage supply circuit 10 using the operational amplifier 11, the load fluctuation cannot be compensated for during the period when the operating current IP is flowing. Therefore, a bypass capacitor 16 is conventionally provided, and a current is supplied from the bypass capacitor 16 to the load 25 while the operating current IP is flowing, and after the operating current IP ends, the charge consumed from the operational amplifier 11 side is bypassed by the bypass capacitor 16. Is being supplied to.

【0010】動作電流IPが流れている時間TPが短か
く、動作電流IPが定電流であるものとすると、バイパ
スコンデンサ16に蓄えられる電荷Qは一般にQ=C※
V=I※Tであるから、電圧出力端子TOの電圧変動Δ
0 はΔV0 ≒IP※TP/C16となり、バイパスコン
デンサ16に必要な容量値C16はC16≒IP※TP/Δ
0 となる。
If the time TP during which the operating current IP is flowing is short and the operating current IP is a constant current, the charge Q stored in the bypass capacitor 16 is generally Q = C *
Since V = I * T, the voltage fluctuation Δ of the voltage output terminal TO
V 0 is ΔV 0 ≈IP * TP / C 16 , and the capacitance value C 16 required for the bypass capacitor 16 is C 16 ≈IP * TP / Δ
It becomes V 0 .

【0011】一般的な例としてIP=500mA,TP
=100ns,ΔV0 =200mVとすると、 C16≒IP※TP/ΔV= 500mA※ 100ns/ 200m
V=0.25μF となる。電圧出力端子TOを流れる電流が定常状態にな
ったときの電流測定分解能を100nA、電流測定手段
20に設けた差動増幅器21の利得を10倍、A/D変
換器22の測定分解能を1mVとすると、電流測定用抵
抗器13の抵抗値Rm は、 Rm =1mV/(100nA※10)=1KΩ となる。
As a general example, IP = 500 mA, TP
= 100 ns, ΔV 0 = 200 mV, C 16 ≈IP * TP / ΔV = 500 mA * 100 ns / 200 m
V = 0.25 μF. The current measurement resolution when the current flowing through the voltage output terminal TO is in a steady state is 100 nA, the gain of the differential amplifier 21 provided in the current measuring means 20 is 10 times, and the measurement resolution of the A / D converter 22 is 1 mV. Then, the resistance value R m of the current measuring resistor 13 becomes R m = 1 mV / (100 nA * 10) = 1 KΩ.

【0012】演算増幅器11の周波数応答特性を図7に
示す。図中曲線Aはオクターブ当り−6dBの減衰特
性、曲線Bはオクターブ当り−12dBの減衰特性を示
す。図示する周波数f1〜f2の間はオクターブ当り−
12dBの減衰特性を呈し、このオクターブ−12dB
の減衰特性のまま0dBに達すると周知のように系は不
安定な動作となる。この周波数応答特性において、周波
数f1は、 f1≒1/(2π※Rm ※C16)=636Hz fn を100MHzとして回路を安定に動作させるため
の周波数f2を100KHzに採ると、この周波数f2
を与える位相補償コンデンサ15の容量値Cm は、 f2=1/(2π※Rm ※Cm ) から、 Cm =1/(2π※Rm ※f2) =1600PF となる。
The frequency response characteristic of the operational amplifier 11 is shown in FIG. In the figure, a curve A shows an attenuation characteristic of -6 dB per octave, and a curve B shows an attenuation characteristic of -12 dB per octave. Between the frequencies f1 and f2 shown in the figure per octave
It exhibits a damping characteristic of 12 dB, and this octave is -12 dB.
As is well known, if the attenuation characteristic of 0 is reached to 0 dB, the system operates in an unstable manner. In this frequency response characteristic, if the frequency f1 is f1≈1 / (2π * R m * C 16 ) = 636 Hz f n is 100 MHz and the frequency f2 is 100 KHz for stable operation of the circuit, this frequency f2
The capacitance value C m of the phase compensation capacitor 15 that gives the following is f2 = 1 / (2π * R m * C m ), so that C m = 1 / (2π * R m * f2) = 1600 PF.

【0013】電流測定時のセットリングタイムは電流測
定用抵抗器13の抵抗値Rm と位相補償コンデンサ15
の容量値Cm の時定数で決まる。動作電流IPが流れて
いる期間に電流測定用抵抗器13の両端に発生する電圧
はダイオードの逆並列回路14の順方向電圧にクランプ
される。動作電流IPが流れている期間の電流測定用抵
抗器13に発生する電圧を700mVとすると、時定数
τ=Rm ※Cm で決まる電流測定用抵抗器13の両端電
圧が1mVに回復するまでの放電時間TS(セットリン
グタイム)は、 loge(1mV/700mV)=−6.55 から、 TS=6.55(Rm ※Cm ) =6.55※1KΩ×1600PF =10.4μs となる。
The settling time during current measurement is the resistance value R m of the current measuring resistor 13 and the phase compensation capacitor 15.
It is determined by the time constant of the capacitance value C m . The voltage generated across the current measuring resistor 13 during the period when the operating current IP is flowing is clamped to the forward voltage of the antiparallel circuit 14 of the diodes. When the voltage generated in the current measuring resistor 13 during the period in which the operating current IP is flowing is 700 mV, until the voltage across the current measuring resistor 13 determined by the time constant τ = R m * C m is restored to 1 mV. Discharge time TS (setting time) of loge (1 mV / 700 mV) = − 6.55, TS = 6.55 (R m * C m ) = 6.55 * 1 KΩ × 1600 PF = 10.4 μs .

【0014】結局、図6Bに示した電圧出力端子TOの
電圧変動ΔVo が定常値V0 =Vinに復帰するまでに約
10.4μsのセットリングタイムTSを要し、このセ
ットリングタイムTSを経過した時点でなければ電流測
定手段20は電流測定しても誤差値の大きい電流値を測
定してしまう不都合が生じる。セットリングタイムTS
が10.4μsであるとすると、1/10.4μs≒
0.1×106 =100KHzとなり、動作電流IPの
繰返し周波数が100KHzより低い周波数のICしか
定常電流ΔIを測定することができないことになる。
After all, it takes a settling time TS of about 10.4 μs until the voltage fluctuation ΔV o of the voltage output terminal TO shown in FIG. 6B returns to the steady value V 0 = V in . This settling time TS If the time has not passed, the current measuring means 20 has a disadvantage of measuring a current value having a large error value even when measuring the current. Settling time TS
Is 10.4 μs, 1 / 10.4 μs ≈
0.1 × 10 6 = 100 KHz, which means that only the IC having a frequency at which the operating current IP has a repetition frequency lower than 100 KHz can measure the steady-state current ΔI.

【0015】この発明の目的は、セットリングタイムT
Sを短かくし、高速動作型のICの定常電流ΔIを正確
に測定することができる電圧印加電流測定回路を提供し
ようとするものである。
An object of the present invention is to set time T
It is an object of the present invention to provide a voltage applied current measuring circuit capable of shortening S and accurately measuring the steady-state current ΔI of a high-speed operation type IC.

【0016】[0016]

【課題を解決するための手段】この発明では非反転入力
端子に一定電圧が与えられた演算増幅器及びこの演算増
幅器の出力電圧が与えられ、周期的に定常時の電流より
尖頭値が大きい動作電流を消費する負荷にその出力電圧
を供給する電圧出力端子、この電圧出力端子の電圧を上
記演算増幅器の反転入力端子に帰還する帰還回路によっ
て構成した電圧供給回路と、この電圧供給回路を構成す
る演算増幅器の出力端子と電圧出力端子との間に接続し
た電流測定用抵抗器と、上記電圧出力端子と上記演算増
幅器の反転入力端子との間を接続した帰還回路と、上記
電圧出力端子と共通電位点との間に接続したバイパスコ
ンデンサと、上記電流測定用抵抗器に並列接続したダイ
オードの逆並列接続回路と、上記電流測定用抵抗器に並
列接続した位相補償コンデンサと、上記電流測定用抵抗
器に発生する電圧を測定し、上記演算増幅器から電圧出
力端子に出力される電流値を測定する電流測定手段とを
具備して構成される電圧印加電流測定回路において、電
圧出力端子にこの電圧出力端子の電圧が規定値より低下
したことを検出して電圧出力端子に電流を流し込む電流
供給回路と、電圧供給端子の電圧が定常値より高くなっ
たことを検出して電圧供給端子より電流を吸引する電流
吸引回路とを付加した電圧印加電流測定回路を提供す
る。
According to the present invention, an operational amplifier having a non-inverting input terminal to which a constant voltage is applied and an output voltage of the operational amplifier are applied, and an operation having a peak value periodically larger than a steady-state current. A voltage output terminal for supplying the output voltage to a load that consumes current, a voltage supply circuit configured by a feedback circuit for feeding back the voltage of the voltage output terminal to the inverting input terminal of the operational amplifier, and the voltage supply circuit A current measuring resistor connected between the output terminal and the voltage output terminal of the operational amplifier, a feedback circuit connected between the voltage output terminal and the inverting input terminal of the operational amplifier, and the voltage output terminal in common A bypass capacitor connected between the electric potential point, an anti-parallel connection circuit of a diode connected in parallel to the current measuring resistor, and a complementary circuit connected in parallel to the current measuring resistor. In a voltage applied current measuring circuit configured to include a capacitor and a current measuring unit that measures a voltage generated in the current measuring resistor and measures a current value output from the operational amplifier to a voltage output terminal. , The voltage output terminal detects that the voltage at this voltage output terminal has dropped below the specified value and supplies a current to the voltage output terminal, and detects that the voltage at the voltage supply terminal has exceeded the steady value. The present invention provides a voltage applied current measuring circuit to which a current attracting circuit for attracting current from a voltage supply terminal is added.

【0017】この出願の請求項2では請求項1で提案し
た電圧印加電流測定回路において、周期的に流れる動作
電流が断になった時点から所定時間経過後に電流供給回
路及び電流吸引回路を電圧供給端子から切離す切替回路
を付加した電圧印加電流測定回路を提供する。この出願
の請求項3では請求項1で提案した電圧印加電流測定回
路において、電流供給回路は電圧供給端子に出力される
定常時の電圧値よりわずかに低い電圧を出力する電圧源
と、この電圧源の電圧がアノードに与えられ、カソード
が電圧供給端子に接続されたダイオードと、このダイオ
ードのアノードに電流出力端子を接続した電流源とによ
って構成した電圧印加電流測定回路を提供する。
According to a second aspect of the present application, in the voltage applied current measuring circuit proposed in the first aspect, the current supply circuit and the current suction circuit are supplied with a voltage after a predetermined time elapses from the time point when the operating current flowing periodically is cut off. Provided is a voltage applied current measuring circuit to which a switching circuit for disconnecting from a terminal is added. According to claim 3 of this application, in the voltage applied current measuring circuit proposed in claim 1, the current supply circuit outputs a voltage slightly lower than the voltage value in a steady state output to the voltage supply terminal, and the voltage source. Provided is a voltage applied current measuring circuit configured by a diode having a source voltage applied to an anode and a cathode connected to a voltage supply terminal, and a current source having a current output terminal connected to an anode of the diode.

【0018】この出願の請求項4では、請求項1で提案
した電圧印加電流測定回路において、電流吸引回路は電
圧出力端子の定常時の電圧よりわずかに高い電圧を出力
する電圧源と、この電圧源の電圧がカソードに与えら
れ、アノードが電圧出力端子に接続されたダイオード
と、このダイオードのカソードと電圧源との接続点に接
続され、電圧供給端子の電圧が電圧源の電圧より高くな
った時点でダイオードを通じて電圧供給端子から電流を
吸引する電流源とによって構成した電圧印加電流測定回
路を提供する。
According to claim 4 of this application, in the voltage applied current measuring circuit proposed in claim 1, the current suction circuit outputs a voltage slightly higher than the steady-state voltage of the voltage output terminal, and this voltage source. The voltage of the source is applied to the cathode, the anode is connected to the diode connected to the voltage output terminal and the connection point between the cathode of this diode and the voltage source, and the voltage of the voltage supply terminal becomes higher than the voltage of the voltage source. There is provided a voltage applied current measuring circuit configured by a current source that draws current from a voltage supply terminal through a diode at a time point.

【0019】[0019]

【作用】この出願の請求項1で提案した電圧印加電流測
定回路によれば、負荷となる被試験ICに尖頭値が大き
い動作電流IPが流れたために、電圧出力端子の電圧が
低下方向に変動すると、その電圧の低下を負帰還ループ
で構成される電圧供給回路とは別に設けた電流供給回路
が検出し、電圧出力端子に電流を供給する。この電流の
供給により、従来は電圧供給回路だけから供給されてい
た電流が、この発明では電流供給回路からも供給されて
補足するから、電圧出力端子の電圧変動幅を小さく抑え
ることができる。
According to the voltage-applied current measuring circuit proposed in claim 1 of the present application, the operating current IP having a large peak value flows in the IC to be tested as a load, so that the voltage at the voltage output terminal decreases. When the voltage fluctuates, a decrease in the voltage is detected by a current supply circuit provided separately from the voltage supply circuit configured by the negative feedback loop, and a current is supplied to the voltage output terminal. By supplying this current, the current that was conventionally supplied only from the voltage supply circuit is also supplied from the current supply circuit in the present invention to be supplemented, so that the voltage fluctuation width of the voltage output terminal can be suppressed to a small range.

【0020】電圧出力回路の電圧変動幅を小さくできる
ことから、バイパスコンデンサの容量値を小さい値に設
定することが可能となり、これがために電圧供給回路の
電圧が定常時の電圧に復帰するまでの時間(セットリン
グタイム)を短かくすることができる。この発明では更
に電圧供給回路の電圧出力端子に、この電圧出力端子の
電圧が上昇した場合には、その電圧の上昇を検知して電
流を吸引する電流吸引回路を設けた構成を提案する。こ
の電流吸引回路を設けたことにより、負荷に動作電流が
流れ、その動作電流が断になって定常電流に戻るとき、
電圧出力端子の電圧にオーバーシュートが発生したとす
ると、そのオーバーシュートを検出して電流を吸引す
る。この電流の吸引によりオーバーシュートを制限す
る。この電圧制限動作により電圧出力端子の電圧は早期
に定常電圧に復帰し、オーバーシュートが発生してもセ
ットリングタイムを短かくすることができる。
Since the voltage fluctuation width of the voltage output circuit can be made small, it becomes possible to set the capacitance value of the bypass capacitor to a small value, which causes the time required for the voltage of the voltage supply circuit to return to the steady-state voltage. (Settling time) can be shortened. The present invention further proposes a configuration in which the voltage output terminal of the voltage supply circuit is provided with a current suction circuit that detects a rise in the voltage when the voltage of the voltage output terminal rises and sucks a current. By providing this current suction circuit, an operating current flows through the load, and when the operating current is cut off and returns to a steady current,
If an overshoot occurs in the voltage of the voltage output terminal, the overshoot is detected and the current is drawn. The overshoot is limited by the suction of this current. By this voltage limiting operation, the voltage at the voltage output terminal is quickly restored to the steady voltage, and the settling time can be shortened even if an overshoot occurs.

【0021】請求項2で提案した電圧印加電流測定回路
によれば動作電流が断になった時点から所定の時間が経
過した時点で電流供給回路及び電流吸引回路を電圧出力
端子から切離す切替回路を設けた構成を提案したから、
電流供給回路及び電流吸引回路を流れる電流によって電
流測定値に誤差が発生しない電圧印加電流測定回路を提
供することができる。
According to the voltage applied current measuring circuit proposed in claim 2, a switching circuit for disconnecting the current supply circuit and the current suction circuit from the voltage output terminal when a predetermined time elapses from the time when the operating current is cut off. Since I proposed a configuration with
It is possible to provide a voltage application current measurement circuit in which an error does not occur in the current measurement value due to the current flowing through the current supply circuit and the current suction circuit.

【0022】[0022]

【発明の実施の形態】図1にこの発明による電圧印加電
流測定回路の一実施例を示す。図1において、図5と対
応する部分には同一符号を付けて示す。つまり、10は
電圧供給回路、TOは電圧出力端子、25は被試験IC
で構成される負荷、30はこの発明で付加する電流供給
回路、40は電流吸引回路を示す。
FIG. 1 shows an embodiment of a voltage applied current measuring circuit according to the present invention. In FIG. 1, parts corresponding to those in FIG. 5 are designated by the same reference numerals. That is, 10 is a voltage supply circuit, TO is a voltage output terminal, and 25 is an IC under test.
Is a load, 30 is a current supply circuit added in the present invention, and 40 is a current suction circuit.

【0023】電圧供給回路10の構成及びその動作は図
5で説明したと同じであるからここではその重複説明は
省略する。この発明の特徴とする構成は、電圧出力端子
TOに電流供給回路30と電流吸引回路40も合わせて
接続した点である。電流供給回路30は電圧出力端子T
Oの定常状態における電圧V0 =Vinに安定した状態の
電圧によりわずかに低い電圧VLを発生する電圧源31
と、この電圧源31の電圧がアノードに印加され、カソ
ードが電圧出力端子TOに接続され、更にアノードに電
流源32の電流出力端子が接続されたダイオード33
と、このダイオード33のアノードと電圧源31との間
に接続したダイオード34とによって構成することがで
きる。
Since the structure and operation of the voltage supply circuit 10 are the same as those described with reference to FIG. 5, their duplicate description will be omitted here. The characteristic feature of the present invention is that the current supply circuit 30 and the current suction circuit 40 are also connected to the voltage output terminal TO. The current supply circuit 30 has a voltage output terminal T
A voltage source 31 that produces a slightly lower voltage VL due to the steady state voltage of O at the steady state voltage V 0 = V in.
A diode 33 in which the voltage of the voltage source 31 is applied to the anode, the cathode is connected to the voltage output terminal TO, and the anode is connected to the current output terminal of the current source 32.
And a diode 34 connected between the anode of the diode 33 and the voltage source 31.

【0024】電流吸引回路40は定常時の電圧出力端子
TOの出力電圧V0 =Vinよりわずかに高い電圧VHを
出力する電圧源41と、この電圧源41の電圧VHがカ
ソードに与えられアノードが電圧出力端子TOに接続さ
れ、更にカソードに吸引電流源42が接続されたダイオ
ード43と、このダイオード43のカソードと電圧源4
1との間に接続したダイオード44とによって構成する
ことができる。
The current suction circuit 40 includes a voltage source 41 which outputs a voltage VH slightly higher than the output voltage V 0 = V in of the voltage output terminal TO in a steady state, and a voltage VH of the voltage source 41 which is applied to the cathode of the anode. Is connected to the voltage output terminal TO, and the attracting current source 42 is connected to the cathode of the diode 43. The cathode of the diode 43 and the voltage source 4 are connected.
1 and the diode 44 connected between the two.

【0025】電圧出力端子TOの電圧がV0 =Vinの状
態にある定常状態では電流供給回路30のダイオード3
4と電流吸引回路40のダイオード44は図2CとDに
示すようにオンの状態に保持され、ダイオード33と4
3はオフの状態に維持される。従って電流源32から供
給される電流I1はダイオード34と電圧源31を通じ
て共通電位点COMに流れる。また電流源42で吸引す
る電流I2は共通電位点COMから電圧源41とダイオ
ード44を通じて電流源42に吸引される。
In the steady state where the voltage of the voltage output terminal TO is V 0 = V in , the diode 3 of the current supply circuit 30
4 and the diode 44 of the current sink circuit 40 are kept in the ON state as shown in FIGS.
3 remains off. Therefore, the current I1 supplied from the current source 32 flows to the common potential point COM through the diode 34 and the voltage source 31. The current I2 drawn by the current source 42 is drawn by the current source 42 from the common potential point COM through the voltage source 41 and the diode 44.

【0026】この状態で負荷25に動作電流IP(図2
A)が流れ、この動作電流IPが流れたことにより、電
圧出力端子TOの電圧V0 が図2Bに示すように低下
し、その電圧V0 が電圧源31の電圧VLより低くなる
とダイオード34はオフに制御され、代わってダイオー
ド33がオンになるため、電流源32から供給される電
流I1は電圧出力端子TOに注入される。
In this state, the operating current IP (see FIG. 2) is applied to the load 25.
2A flows, and the operating current IP flows, the voltage V 0 of the voltage output terminal TO decreases as shown in FIG. 2B. When the voltage V 0 becomes lower than the voltage VL of the voltage source 31, the diode 34 becomes Since the diode 33 is turned off and the diode 33 is turned on instead, the current I1 supplied from the current source 32 is injected into the voltage output terminal TO.

【0027】電流供給回路30から電圧出力端子TOに
電流が注入されることにより、バイパスコンデンサ16
はこの電流I1により充電され、電圧変動ΔV0 は電圧
VL以下には低下しないようにクランプされる。この結
果、電圧出力端子TOの電圧変動ΔV0 の変動幅は電圧
源31の電圧VLによって決まる小さい変動幅に抑制さ
れる。電圧変動幅が小さい値に抑制されるために、電圧
出力端子TOの電圧は動作電流IPが断になった時点か
ら極く短かい時間内に定常値V0 =Vinに復帰すること
ができる。
When a current is injected from the current supply circuit 30 to the voltage output terminal TO, the bypass capacitor 16
Is charged by this current I1, and the voltage fluctuation ΔV 0 is clamped so as not to drop below the voltage VL. As a result, the fluctuation width of the voltage fluctuation ΔV 0 at the voltage output terminal TO is suppressed to a small fluctuation width determined by the voltage VL of the voltage source 31. Since the voltage fluctuation width is suppressed to a small value, the voltage of the voltage output terminal TO can return to the steady value V 0 = V in within a very short time from the time when the operating current IP is cut off. .

【0028】ここで電圧出力端子TOの電圧変動ΔV0
の変動幅が小さくできることから、バイパスコンデンサ
16の容量値C16を小さくできる利点が得られる。バイ
パスコンデンサ16の容量値C16は、電流供給回路30
のスイッチング時間(動作電流IPが流れる時間)を2
nSとすると、 C16≒IP※TP/ΔV0 ≒500mA※2nS/200mV=0.005μF となる。
Here, the voltage variation ΔV 0 of the voltage output terminal TO
Since the fluctuation range of can be made small, there is an advantage that the capacitance value C 16 of the bypass capacitor 16 can be made small. Capacitance C 16 of the bypass capacitor 16, a current supply circuit 30
2 switching time (time when operating current IP flows)
If nS, C 16 ≉IP * TP / ΔV 0 ≅500 mA * 2 nS / 200 mV = 0.005 μF.

【0029】電流測定用抵抗器13の抵抗値Rm は変化
がなく1KΩである。バイパスコンデンサ16の容量値
16が決まることにより図7に示した周波数特性の周波
数f1は、 f1≒1/(2π※Rm ※C16)=31.8kHz fn を100MHzとして回路を安定に動作させるため
の周波数f2を1MHzとすると、位相補償コンデンサ
15の容量値Cm は Cm =1/(2π※Rm ※f2)=160PF となる。
The resistance value R m of the current measuring resistor 13 remains unchanged and is 1 KΩ. Frequency f1 of the frequency characteristics shown in FIG. 7 by the determined capacitance value C 16 of the bypass capacitor 16, f1 ≒ 1 / (2π ※ R m ※ C 16) = 31.8kHz f n the circuit stably as 100MHz When the frequency f2 for operating is 1 MHz, the capacitance value C m of the phase compensation capacitor 15 is C m = 1 / (2π * R m * f2) = 160 PF.

【0030】このように、位相補償コンデンサ15の容
量値Cm が従来の約1/10になるため、電流測定用抵
抗器13の抵抗値Rm と位相補償コンデンサ15の容量
値C m によって決まる放電時間TS(セットリングタイ
ム)は TS=6.55τ=6.55※1KΩ※160PF=
1.04μs となり、セットリングタイムTSを1/10に短縮する
ことができる。
In this way, the capacitance of the phase compensation capacitor 15 is
Quantity CmIs about 1/10 of the conventional value, so the resistance for current measurement is
Resistance value R of the armor 13mAnd the capacitance of the phase compensation capacitor 15
Value C mDischarge time TS (set ring tie
Is TS = 6.55τ = 6.55 * 1KΩ * 160PF =
1.04 μs, shortening the settling time TS to 1/10
be able to.

【0031】一方、この発明では動作電流IPが断にな
った時点で電流供給回路30からの電流の注入量が大き
いと、電圧出力端子TOの電圧が図2Bに実線で示すよ
うに過渡的に上昇するいわゆるオーバーシュートが発生
することが考えられる。このオーバーシュートが発生
し、オーバーシュートの電圧が電圧源41の電圧VHを
越えると電流吸引回路40に設けたダイオード43がオ
ンとなり、電圧出力端子TOから電流源42が電流I2
を吸引する。この電流の吸引によってオーバーシュート
の電圧は電圧源41の電圧VHにクランプされ、電圧V
H以上に上昇することを抑制する。この結果、オーバー
シュートの量は制限されるため、オーバーシュートが発
生してもセットリングタイムを短かくすることができ
る。
On the other hand, in the present invention, if the amount of current injected from the current supply circuit 30 is large when the operating current IP is cut off, the voltage at the voltage output terminal TO transiently changes as shown by the solid line in FIG. 2B. It is possible that a so-called overshoot occurs. When this overshoot occurs and the voltage of the overshoot exceeds the voltage VH of the voltage source 41, the diode 43 provided in the current suction circuit 40 is turned on, and the current source 42 outputs the current I2 from the voltage output terminal TO.
Aspirate. Due to this current attraction, the overshoot voltage is clamped to the voltage VH of the voltage source 41, and the voltage VH
Suppressing rise above H. As a result, since the amount of overshoot is limited, the settling time can be shortened even if overshoot occurs.

【0032】図3はこの出願の請求項2で提案する切替
回路50と60を付加した実施例を示す。図3では電圧
供給回路10を省略して示している。この実施例では負
荷25に動作電流IPが流れている時点では切替回路5
0と60のダイオード52と62は、電圧源51と61
が出力する正電圧Vswp と負電圧Vswn によってオンの
状態に制御され、電流源32と42を電流供給回路30
と電流吸引回路40に接続した状態に保持される。従っ
て電流供給回路30と電流吸引回路40は図1で説明し
たと同様に電流の供給と、吸引動作を実行する。動作電
流IPが断になった時点から所定の時間TM(図4B参
照)経過した時点で電圧源51と61から発生している
電圧Vswp とVswn を0(ゼロ)に戻し、ダイオード5
2と62をオフに制御する。この結果電流源32と42
は電流供給回路30と電流吸引回路40から切離され、
電流源32と42の電流が電圧出力端子TOに漏れるこ
とを阻止する。よって電流源32と42が回路から切離
された後に電流測定手段20で電流を測定することによ
り、電流源32と42の電流の影響を受けることなく、
電流を測定することができる。
FIG. 3 shows an embodiment in which switching circuits 50 and 60 proposed in claim 2 of this application are added. In FIG. 3, the voltage supply circuit 10 is omitted. In this embodiment, the switching circuit 5 is activated when the operating current IP flows through the load 25.
Diodes 52 and 62 of 0 and 60 are connected to voltage sources 51 and 61.
Is controlled by the positive voltage V swp and the negative voltage V swn output by the power supply circuit 30 to turn on the current sources 32 and 42.
And is kept connected to the current suction circuit 40. Therefore, the current supply circuit 30 and the current suction circuit 40 perform the current supply and the suction operation as described with reference to FIG. The voltage V swp and V swn generated from the voltage sources 51 and 61 are returned to 0 (zero) when a predetermined time TM (see FIG. 4B) has elapsed from the time when the operating current IP was cut off, and the diode 5
Control 2 and 62 off. This results in current sources 32 and 42
Is separated from the current supply circuit 30 and the current suction circuit 40,
The currents of the current sources 32 and 42 are prevented from leaking to the voltage output terminal TO. Therefore, by measuring the current with the current measuring means 20 after the current sources 32 and 42 are disconnected from the circuit, the currents of the current sources 32 and 42 are not affected, and
The current can be measured.

【0033】[0033]

【発明の効果】以上説明したように、この発明によれば
負帰還回路で構成される電圧供給回路10の電流供給機
能を電流供給回路30で補足し、尖頭値の大きい動作電
流IPが流れても、電圧出力端子TOの電圧変動量を低
減させる構成としたから、電圧供給回路10の電流供給
容量を軽減させることができる。つまりバイパスコンデ
ンサ16の容量値C16を小さい値に設定することができ
る。バイパスコンデンサ16の容量値C16を小さい値に
設定することができることから、位相補償コンデンサ1
5の容量値Cm も小さい値に設定することができ、電流
測定用抵抗器13との時定数Rm ※Cm を小さくするこ
とができる。これによって尖頭値の大きい動作電流IP
が流れて直後の電圧出力端子TOの電圧が定常時の電圧
に復帰するまでのセットリングタイムを短かくすること
ができ、この結果として動作電流IPの繰返し周期が高
速繰返し周期でも定常時の電流ΔIを正確に測定するこ
とができることになる。
As described above, according to the present invention, the current supply circuit 30 supplements the current supply function of the voltage supply circuit 10 configured by the negative feedback circuit, and the operating current IP having a large peak value flows. However, since the voltage fluctuation amount of the voltage output terminal TO is reduced, the current supply capacity of the voltage supply circuit 10 can be reduced. That it is possible to set the capacitance value C 16 in the bypass capacitor 16 to a small value. Since it is possible to set the capacitance value C 16 in the bypass capacitor 16 to a small value, the phase compensation capacitor 1
The capacitance value C m of 5 can also be set to a small value, and the time constant R m * C m with the current measuring resistor 13 can be reduced. This makes the operating current IP with a large peak value
The settling time until the voltage of the voltage output terminal TO immediately after the flow of the current returns to the steady-state voltage can be shortened, and as a result, the steady-state current can be obtained even when the cycle period of the operating current IP is high. It will be possible to measure ΔI accurately.

【0034】また、請求項2で提案した電圧印加電流測
定回路によれば電流測定時点では電流補足用の電流供給
回路30及びオーバーシュート除去用の電流吸引回路4
0を構成する各電流源31と41を回路から切離す構成
としたから、スイッチ用のダイオード33及び43の漏
れ電流による影響を受けることがない。従って、電流供
給回路30と電流吸引回路40を設けたことにより電流
測定値の信頼性が損なわれることはない。
Further, according to the voltage applied current measuring circuit proposed in claim 2, at the time of measuring the current, the current supplying circuit 30 for supplementing the current and the current attracting circuit 4 for removing the overshoot.
Since the current sources 31 and 41 forming 0 are separated from the circuit, they are not affected by the leakage currents of the switching diodes 33 and 43. Therefore, the provision of the current supply circuit 30 and the current suction circuit 40 does not impair the reliability of the measured current value.

【0035】更に、電流供給回路30及び電流吸引回路
40は動作電流IPが流れている期間が終了し、定常状
態での微小電流測定時ではダイオード33及び43がオ
フの状態に制御され、電圧出力端子TO側に電流を出力
することがない。この結果、電流源32,42及び電圧
源31,41には高速応答性のみが要求され、低ノイズ
特性、高精度の出力電圧安定度は要求されないため、装
置を簡単に作成することができる。
Further, in the current supply circuit 30 and the current suction circuit 40, the period in which the operating current IP is flowing ends, and the diodes 33 and 43 are controlled to be in the off state during the measurement of the minute current in the steady state, and the voltage output is performed. No current is output to the terminal TO side. As a result, the current sources 32 and 42 and the voltage sources 31 and 41 are required to have only high-speed responsiveness, and low noise characteristics and highly accurate output voltage stability are not required, so that the device can be easily manufactured.

【0036】また、バイパスコンデンサ16の容量値C
16を小さい値に設定することができることから、ノイズ
による不確定電流の影響を小さくすることができる。つ
まり、電圧供給回路10の出力にノイズが存在すると、
バイパスコンデンサ16にノイズ電流が流れ、このノイ
ズ電流が微小電流測定時の不確定電流となる。因みに1
00KHzで10μVのノイズが発生していると、ノイ
ズ電流は、 従来、C16=0.250μF ZC =1/(2π※f※0.250μF)=6.3Ω ノイズ電流=10μV/6.3Ω=1.58μA 本発明、C16=0.005μF ZC =1/(2π※f※0.005μF)=318Ω ノイズ電流=10μV/318Ω=0.03μA となり、電圧供給回路10に要求されるノイズ特性も大
幅に緩和させることができる。
Further, the capacitance value C of the bypass capacitor 16
Since 16 can be set to a small value, the influence of uncertain current due to noise can be reduced. That is, if noise is present in the output of the voltage supply circuit 10,
A noise current flows through the bypass capacitor 16, and this noise current becomes an uncertain current when measuring a minute current. By the way 1
When 10 μV noise is generated at 00 KHz, the noise current is conventionally C 16 = 0.250 μF Z C = 1 / (2π * f * 0.250 μF) = 6.3Ω Noise current = 10 μV / 6.3Ω = 1.58 μA In the present invention, C 16 = 0.005 μF Z C = 1 / (2π * f * 0.005 μF) = 318 Ω Noise current = 10 μV / 318 Ω = 0.03 μA, and the noise required for the voltage supply circuit 10 The characteristics can also be significantly eased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を説明するための接続図。FIG. 1 is a connection diagram for explaining an embodiment of the present invention.

【図2】図1の動作を説明するための波形図。FIG. 2 is a waveform chart for explaining the operation of FIG.

【図3】この発明の請求項2で提案する要部の回路構成
を説明するための接続図。
FIG. 3 is a connection diagram for explaining a circuit configuration of a main part proposed in claim 2 of the present invention.

【図4】図3の動作を説明するための波形図。FIG. 4 is a waveform diagram for explaining the operation of FIG.

【図5】従来の技術を説明するための接続図。FIG. 5 is a connection diagram for explaining a conventional technique.

【図6】図5の動作を説明するための波形図。6 is a waveform diagram for explaining the operation of FIG.

【図7】図5の動作を説明するための周波数特性曲線
図。
7 is a frequency characteristic curve diagram for explaining the operation of FIG.

【符号の説明】[Explanation of symbols]

10 電圧供給回路 11 演算増幅器 12 負帰還回路 13 電流測定用抵抗器 14 ダイオードの逆並列回路 15 位相補償コンデンサ 16 バイパスコンデンサ TO 電圧出力端子 18 電圧源 20 電流測定手段 25 負荷 30 電流供給回路 40 電流吸引回路 50,60 切替回路 10 Voltage Supply Circuit 11 Operational Amplifier 12 Negative Feedback Circuit 13 Current Measuring Resistor 14 Diode Anti-Parallel Circuit 15 Phase Compensation Capacitor 16 Bypass Capacitor TO Voltage Output Terminal 18 Voltage Source 20 Current Measuring Means 25 Load 30 Current Supply Circuit 40 Current Absorption Circuit 50, 60 Switching circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入力端子に一定電圧が与えられた演算増
幅器及びこの演算増幅器の出力電圧が与えられ、周期的
に定常時の電流より尖頭値が大きい動作電流を消費する
負荷にその出力電圧を供給する電圧出力端子、この電圧
出力端子の電圧を上記演算増幅器の反転入力端子に帰還
する帰還回路によって構成した電圧供給回路と、この電
圧供給回路を構成する演算増幅器の出力端子と電圧出力
端子との間に接続した電流測定用抵抗器と、上記電圧出
力端子と共通電位点との間に接続したバイパスコンデン
サと、上記電流測定用抵抗器に並列接続したダイオード
の逆並列接続回路と、上記電流測定用抵抗器に並列接続
した位相補償コンデンサと、上記電流測定用抵抗器に発
生する電圧を測定し、上記演算増幅器から電圧出力端子
に出力される電流値を測定する電流測定手段とを具備し
て構成される電圧印加電流測定回路において、 上記電圧出力端子にこの電圧出力端子の電圧が規定値よ
り低下したことを検出して上記電位供給端子に電流を流
し込む電流供給回路と、上記電圧供給端子の電圧が定常
値より高くなったことを検出して上記電圧供給端子より
電流を吸引する電流吸引回路とを付加したことを特徴と
する電圧印加電流測定回路。
1. An operational amplifier to which a constant voltage is applied to an input terminal and an output voltage of the operational amplifier are applied to a load which periodically consumes an operating current having a peak value larger than a steady-state current. A voltage output circuit for supplying a voltage, a voltage supply circuit configured by a feedback circuit for feeding back the voltage of the voltage output terminal to the inverting input terminal of the operational amplifier, and an output terminal and a voltage output terminal of the operational amplifier forming the voltage supply circuit. A current measuring resistor connected between the current measuring resistor, a bypass capacitor connected between the voltage output terminal and a common potential point, an anti-parallel connection circuit of diodes connected in parallel to the current measuring resistor, and The current value output from the operational amplifier to the voltage output terminal by measuring the voltage generated in the phase compensation capacitor connected in parallel with the current measuring resistor and the current measuring resistor. In a voltage applied current measuring circuit configured to include a current measuring unit for measuring the voltage, the voltage output terminal detects that the voltage at the voltage output terminal has dropped below a specified value, and supplies a current to the potential supply terminal. A voltage applied current measuring circuit characterized by adding a flowing current supply circuit and a current suction circuit for detecting that the voltage of the voltage supply terminal has become higher than a steady value and drawing a current from the voltage supply terminal. .
【請求項2】 請求項1記載の電圧印加電流測定回路に
おいて、上記周期的に流れる動作電流が断になった時点
から所定時間経過後に上記電流供給回路及び電流吸引回
路を上記電圧供給端子から切離す切替回路を付加したこ
とを特徴とする電圧印加電流測定回路。
2. The voltage applied current measuring circuit according to claim 1, wherein the current supply circuit and the current suction circuit are disconnected from the voltage supply terminal after a lapse of a predetermined time from the time point when the operating current flowing periodically is cut off. A voltage applied current measuring circuit characterized by adding a switching circuit for separating.
【請求項3】 請求項1記載の電圧印加電流測定回路に
おいて、上記電流供給回路は上記電圧供給端子に出力さ
れる定常時の電圧値よりわずかに低い電圧を出力する電
圧源と、この電圧源の電圧がアノードに与えられ、カソ
ードが上記電圧供給回路の電圧出力端子に接続されたダ
イオードと、このダイオードのアノードに電流出力端子
を接続した電流源とによって構成したことを特徴とする
電圧印加電流測定回路。
3. The voltage applied current measuring circuit according to claim 1, wherein the current supply circuit outputs a voltage slightly lower than a steady-state voltage value output to the voltage supply terminal, and the voltage source. Is applied to the anode of the voltage supply circuit, the cathode of which is connected to the voltage output terminal of the voltage supply circuit, and the current output terminal of which is connected to the anode of the diode. Measurement circuit.
【請求項4】 請求項1記載の電圧印加電流測定回路に
おいて、上記電流吸引回路は上記電圧出力端子の定常時
の電圧よりわずかに高い電圧を出力する電圧源と、この
電圧源の電圧がカソードに与えられ、アノードが上記電
圧出力端子に接続されたダイオードと、上記ダイオード
のカソードと上記電圧源との接続点に接続され、上記電
圧供給端子の電圧が上記電圧源の電圧より高くなった時
点で上記ダイオードを通じて上記電圧出力端子から電流
を吸引する電流源とによって構成したことを特徴とする
電圧印加電流測定回路。
4. The voltage applied current measuring circuit according to claim 1, wherein the current suction circuit outputs a voltage slightly higher than a steady-state voltage of the voltage output terminal, and the voltage of the voltage source is a cathode. When the voltage of the voltage supply terminal is higher than the voltage of the voltage source, the anode of which is connected to the voltage output terminal and the connection point of the diode cathode and the voltage source. And a current source that draws a current from the voltage output terminal through the diode.
JP4343596A 1996-02-29 1996-02-29 Voltage applied current measurement circuit Expired - Fee Related JP3599256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343596A JP3599256B2 (en) 1996-02-29 1996-02-29 Voltage applied current measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343596A JP3599256B2 (en) 1996-02-29 1996-02-29 Voltage applied current measurement circuit

Publications (2)

Publication Number Publication Date
JPH09236637A true JPH09236637A (en) 1997-09-09
JP3599256B2 JP3599256B2 (en) 2004-12-08

Family

ID=12663628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343596A Expired - Fee Related JP3599256B2 (en) 1996-02-29 1996-02-29 Voltage applied current measurement circuit

Country Status (1)

Country Link
JP (1) JP3599256B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014825A (en) * 2001-07-04 2003-01-15 Advantest Corp Electric source device and test device
US7138819B2 (en) 2002-06-13 2006-11-21 Advantest Corp. Differential voltage measuring apparatus and semiconductor testing apparatus
WO2007049476A1 (en) * 2005-10-27 2007-05-03 Advantest Corporation Testing apparatus and testing method
JP2009074900A (en) * 2007-09-20 2009-04-09 Yokogawa Electric Corp Voltage applied current measurement circuit
JP2009115647A (en) * 2007-11-07 2009-05-28 Yokogawa Electric Corp Direct-current testing device and semiconductor testing device
JP2009243937A (en) * 2008-03-28 2009-10-22 Yokogawa Electric Corp Voltage supplying device
JP2017173318A (en) * 2016-03-18 2017-09-28 アナログ デバイシス, インコーポレイテッド Segmented pin driver system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240310411A1 (en) * 2023-03-16 2024-09-19 Texas Instruments Incorporated Methods and apparatus for source measurement unit (smu) operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217666A (en) * 1985-07-17 1987-01-26 Advantest Corp Apparatus for measuring current through voltage application
JPH06342033A (en) * 1993-05-28 1994-12-13 Ando Electric Co Ltd Clamp circuit and ic tester using the same
JPH07218596A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Semiconductor testing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217666A (en) * 1985-07-17 1987-01-26 Advantest Corp Apparatus for measuring current through voltage application
JPH06342033A (en) * 1993-05-28 1994-12-13 Ando Electric Co Ltd Clamp circuit and ic tester using the same
JPH07218596A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Semiconductor testing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014825A (en) * 2001-07-04 2003-01-15 Advantest Corp Electric source device and test device
US7138819B2 (en) 2002-06-13 2006-11-21 Advantest Corp. Differential voltage measuring apparatus and semiconductor testing apparatus
WO2007049476A1 (en) * 2005-10-27 2007-05-03 Advantest Corporation Testing apparatus and testing method
KR100977415B1 (en) * 2005-10-27 2010-08-24 가부시키가이샤 어드밴티스트 Test apparatus and test method
US7979218B2 (en) 2005-10-27 2011-07-12 Advantest Corporation Test apparatus, test method and computer readable medium
JP4939429B2 (en) * 2005-10-27 2012-05-23 株式会社アドバンテスト Test apparatus and test method
JP2009074900A (en) * 2007-09-20 2009-04-09 Yokogawa Electric Corp Voltage applied current measurement circuit
JP2009115647A (en) * 2007-11-07 2009-05-28 Yokogawa Electric Corp Direct-current testing device and semiconductor testing device
JP2009243937A (en) * 2008-03-28 2009-10-22 Yokogawa Electric Corp Voltage supplying device
JP2017173318A (en) * 2016-03-18 2017-09-28 アナログ デバイシス, インコーポレイテッド Segmented pin driver system

Also Published As

Publication number Publication date
JP3599256B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3072880B2 (en) Voltage generator for IC test
KR101108131B1 (en) Power Stabilization Circuits, Electronic Devices, and Test Equipment
JPH0420238B2 (en)
JPH09236637A (en) Voltage application current measuring circuit
JP4081089B2 (en) Power supply device, test device, and power supply voltage stabilization device
US7362104B2 (en) Current measurement device and test device
US4488438A (en) Square-wave current generator
KR100272951B1 (en) Circuit for voltage applying
GB2538782A (en) Improved tracking
US20200081465A1 (en) Voltage-to-current converter
US20050270054A1 (en) Method and apparatus for iddq measuring
JP2022133172A (en) AMPLIFIER CIRCUIT AND CURRENT SENSOR HAVING THE SAME
JPS6217666A (en) Apparatus for measuring current through voltage application
JP3390533B2 (en) Voltage applied current measurement circuit
JP4412917B2 (en) Current measuring device and test device
JP2776980B2 (en) Current detection device for semiconductor power switch
KR20070065900A (en) Power supply apparatus and testing apparatus
JP3312763B2 (en) Voltage applied current measurement circuit
JPH10293154A (en) Bias power source circuit for semiconductor testing device
KR0154843B1 (en) Minimum power consumption current detecting circuit with temperature compensation
JP3851871B2 (en) Driver circuit
JPH06258382A (en) Voltage impressing current measuring circuit
JP3965608B2 (en) Low pressure fluorescent lamp control device
KR0154842B1 (en) Current detecting circuit for sensor transistor with temperature compensation
JPH0524222Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees