JPH09236490A - Color filter density measuring method and apparatus - Google Patents
Color filter density measuring method and apparatusInfo
- Publication number
- JPH09236490A JPH09236490A JP4340496A JP4340496A JPH09236490A JP H09236490 A JPH09236490 A JP H09236490A JP 4340496 A JP4340496 A JP 4340496A JP 4340496 A JP4340496 A JP 4340496A JP H09236490 A JPH09236490 A JP H09236490A
- Authority
- JP
- Japan
- Prior art keywords
- light
- color filter
- color
- filter substrate
- receiving means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Optical Filters (AREA)
- Liquid Crystal (AREA)
Abstract
(57)【要約】
【課題】 高感度で色フィルタ基板の色濃度が測定で
き、感光性材料使用環境でも設置可能な技術を実現す
る。
【解決手段】 可視光の所定の波長領域の光透過率が高
い特性を有する色フィルタ基板の一方の面から基板に光
を照射する投光手段と、色フィルタ基板の他方に配され
色フィルタ基板を通過する光を測定する受光手段と、演
算部を有し、受光手段は色フィルタ基板の光透過率の低
い波長の光量を測定し、演算部は受光手段の出力より色
フィルタ基板の色の濃さを求める。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To realize a technology capable of measuring the color density of a color filter substrate with high sensitivity and capable of being installed even in an environment using a photosensitive material. SOLUTION: A light projecting means for irradiating the substrate with light from one surface of a color filter substrate having a characteristic of having a high light transmittance in a predetermined wavelength region of visible light, and a color filter substrate arranged on the other side of the color filter substrate. Has a light receiving means for measuring the light passing through, and the calculating portion, the light receiving means measures the amount of light of a wavelength having a low light transmittance of the color filter substrate, and the calculating portion determines the color of the color filter substrate from the output of the light receiving means. Find the darkness.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、色フィルタ基板
の色の濃さを光により測定する色フィルタの濃度測定方
法およびその装置に関するもので、例えば液晶表示板な
どに用いられる3色フィルタ特性を1枚の基板上に有す
る色フィルタ基板の色の濃さを測定するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color filter density measuring method and apparatus for measuring the color strength of a color filter substrate by light, and, for example, the characteristics of a three-color filter used in a liquid crystal display panel or the like. The color strength of the color filter substrate provided on one substrate is measured.
【0002】[0002]
【従来の技術】以下の説明において、液晶表示板に使用
される赤色、緑色および青色の3色のフィルタ基板、す
なわちR−G−B3色フィルタ基板を例として説明す
る。図7は、R−G−B3色フィルタ基板の一般的な製
造工程を示す説明図であり、これを用いて説明する。 (1)図7(a)に示すように透明基板11にブラック
マトリックス層(以下、BM層という)12を生成す
る。BM層12は通常金属層であり、その形状はR−G
−B各画素となる部分の輪郭を構成するものである。
尚、このBM層12は本発明と直接関係しないのでその
製造方法についての説明は省略する。 (2)透明基板11にBM層12を生成した後、図7
(b)に示すようにR色フィルタ層13を透明基板11
上に一面に、かつ均一に塗布する。 (3)その後写真エッチング技術により、図7(c)に
示すように不要な部分を除去する。これにより必要とな
る部分にのみR色画素23が形成される。 (4)透明基板11にR色画素23を形成した後、図7
(d)に示すようにG色フィルタ層14を透明基板11
上に一面に、かつ均一に塗布する。 (5)その後写真エッチング技術により、図7(e)に
示すように不要な部分を除去する。これにより必要とな
る部分にのみG色画素24となる部分が形成されるので
R−Gの各画素が互いに隣接して形成される。 (6)透明基板11にR画素23並びにG画素24を形
成した後、図7(f)に示すようにB色フィルタ層15
を透明基板11上に一面に、かつ均一に塗布する。 (7)その後写真エッチング技術により、図7(g)に
示すように不要な部分を除去する。これにより必要とな
る部分にのみB色画素25となる部分が形成されるので
R−G−Bの各画素が形成される。 (8)この後さらに透明電極の生成などの工程があるが
本発明に直接関係しないのでその工程を省略する。 上記R−G−Bの3色画素を同一基板上に設けた色フィ
ルタ基板2が完成すると、この色フィルタ基板2は検査
工程において、良品であるか否かを検査する。2. Description of the Related Art In the following description, a red, green and blue filter substrate used for a liquid crystal display panel, that is, an R-G-B tri-color filter substrate will be described as an example. FIG. 7 is an explanatory diagram showing a general manufacturing process of an R-G-B three-color filter substrate, and description will be given using this. (1) As shown in FIG. 7A, a black matrix layer (hereinafter referred to as BM layer) 12 is formed on the transparent substrate 11. The BM layer 12 is usually a metal layer and its shape is R-G.
-B The contour of the portion that becomes each pixel is configured.
Since the BM layer 12 is not directly related to the present invention, description of its manufacturing method is omitted. (2) After forming the BM layer 12 on the transparent substrate 11, FIG.
As shown in (b), the R color filter layer 13 is formed on the transparent substrate 11
Apply evenly over one surface. (3) After that, an unnecessary portion is removed by a photo-etching technique as shown in FIG. As a result, the R color pixel 23 is formed only in the required portion. (4) After forming the R-color pixels 23 on the transparent substrate 11, FIG.
As shown in (d), the G color filter layer 14 is formed on the transparent substrate 11
Apply evenly over one surface. (5) After that, an unnecessary portion is removed by a photo etching technique as shown in FIG. As a result, a portion to be the G color pixel 24 is formed only in a necessary portion, so that the R-G pixels are formed adjacent to each other. (6) After the R pixel 23 and the G pixel 24 are formed on the transparent substrate 11, the B color filter layer 15 is formed as shown in FIG.
Is uniformly and uniformly coated on the transparent substrate 11. (7) After that, an unnecessary portion is removed by a photo etching technique as shown in FIG. As a result, a portion that becomes the B-color pixel 25 is formed only in a necessary portion, so that each pixel of RGB is formed. (8) After this, there is a step such as formation of a transparent electrode, but since it is not directly related to the present invention, that step is omitted. When the color filter substrate 2 in which the three color pixels R, G, and B are provided on the same substrate is completed, it is inspected in the inspection process whether or not the color filter substrate 2 is a good product.
【0003】R−G−Bの3色のフィルタ部の各色の光
透過率は例えば図8に示す特性を有している。一般に、
R−G−B3色フィルタ基板の一方の面から白色光を照
射し、他方の面側への透過光量を各画素毎に測定するこ
とにより、各色の色の濃さを測定できることが理論的に
知られている。この従来の方法において、例えばR色画
素のフィルタ膜厚が倍になったことで色の濃さが濃くな
った場合を考える。R色画素を透過する光は赤色であ
り、赤色光の透過率が90%であったとする。これが2
倍の膜厚となると透過光量は、 90%×90%=81% であり、光量変化で言えば膜厚が2倍となったことでそ
の前後の比は、 90:81=10:9 であり、変化量は1割と見ることができる。上記計算例
では膜厚が2倍に変わったときのものであるが、膜厚が
数%変わった場合には上記光量変化は極めて微小となり
膜厚変化などで生ずる僅かな色の濃さの変化を高精度で
測定することができない。The light transmittance of each color of the R, G, and B filter portions has the characteristics shown in FIG. 8, for example. In general,
It is theoretically possible to measure the color density of each color by irradiating white light from one surface of the R-G-B three-color filter substrate and measuring the amount of transmitted light to the other surface side for each pixel. Are known. In this conventional method, consider the case where the color depth is increased by doubling the filter film thickness of the R color pixel, for example. It is assumed that the light passing through the R color pixel is red and the transmittance of the red light is 90%. This is 2
When the film thickness is doubled, the transmitted light amount is 90% × 90% = 81%, and in terms of the change in the light amount, the film thickness is doubled, and the ratio before and after that is 90: 81 = 10: 9. Yes, the amount of change can be seen as 10%. In the above calculation example, the film thickness is doubled. However, when the film thickness is changed by several percent, the change in the light amount becomes extremely small and a slight change in the color depth caused by the change in the film thickness or the like. Cannot be measured with high accuracy.
【0004】また、色の濃さを均一にするために、塗布
されるフィルタ材料の原料管理を行い、塗布された各色
の膜厚を管理するなどの手段を施すことがある。しか
し、これらは代用特性でありフィルタの色の濃さを直接
測定していないので、誤差要因を含み、安定した品質で
大量に色フィルタ基板を作成する上で障害があった。Further, in order to make the color depth uniform, it is sometimes necessary to control the raw material of the applied filter material and to control the film thickness of each applied color. However, since these are substitute characteristics and the color density of the filter is not directly measured, there is an error factor and there is an obstacle in producing a large number of color filter substrates with stable quality.
【0005】さらに、工程上の異常があったときには多
数の不良品が製造される危険性があるのでこれを避ける
には、各色フィルタを塗布した直後にその場でその色の
濃さを測定し、異常があった場合にはその結果をもとに
迅速に対策をとれることが望ましい。もちろんその色フ
ィルタの色の濃さを測定するに当たっては代用特性では
ない光学的な測定が望ましい。しかし、色フィルタ塗布
工程近傍で写真エッチング技術により光感光性の材料を
使用している場合、その工程近傍も含めて紫外線、青系
統の光の発生並びに照射は禁止されている。このような
場合には紫外線、青系統の光の発生や照射のない光源の
み、例えばイエローライトと称される黄色発光蛍光灯の
みの環境下で測定を行う必要がある。従って、従来の方
法ではB色の測定は青系統の光を照射する必要があり採
用できず、B色の測定は工程上の基板を工程外に取り出
しイエロールーム外で光学的な測定を行う必要があっ
た。Further, when there is a process abnormality, there is a risk that a large number of defective products will be manufactured. Therefore, in order to avoid this, the color strength is measured on the spot immediately after applying each color filter. If there is an abnormality, it is desirable to take prompt measures based on the results. Of course, when measuring the color strength of the color filter, optical measurement, which is not a substitute characteristic, is desirable. However, when a photo-sensitive material is used in the vicinity of the color filter application step by a photo etching technique, generation and irradiation of ultraviolet rays and blue light are prohibited including in the vicinity of the step. In such a case, it is necessary to perform the measurement only in a light source that does not generate or irradiate ultraviolet light or blue light, for example, in an environment of only a yellow light-emitting fluorescent lamp called yellow light. Therefore, in the conventional method, B color measurement cannot be adopted because it is necessary to radiate blue light, and B color measurement needs to take the substrate on the process out of the process and perform optical measurement outside the yellow room. was there.
【0006】このように、イエローライト環境下で使用
できるR−G−B3色の色の濃さを測定する測定方法並
びに測定器が求められていたが、従来この種測定装置は
見当たらない。As described above, there has been a demand for a measuring method and a measuring device for measuring the color intensity of the three R-G-B colors that can be used in a yellow light environment, but no measuring device of this kind has been found in the past.
【0007】[0007]
【発明が解決しようとする課題】上述のように、色の濃
さを均一にするために、塗布されるフィルタ材料の原料
管理を行ったり塗布された各色の膜厚を管理するなどの
手段は、フィルタの色の濃さを直接測定していないの
で、誤差要因を含み、安定した品質で大量に色フィルタ
基板を作成する上で障害があり、また、フィルタ材料が
塗布される環境がイエロールーム環境の場合、紫外線並
びに青系統の光の照射が禁止されているのでフィルタ材
料が塗布された直後に色の濃さを光学的に測定出来ない
などの課題があった。As described above, in order to make the color density uniform, the means for controlling the raw material of the applied filter material and controlling the film thickness of each applied color are Since the color density of the filter is not directly measured, there is an error factor, and there is an obstacle in producing a large number of color filter substrates with stable quality, and the environment in which the filter material is applied is in the yellow room. In the case of the environment, since the irradiation of ultraviolet rays and blue light is prohibited, there is a problem that the color strength cannot be optically measured immediately after the filter material is applied.
【0008】この発明は上記のような課題を解決するた
めになされたもので、各色フィルタを塗布した直後にそ
の場でその色の濃さを測定でき、イエローライト環境下
においても周囲に影響を与えずに直接光学的に色の濃さ
を極めて高精度、かつ高感度で測定する色フィルタの濃
度測定方法およびその装置を得ることを目的とするもの
である。The present invention has been made in order to solve the above problems, and the color density can be measured on the spot immediately after applying each color filter, and the influence on the surroundings can be obtained even in a yellow light environment. An object of the present invention is to obtain a color filter density measuring method and an apparatus for directly and optically measuring color density with extremely high accuracy and high sensitivity without giving it.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明は、
可視光のうち所定の波長領域で光透過率が高い色フィル
タ層を有する色フィルタ基板の一方の面に光を照射し、
上記色フィルタ基板の他方の面側に配置された受光手段
により、上記色フィルタ基板を通過した光のうち上記色
フィルタ層の光透過率の低い波長の光の光量を測定し、
上記受光手段に接続された演算手段により上記受光手段
の出力から上記色フィルタ層の色の濃さを演算するもの
である。According to the first aspect of the present invention,
Irradiating light on one surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light,
By the light receiving means arranged on the other surface side of the color filter substrate, the light amount of light having a low light transmittance of the color filter layer of the light passing through the color filter substrate is measured,
The color density of the color filter layer is calculated from the output of the light receiving means by the calculating means connected to the light receiving means.
【0010】請求項2記載の発明は、可視光のうち第1
の波長領域で光透過率が高い第1の部分と、上記第1の
部分上に積層され、可視光のうち第2の波長領域で光透
過率が高い第2の色フィルタ層とから成る色フィルタ基
板の一方の面に光を照射し、上記色フィルタ基板の他方
の面側に配置された受光手段により、上記色フィルタ基
板を通過した光のうち上記第1の部分の光透過率の低い
波長の光の光量を測定し、上記受光手段に接続された演
算手段により上記受光手段の出力から上記第1の部分の
色の濃さを演算するものである。The invention according to claim 2 is the first of visible light.
Of the first colorant having a high light transmittance in the wavelength region of, and a second color filter layer laminated on the first part and having a high light transmittance in the second wavelength region of visible light. One of the surfaces of the filter substrate is irradiated with light, and the light receiving means disposed on the other surface side of the color filter substrate has a low light transmittance of the first portion of the light passing through the color filter substrate. The light intensity of the light of the wavelength is measured, and the calculation means connected to the light receiving means calculates the color density of the first portion from the output of the light receiving means.
【0011】請求項3記載の発明は、可視光のうち第1
の波長領域で光透過率が高い第1の部分と、上記第1の
部分上に積層され、可視光のうち第2の波長領域で光透
過率が高い第2の色フィルタ層とから成る色フィルタ基
板の一方の面に光を照射し、上記色フィルタ基板の他方
の面側に配置された受光手段により、上記色フィルタ基
板を通過した光のうち上記第1の波長領域以外で、且つ
上記第2の波長領域以外の波長の光の光量を測定し、上
記受光手段に接続された演算手段により上記受光手段の
出力から上記第1の部分の色の濃さを演算するものであ
る。According to a third aspect of the present invention, the first visible light is used.
Of the first colorant having a high light transmittance in the wavelength region of, and a second color filter layer laminated on the first part and having a high light transmittance in the second wavelength region of visible light. The light is irradiated onto one surface of the filter substrate, and the light receiving means arranged on the other surface side of the color filter substrate causes light passing through the color filter substrate to be outside the first wavelength region, and The light intensity of the light having a wavelength other than the second wavelength region is measured, and the calculation means connected to the light receiving means calculates the color density of the first portion from the output of the light receiving means.
【0012】請求項4記載の発明は、可視光のうち第1
の波長領域で光透過率が高い第1の部分と、可視光のう
ち第2の波長領域で光透過率が高い第2の部分と、上記
第1の部分及び第2の部分上に積層され、可視光のうち
第3の波長領域で光透過率が高い第3の色フィルタ層と
から成る色フィルタ基板の一方の面に光を照射し、上記
色フィルタ基板の他方の面側に配置された受光手段によ
り、上記色フィルタ基板を通過した光のうち上記第1の
波長領域以外の波長の光の光量を測定し、上記受光手段
に接続された演算手段により上記受光手段の出力から上
記第1の部分の色の濃さを演算するものである。The invention according to claim 4 is the first of visible light.
A first portion having a high light transmittance in the wavelength region of, a second portion having a high light transmittance in the second wavelength region of visible light, and laminated on the first portion and the second portion. , Irradiates light on one surface of a color filter substrate composed of a third color filter layer having a high light transmittance in the third wavelength region of visible light, and is arranged on the other surface side of the color filter substrate. The light receiving means measures the amount of light having a wavelength other than the first wavelength region out of the light passing through the color filter substrate, and the calculating means connected to the light receiving means measures the light amount from the output of the light receiving means. The color intensity of the portion 1 is calculated.
【0013】請求項5記載の発明は、可視光のうち第1
の波長領域で光透過率が高い第1の部分と、可視光のう
ち第2の波長領域で光透過率が高い第2の部分と、可視
光のうち第3の波長領域で光透過率が高い第3の部分と
から成る色フィルタ基板の一方の面に光を照射し、上記
色フィルタ基板の他方の面側に配置され、上記第1の部
分(又は第2の部分若しくは第3の部分)に対応する位
置に透孔を有するマスク板により上記第1の部分(又は
第2の部分若しくは第3の部分)を通過する光のみ通過
させ、上記色フィルタ基板の他方の面側に配置された受
光手段により、上記色フィルタ基板を通過した光のうち
上記第1の波長領域(又は第2の波長領域若しくは第3
の波長領域)以外の波長の光の光量を測定し、上記受光
手段に接続された演算手段により上記受光手段の出力か
ら上記第1の部分(又は第2の部分若しくは第3の部
分)の色の濃さを演算するものである。The invention according to claim 5 is the first of visible light.
Of the first wavelength having a high light transmittance in the wavelength region of, the second portion of the visible light having a high light transmittance of the second wavelength region, and the third portion of the visible light having a light transmittance of the third wavelength region. The one surface of the color filter substrate composed of the high third portion is irradiated with light and is arranged on the other surface side of the color filter substrate, and the first portion (or the second portion or the third portion). ), A mask plate having a through hole at a position corresponding to the position (1) allows only the light passing through the first portion (or the second portion or the third portion) to pass therethrough and is arranged on the other surface side of the color filter substrate. By the light receiving means, the first wavelength region (or the second wavelength region or the third wavelength region) of the light passing through the color filter substrate is received.
(The wavelength region of), the amount of light having a wavelength other than that of the first portion (or the second portion or the third portion) is output from the output of the light receiving means by the computing means connected to the light receiving means. Is to calculate the density of.
【0014】請求項6記載の発明は、可視光のうち所定
の波長領域の光透過率が高い色フィルタ層を有する色フ
ィルタ基板の一方の面に光を照射する投光手段と、上記
色フィルタ基板の他方の面側に配され、上記色フィルタ
基板を通過する光のうち上記色フィルタ層の透過率の低
い波長の光の光量を測定する受光手段と、この受光手段
に接続され上記受光手段の出力から上記色フィルタ層の
色の濃さを演算する演算手段とを備えたものである。According to a sixth aspect of the present invention, there is provided light projecting means for irradiating light on one surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light, and the color filter. Light receiving means arranged on the other surface side of the substrate for measuring the amount of light of a wavelength having a low transmittance of the color filter layer among the light passing through the color filter substrate, and the light receiving means connected to the light receiving means. And an arithmetic means for arithmetically calculating the color intensity of the color filter layer from the output of.
【0015】請求項7記載の発明は、可視光のうち所定
の波長領域の光透過率が高い色フィルタ層を有する色フ
ィルタ基板の一方の面に光を照射する投光手段と、上記
色フィルタ基板の他方の面側に配され、上記色フィルタ
基板を通過する光のうち上記色フィルタ層の透過率の低
い波長の光のみを通過させる光フィルタと、この光フィ
ルタを通過した波長の光の光量を測定する受光手段と、
この受光手段に接続され上記受光手段の出力から上記色
フィルタ層の色の濃さを演算する演算手段とを備えたも
のである。According to a seventh aspect of the present invention, a light projecting means for irradiating light to one surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light, and the color filter. An optical filter which is arranged on the other surface side of the substrate and which passes only the light of the wavelength having a low transmittance of the color filter layer among the light passing through the color filter substrate, and the light of the wavelength which has passed through this optical filter A light receiving means for measuring the amount of light,
And a calculation unit that is connected to the light receiving unit and calculates the color intensity of the color filter layer from the output of the light receiving unit.
【0016】請求項8記載の発明は、投光手段は特定の
波長領域の光のみ照射し、受光手段は上記波長領域の光
の光量を測定するものである。According to an eighth aspect of the invention, the light projecting means irradiates only the light in the specific wavelength range, and the light receiving means measures the light quantity of the light in the wavelength range.
【0017】[0017]
【発明の実施の形態】以下、この発明の実施の一形態を
液晶表示板に使用されるR−G−B3色フィルタ基板を
例として説明する。 実施の形態1.図1はこの発明の実施の形態1による色
フィルタの濃度測定装置の構成を示す正面図であり、図
2はこの発明の実施の形態1による色フィルタの濃度測
定装置の構成を示す斜視図である。図1および図2にお
いて、1は測定対象である色フィルタ基板、2はこの色
フィルタ基板1の一方の面側に設けた投光手段であり、
例えばイエロー光を発生する灯器により構成される。3
は色フィルタ基板1の他方の面側に設けられ、投光手段
2と色フィルタ基板1を介して光学的に対向する受光手
段、4は受光手段3の出力から色フィルタ基板1の濃度
を演算する演算手段である。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below by taking an RGB color filter substrate used for a liquid crystal display panel as an example. Embodiment 1. 1 is a front view showing a configuration of a color filter density measuring device according to a first embodiment of the present invention, and FIG. 2 is a perspective view showing a configuration of a color filter density measuring device according to a first embodiment of the present invention. is there. 1 and 2, 1 is a color filter substrate to be measured, 2 is a light projecting means provided on one surface side of the color filter substrate 1,
For example, it is composed of a lamp that emits yellow light. 3
Is provided on the other surface side of the color filter substrate 1, and is optically opposed to the light projecting unit 2 via the color filter substrate 1, and 4 is the density of the color filter substrate 1 calculated from the output of the light receiving unit 3. Is a calculation means.
【0018】次に、色フィルタの濃度測定方法について
説明する。図3はこの発明の実施の形態1による色フィ
ルタの濃度測定装置の具体的構成図であり、図3に示す
ように色フィルタ基板1が所定の速度で搬送されてお
り、色フィルタ基板1の通路の上方に投光手段2として
線状光源が配され、色フィルタ基板1の通路の下方に投
光手段2と対向して受光手段3が配されている。この場
合に色濃度測定のフローチャートを示すと図4のように
なる。このフローチャートを用いて色フィルタの濃度測
定方法を説明すると、先ず、投光手段2より受光手段3
に光を照射する(ステップ1)。次に、色フィルタ基板
1が投光手段2からの光の照射位置に進入したことを検
知する(ステップ2)。そして、受光手段3により投光
手段2からの光が色フィルタ基板1を通過した光のうち
光透過率の低い波長の光量を測定する(ステップ3)。
そして、色フィルタ基板1の通過完了を検知する(ステ
ップ4)。そして、演算手段4により受光手段3の出力
から色フィルタ基板1の色の濃さを演算する(ステップ
5)。必要に応じてステップ2の前に戻り、上記動作を
繰り返す。Next, a method of measuring the density of the color filter will be described. FIG. 3 is a specific configuration diagram of the color filter density measuring device according to the first embodiment of the present invention. As shown in FIG. 3, the color filter substrate 1 is conveyed at a predetermined speed, and A linear light source is arranged as the light projecting means 2 above the passage, and a light receiving means 3 is arranged below the passage of the color filter substrate 1 so as to face the light projecting means 2. In this case, the flow chart of the color density measurement is shown in FIG. The density measuring method of the color filter will be described with reference to this flow chart. First, the light projecting means 2 receives the light receiving means 3.
Irradiate light on the surface (step 1). Next, it is detected that the color filter substrate 1 has entered the irradiation position of the light from the light projecting means 2 (step 2). Then, the light receiving means 3 measures the amount of light of the wavelength having a low light transmittance among the light from the light projecting means 2 which has passed through the color filter substrate 1 (step 3).
Then, the completion of passing through the color filter substrate 1 is detected (step 4). Then, the calculation unit 4 calculates the color intensity of the color filter substrate 1 from the output of the light receiving unit 3 (step 5). If necessary, the process returns to the step 2 and the above operation is repeated.
【0019】次に、上記図7に示したR−G−B3色フ
ィルタ基板の製造工程において、図7(b)で示したよ
うに、R色フィルタ層(色フィルタ層,第1の色フィル
タ層)13を透明基板11上に塗布した直後のR色フィ
ルタ層13の色の濃さを測定する場合の濃度測定につい
て説明する。測定対象は図7(b)に示すように透明基
板11にBM層12があり、これらの上面にR色フィル
タ層13が塗布されている。このR色フィルタ層13は
図8に示すように、赤の波長の光を良く通すが、それ以
外の可視光をほとんど通さない。従って、従来の色フィ
ルタの濃度測定方法では白色光をこのフィルタに照射
し、その透過光量の変化から色の濃さを測定していた
が、透過光の主たる成分が透過率の高い波長の光であれ
ばその色の濃さを想定できるので、光源を白色光から例
えば赤色光に変更してもその光量変化の程度はほぼ同様
と考えられる。Next, in the process of manufacturing the RGB color filter substrate shown in FIG. 7, as shown in FIG. 7B, the R color filter layer (color filter layer, first color filter) is used. The density measurement when measuring the color intensity of the R color filter layer 13 immediately after the layer 13 is applied on the transparent substrate 11 will be described. As shown in FIG. 7B, the measurement target has the BM layer 12 on the transparent substrate 11, and the R color filter layer 13 is applied on the upper surface thereof. As shown in FIG. 8, the R color filter layer 13 transmits light of red wavelength well, but hardly transmits other visible light. Therefore, in the conventional color filter density measurement method, white light was applied to this filter, and the color intensity was measured from the change in the amount of transmitted light.However, the main component of the transmitted light is light with a wavelength of high transmittance. In that case, since the intensity of the color can be assumed, even if the light source is changed from white light to red light, the degree of change in the light amount is considered to be substantially the same.
【0020】今仮に図8に示す波長λ1の光が投光部よ
り照射されているとする。このとき、R色フィルタ層1
3の膜厚が2倍となったことで色が濃くなったとする
と、90%の透過率のフィルタを光が2回透過すると考
えればよいので、 90%×90%=81% の光量が得られることになる。光量変化で言えば膜厚が
2倍となったことでその前後の比は、 90:81=10:9 であり変化量は1割と見ることができる。これが従来の
光学的に色の濃さを測定するときの感度を与える指数と
なる。Suppose now that the light of wavelength λ1 shown in FIG. 8 is emitted from the light projecting section. At this time, the R color filter layer 1
If the color becomes darker due to the film thickness of 3 being doubled, it can be considered that light is transmitted twice through a filter having a transmittance of 90%, and thus a light amount of 90% × 90% = 81% is obtained. Will be done. Speaking of the change in light quantity, the ratio before and after the doubled film thickness is 90: 81 = 10: 9, and the change can be considered to be 10%. This is an index that gives sensitivity in the conventional optical color density measurement.
【0021】一方、この発明の実施の形態1は、透過率
の低い波長域の光、例えば図8に示す波長λ2の光をR
色フィルタ層13に照射して透過光量を測定する場合を
考える。波長λ2の光の透過率が10%とすると、膜厚
が2倍となったときにはその光量は同様に、 10%×10%=1% となる。膜厚が2倍となったことで光量変化で言えばそ
の前後の比は、10:1であり変化量は10倍と見るこ
とができる。このように、R色フィルタ層13の色の濃
さを光学的に測定するとき、R色フィルタ層13の透過
率の高い波長λ1の光の光量を測定する場合に比べて、
R色フィルタ層13の透過率の低い波長λ2の光の光量
を測定することで色の濃さの変化に対して極めて高感度
に検出することができる。On the other hand, in the first embodiment of the present invention, the light in the wavelength range having a low transmittance, for example, the light having the wavelength λ2 shown in FIG.
Consider a case where the color filter layer 13 is irradiated to measure the amount of transmitted light. Assuming that the transmittance of light of wavelength λ2 is 10%, when the film thickness is doubled, the amount of light is also 10% × 10% = 1%. Since the film thickness is doubled, the ratio before and after the change in light amount is 10: 1, and it can be seen that the change amount is 10 times. As described above, when optically measuring the color intensity of the R color filter layer 13, as compared with the case of measuring the light amount of the light of the wavelength λ1 having high transmittance of the R color filter layer 13,
By measuring the amount of light of the wavelength λ2 having a low transmittance of the R color filter layer 13, it is possible to detect the change in color density with extremely high sensitivity.
【0022】以上は膜厚が2倍という例で説明したが、
要はその色の濃さに応じて光量が変化するので、これに
限る必要はなく、本原理の出力は人間の感ずる色の濃さ
に対応するものであればよい。透過率の低い波長領域を
選ぶにあたって例えば波長λ2の光のように青色域より
長波長を選ぶことによりイエローライト環境でもR色フ
ィルタ層13の色の濃さを測定できることが理解され
る。In the above description, the film thickness is doubled.
The point is that the amount of light changes depending on the color intensity, so there is no need to limit to this, and the output of the present principle may be anything that corresponds to the color intensity that humans perceive. It is understood that the color density of the R color filter layer 13 can be measured even in a yellow light environment by selecting a wavelength longer than the blue range, for example, light having a wavelength λ2 when selecting a wavelength range having a low transmittance.
【0023】次に、上記図7に示したR−G−B3色フ
ィルタ基板の製造工程において、図7(d)で示したよ
うに、透明基板11にR色画素(第1の部分)23を形
成した後、G色フィルタ層(色フィルタ層,第2の色フ
ィルタ層)14を透明基板11上に均一に塗布した直後
にG色フィルタ層14の色の濃さを測定する場合につい
て説明する。この色フィルタ基板1は図7(d)に示さ
れるようにG色フィルタ層14の材料が基板の全面に一
様に塗布されているが、その下にはR色画素23が構成
されているので、G色フィルタ層14のみの部分とG色
フィルタ層14とR色画素23が積層されている部分と
が存在する。この場合には測定したいG色フィルタ層1
4の透過率の低い波長例えば図8のλ1の光の透過光量
を測定すればよい。G色フィルタ層14のみの部分を透
過する光とG色フィルタ層14とR色画素23が積層さ
れている部分を透過する光があるが、λ1の光はR色画
素23での減衰は少ないので、受光手段3に到達する光
量はG色フィルタ層14のみの部分を透過する光量にG
色フィルタ層14とR色画素23が積層されている部分
を透過する光量を加えた光量となり結果としてR色画素
23が無い場合の光量に近くなる。Next, in the manufacturing process of the R-G-B three-color filter substrate shown in FIG. 7, the R color pixel (first portion) 23 is formed on the transparent substrate 11 as shown in FIG. 7D. The case where the color density of the G color filter layer 14 is measured immediately after the G color filter layer (color filter layer, second color filter layer) 14 is evenly applied on the transparent substrate 11 after forming To do. In this color filter substrate 1, the material of the G color filter layer 14 is uniformly applied to the entire surface of the substrate as shown in FIG. 7 (d), and the R color pixel 23 is formed thereunder. Therefore, there is a portion only for the G color filter layer 14 and a portion where the G color filter layer 14 and the R color pixel 23 are laminated. In this case, the G color filter layer 1 to be measured
It is sufficient to measure the amount of transmitted light of wavelength 4 having a low transmittance, for example, light of λ1 in FIG. There is light that passes through only the G color filter layer 14 and light that passes through the portion in which the G color filter layer 14 and the R color pixel 23 are laminated, but the light of λ1 is less attenuated in the R color pixel 23. Therefore, the amount of light reaching the light receiving means 3 is equal to the amount of light passing through only the G color filter layer 14 by G.
The amount of light is the sum of the amounts of light transmitted through the portion where the color filter layer 14 and the R color pixels 23 are laminated, and as a result, the amount of light is close to the amount of light without the R color pixels 23.
【0024】このように、R色画素23があっても光量
の総量が減少しないので、受光手段3に到達する迷光の
影響が低減でき、その分だけノイズに対し強くなり、測
定精度の向上が期待できる。従って、総光量はG色フィ
ルタ層14の透過率の低い波長の光であるので、その色
の濃さの変化に対して極めて高感度に検出することがで
きる。この場合、透過率の低い波長領域を選ぶにあたっ
て、例えば波長λ1の光のように青色域より長波長を選
ぶことによりイエローライト環境でもG色フィルタ層1
4の濃さを測定できる。As described above, since the total amount of light does not decrease even if there are R-color pixels 23, the influence of stray light reaching the light receiving means 3 can be reduced, and the amount of light becomes stronger against noise and the measurement accuracy is improved. Can be expected. Therefore, since the total amount of light is the light of the wavelength having the low transmittance of the G color filter layer 14, it is possible to detect the change in the color depth with extremely high sensitivity. In this case, when selecting a wavelength region having low transmittance, for example, light having a wavelength λ1 is selected to have a wavelength longer than the blue region, so that the G color filter layer 1 can be used even in a yellow light environment.
The density of 4 can be measured.
【0025】次に、上記図7に示したR−G−B3色フ
ィルタ基板の製造工程において、図7(f)で示したよ
うに、透明基板11にR色画素23及びG色画素(第2
の部分)24を形成した後、B色フィルタ層(色フィル
タ層,第3の色フィルタ層)15を透明基板11上に均
一に塗布した直後にB色フィルタ層15の色の濃さを測
定する場合について説明する。この色フィルタ基板1は
図7(f)に示されるようにB色フィルタ層15材料が
基板の全面に一様に塗布されているが、その下にはR色
画素23及びG色画素24が構成されているので、B色
フィルタ層15のみの部分と、B色フィルタ層15とR
色画素23が積層されている部分と、B色フィルタ層1
5とG色画素24が積層されている部分とが存在する。
この場合でも本発明によれば極めて高感度に色の濃さを
測定できる。すなわち測定したいB色フィルタ層15の
透過率の低い波長、例えば図8の波長λ1の光ないしは
波長λ2の光の透過光量を測定すればよい。B色フィル
タ層15のみの部分を透過する光と、B色フィルタ層1
5とR色画素23が積層されている部分を透過する光
と、B色フィルタ層15とG色画素24が積層されてい
る部分を透過する光とがあるが、波長λ1の光は、R色
画素23での減衰は少ないので、受光手段3に到達する
光量はB色フィルタ層15のみの部分を透過する光量に
B色フィルタ層15とR色画素23が積層されている部
分を透過する光量を加えた光量となり、結果としてR色
画素23が無い場合の光量に近くなる。また、波長λ2
の光は、G色画素24での減衰は少ないので、受光手段
3に到達する光量はB色フィルタ層15のみの部分を透
過する光量にB色フィルタ層15とG色画素24が積層
されている部分を透過する光量を加えた光量となり、結
果としてG色画素24が無い場合の光量に近くなる。Next, in the manufacturing process of the R-G-B three-color filter substrate shown in FIG. 7, the R-color pixel 23 and the G-color pixel (first pixel) are formed on the transparent substrate 11 as shown in FIG. Two
Portion 24) and then the B color filter layer (color filter layer, third color filter layer) 15 is evenly applied onto the transparent substrate 11 immediately after which the color intensity of the B color filter layer 15 is measured. The case will be described. In this color filter substrate 1, as shown in FIG. 7 (f), the material of the B color filter layer 15 is uniformly applied to the entire surface of the substrate, and the R color pixel 23 and the G color pixel 24 are provided thereunder. Since it is configured, only the B color filter layer 15 and the B color filter layer 15 and the R
The portion where the color pixels 23 are laminated and the B color filter layer 1
5 and a portion in which the G color pixel 24 is laminated.
Even in this case, according to the present invention, the color density can be measured with extremely high sensitivity. That is, the amount of transmitted light of the wavelength having a low transmittance of the B color filter layer 15 to be measured, for example, the light having the wavelength λ1 or the light having the wavelength λ2 in FIG. 8 may be measured. The light transmitted through only the B color filter layer 15 and the B color filter layer 1
5 and R color pixels 23 are transmitted through a portion where the B color filter layer 15 and the G color pixel 24 are laminated. Since the attenuation in the color pixel 23 is small, the amount of light reaching the light receiving means 3 is transmitted through the portion where only the B color filter layer 15 is transmitted, and is transmitted through the portion where the B color filter layer 15 and the R color pixel 23 are laminated. The amount of light becomes the amount of light added with the amount of light, and as a result, the amount of light becomes close to the amount of light when there is no R color pixel 23. Also, the wavelength λ2
Light is less attenuated in the G color pixel 24, so that the amount of light reaching the light receiving means 3 is such that the B color filter layer 15 and the G color pixel 24 are laminated to the amount of light that passes through only the B color filter layer 15. The amount of light is the sum of the amounts of light transmitted through the existing parts, and as a result, the amount of light is close to the amount of light without the G color pixel 24.
【0026】このように、R色画素23及びG色画素2
4があっても光量の総量が減少しないので、受光手段3
に到達する迷光の影響が低減できるなどノイズにそれだ
け強くなり測定精度の向上が期待できる。この場合の総
光量はB色フィルタ層15の透過率の低い波長の光であ
るのでその色の濃さの変化に対して極めて高感度に検出
することができる。透過率の低い波長領域を選ぶにあた
って、例えば波長λ1の光ないし波長λ2の光のように
青色域より長波長を選ぶことによりイエローライト環境
でもB色フィルタ層の濃さを測定できる。In this way, the R color pixel 23 and the G color pixel 2
4 does not reduce the total amount of light, the light receiving means 3
The influence of stray light reaching to can be reduced, and it becomes stronger against noise, and improvement of measurement accuracy can be expected. In this case, since the total amount of light is light of a wavelength having a low transmittance of the B color filter layer 15, it can be detected with extremely high sensitivity to a change in the color depth. When selecting a wavelength region having a low transmittance, for example, light having a wavelength λ1 or light having a wavelength λ2, such as light having a wavelength longer than the blue region, can be selected to measure the thickness of the B color filter layer even in a yellow light environment.
【0027】実施の形態2.図7(d)に示すように、
R色画素23とG色フィルタ層14の積層部分は凸であ
るので、G色フィルタ層14の塗布直後にその粘性に応
じてG色フィルタ層14が流れ出し、そのG色フィルタ
層14の凸部の厚さが薄くなることがある。この厚さの
違いは、製造方法によっても異なり、また塗布材料の粘
度、R色画素23の大きさ形状など多くの因子がある
が、フィルタ層の凸部とそれ以外の部分の厚さには極め
て強い相関があることが多い。換言すれば、一方の厚さ
が分かると他方の厚さが同定できる。しかし、その同定
値の誤差が問題になる場合には、すでに説明した前記方
法により測定することができる。すなわち、測定する光
の波長を選択し、R色画素23でも減衰され、かつG色
フィルタ層14でも減衰される波長、例えば図8におけ
る波長λ3の光を使用すればよい。Embodiment 2. As shown in FIG. 7 (d),
Since the laminated portion of the R color pixel 23 and the G color filter layer 14 is convex, the G color filter layer 14 flows out according to the viscosity immediately after the G color filter layer 14 is applied, and the convex portion of the G color filter layer 14 is projected. May be thin. This difference in thickness differs depending on the manufacturing method, and there are many factors such as the viscosity of the coating material and the size and shape of the R color pixel 23. However, the thickness of the convex portion of the filter layer and the other portions are different. Often has a very strong correlation. In other words, knowing the thickness of one can identify the thickness of the other. However, when the error of the identification value becomes a problem, it can be measured by the above-mentioned method. That is, the wavelength of the light to be measured may be selected and the wavelength that is attenuated by the R color pixel 23 and also attenuated by the G color filter layer 14, for example, the light having the wavelength λ3 in FIG. 8 may be used.
【0028】この場合、総光量は、R色画素23で1/
8に減衰され、G色フィルタ層14で光は1/10に減
衰される。受光手段3に到達する光量はG色フィルタ層
14のみの部分を透過する光量に比べG色フィルタ層1
4とR色画素23が積層されている部分を透過する光量
は透過率により1/8に加え面積が1/2なので、これ
によりフィルタ層の凸部からの光量はG色フィルタ層1
4のみの部分の光量の1/16となる。従って、総光量
はG色フィルタ層14のみの部分の色の濃さを反映する
ようになる。このように、総光量はG色フィルタ層14
の透過率の低い波長の光であるのでその色の濃さと光量
の関係はきわめて大きく、上記実施の形態1と同様に、
膜厚を高感度に検出できる。In this case, the total amount of light is 1 / in the R color pixel 23.
The light is attenuated to 8 and the G color filter layer 14 attenuates the light to 1/10. The amount of light reaching the light receiving means 3 is larger than that of light passing through only the G color filter layer 14 in the G color filter layer 1.
The amount of light transmitted through the portion where the 4 and R color pixels 23 are laminated is 1/8 in addition to the area due to the transmittance, and thus the amount of light from the convex portion of the filter layer is 1
It is 1/16 of the light amount of the portion of 4 only. Therefore, the total amount of light reflects the color intensity of the portion of only the G color filter layer 14. Thus, the total amount of light is the G color filter layer 14
Since the light of the wavelength has a low transmittance, the relationship between the color density and the amount of light is extremely large, and similar to the first embodiment,
The film thickness can be detected with high sensitivity.
【0029】実施の形態3.また、図7(f)に示すよ
うに、R色画素23及びG色画素24とB色フィルタ層
15との積層部分は凸であるので、上記図7(d)に示
したものと同様、B色フィルタ層15の塗布直後その粘
性に応じてB色フィルタ層15の凸部厚さが薄くなるこ
とがある。この場合も、測定したいB色フィルタ層15
の透過率が低く、かつR色画素23の透過率及びG色画
素24の透過率が共に低い波長の光、例えば図8の波長
λ4の光とすればよい。波長λ4の光はR色画素23又
はG色画素24で1/3に減衰され、B色フィルタ層1
5で光は1/20に減衰される。R色画素23とB色フ
ィルタ層15が積層されている部分とG色画素24とB
色フィルタ層15が積層されている部分を透過する光量
は透過率によりB色フィルタ層15のみの部分を透過す
る光量に比べ1/3になり、総光量はそれだけB色フィ
ルタ層15のみの部分の色の濃さを反映するようにな
る。すなわち、総光量はB色フィルタ層15の透過率の
低い波長の光であるので、その色の濃さと光量の関係は
大きく、上記実施の形態1及び2と同様に膜厚を高感度
に検出できる。Embodiment 3 Further, as shown in FIG. 7F, since the laminated portion of the R color pixel 23 and the G color pixel 24 and the B color filter layer 15 is convex, as in the case shown in FIG. 7D, Immediately after the application of the B-color filter layer 15, the thickness of the convex portion of the B-color filter layer 15 may become thin depending on its viscosity. Also in this case, the B color filter layer 15 to be measured
Of light having a low transmittance, and the transmittance of the R color pixel 23 and the transmittance of the G color pixel 24 are both low, for example, light having a wavelength λ4 in FIG. The light of wavelength λ4 is attenuated to 1/3 by the R color pixel 23 or the G color pixel 24, and the B color filter layer 1
At 5, the light is attenuated by 1/20. The portion in which the R color pixel 23 and the B color filter layer 15 are stacked, the G color pixel 24, and the B color filter layer 15.
The amount of light transmitted through the portion where the color filter layer 15 is laminated is ⅓ of the amount of light transmitted through the portion of only the B color filter layer 15 due to the transmittance, and the total amount of light is that much corresponding to the portion of only the B color filter layer 15. It comes to reflect the color strength of. That is, since the total amount of light is light having a wavelength with a low transmittance of the B color filter layer 15, the relationship between the color density and the amount of light is large, and the film thickness can be detected with high sensitivity as in the first and second embodiments. it can.
【0030】実施の形態4.上記実施の形態1、2及び
3において、特定波長の検出に関してより具体的方法と
しては、受光手段3に特定波長を透過させる光学フィル
タを配することで実現できる。このようにすることで、
光源は広帯域波長の光が放射されていてもよいのでそれ
だけ光源の選択の自由度が広がる。図5はこのような実
施の形態4による色フィルタの濃度測定装置の構成を示
す正面図であり、5は受光手段3に特定波長を透過させ
る光学フィルタである。尚、図1と同一又は相当する部
分には同一符号を付してある。このように、光学フィル
タ5を色フィルタ基板1と受光手段3との間に挿入し、
特定波長のみ受光手段3に透過させるようにしたので、
光源(投光手段)2は広帯域波長の光を用いることがで
きる。従って、投光手段2はイエローライトと称される
黄色の発色の蛍光管を用いることができ、光感光性材料
を扱う環境に設置してもなんら光学的な悪影響を周囲に
及ぼさない。Fourth Embodiment In the first, second and third embodiments described above, a more specific method for detecting the specific wavelength can be realized by providing the light receiving means 3 with an optical filter that transmits the specific wavelength. By doing this,
Since the light source may radiate light of a wide band wavelength, the degree of freedom in selecting the light source is increased accordingly. FIG. 5 is a front view showing the structure of the color filter density measuring device according to the fourth embodiment, and 5 is an optical filter which allows the light receiving means 3 to transmit a specific wavelength. The same or corresponding parts as in FIG. 1 are designated by the same reference numerals. In this way, the optical filter 5 is inserted between the color filter substrate 1 and the light receiving means 3,
Since only the specific wavelength is transmitted to the light receiving means 3,
The light source (light projecting means) 2 can use light having a broadband wavelength. Therefore, the light projecting means 2 can use a fluorescent tube that emits yellow light called yellow light, and even if the fluorescent tube is installed in an environment where a photosensitive material is used, it does not adversely affect the surroundings.
【0031】実施の形態5.また、上記実施の形態4の
特定波長を検出する方法とは別の具体的な方法として
は、投光手段2に特定波長を発生させても良い。例えば
レーザー光源又はLED光源を投光手段2とする。この
実施の形態5によれば、上記実施の形態1、2及び3に
示されるR色フィルタ層13、G色フィルタ層14及び
B色フィルタ層15の色の濃さを高感度で測定すること
ができる。Embodiment 5. Further, as a specific method different from the method of detecting the specific wavelength in the above-described Embodiment 4, the specific wavelength may be generated in the light projecting means 2. For example, a laser light source or an LED light source is used as the light projecting means 2. According to the fifth embodiment, it is possible to measure the color density of the R color filter layer 13, the G color filter layer 14 and the B color filter layer 15 shown in the first, second and third embodiments with high sensitivity. You can
【0032】実施の形態6.図7(g)の状態の色フィ
ルタ基板1のR色画素23、G色画素24及びB色画素
(第3の部分)25の色の濃さを測定する場合には次の
手段を採用することができる。すなわち、図7(g)の
状態の色フィルタ基板1はR−G−Bの各画素が生成さ
れている。例えばR色画素23の色の濃さを測定すると
きには、一つの方法としては、例えばレーザー光を使用
して画素より大きくない光線を基板の画素に照射してそ
の光量を測定する方法がある。この方法によれば各画素
毎にその色の濃さを測定することが可能だが基板上の画
素数が非常に多い場合全画素を測定する時間が長くな
り、画素サイズが小さいとそれだけ光線照射の位置精度
が必要であり、いきおい大型で精密な機構が必要とな
る。そこで、投光手段2とG色画素24及びB色画素2
5と受光手段3の光路を遮り、R色画素23のみ通過す
る光路となる孔を有するマスク板を使用し、投光手段2
からの光のうち、R色画素23を透過した光のみが受光
手段3に到達するようにする。図6はこのような実施の
形態6によるマスク板を示す構成図である。図におい
て、6はマスク板であり、R色画素23のみ通過する光
路となる孔が設けられ、G色画素24及びB色画素25
の光路は遮られている。ここで、前述の波長λ2の光の
光量を測定することでR色画素23の色の濃さが高感度
で測定できる。尚、R色画素23を例にして述べたがG
色画素24あるいはB色画素25でも同様の作用を有す
る。この実施の形態6によれば、測定したい画素の色の
種類がマスク板6により選択されているので同一色の複
数の画素からの光量はまとめて測定され、画素単位ほど
微細に色の濃さの測定が必要ない場合本発明が有効であ
る。Embodiment 6 FIG. When measuring the color intensity of the R color pixel 23, the G color pixel 24, and the B color pixel (third portion) 25 of the color filter substrate 1 in the state of FIG. 7G, the following means is adopted. be able to. That is, in the color filter substrate 1 in the state of FIG. 7 (g), R, G, and B pixels are generated. For example, when measuring the color depth of the R-color pixel 23, one method is to irradiate a pixel on the substrate with a light beam that is not larger than the pixel, for example, using laser light, and measure the amount of light. According to this method, it is possible to measure the color intensity of each pixel, but if the number of pixels on the substrate is very large, it takes longer to measure all pixels, and the smaller the pixel size, the more the light irradiation is performed. Positional accuracy is required, and an extremely large and precise mechanism is required. Therefore, the light projecting unit 2, the G color pixel 24, and the B color pixel 2
5 and the light receiving means 3 are blocked, and a mask plate having a hole serving as an optical path for passing only the R color pixel 23 is used.
Only the light that has passed through the R-color pixel 23 among the lights from (1) to (5) reaches the light receiving means 3. FIG. 6 is a block diagram showing a mask plate according to such a sixth embodiment. In the figure, reference numeral 6 denotes a mask plate, which is provided with a hole which serves as an optical path through which only the R color pixel 23 passes, and which has a G color pixel 24 and a B color pixel 25
The optical path of is blocked. Here, the color intensity of the R color pixel 23 can be measured with high sensitivity by measuring the amount of light of the wavelength λ2 described above. Although the R color pixel 23 has been described as an example,
The color pixel 24 or the B color pixel 25 has the same effect. According to the sixth embodiment, since the color type of the pixel to be measured is selected by the mask plate 6, the light amounts from a plurality of pixels of the same color are collectively measured, and the color density becomes finer in pixel units. The present invention is effective when the measurement of is not required.
【0033】[0033]
【発明の効果】以上説明したように、請求項1記載の発
明によれば、可視光のうち所定の波長領域の光透過率が
高い特性を有する色フィルタ基板の一方の面からこのフ
ィルタ基板に光を照射し、色フィルタ基板の他方に配設
された受光手段によりその色フィルタ基板を通過した光
のうち、演算手段によって色フィルタ層の透過率の低い
波長領域の光の透過強度を測定するようにしたので、色
の濃さの変化に対して極めて高感度に検出できる効果が
ある。また、測定したいフィルタ色と同様の色の光源を
必要としないので感光性の材料を使用する工程で使用可
能な光を選択することができるのでイエロールームでも
本発明は採用できるなどの効果がある。As described above, according to the first aspect of the present invention, from one surface of the color filter substrate having a high light transmittance in a predetermined wavelength region of visible light to this filter substrate. Of the light that has been irradiated with light and has passed through the color filter substrate by the light receiving means arranged on the other side of the color filter substrate, the calculation means measures the transmission intensity of the light in the wavelength region in which the transmittance of the color filter layer is low. Since this is done, there is an effect that detection can be performed with extremely high sensitivity to changes in color intensity. Further, since it is not necessary to use a light source having the same color as the filter color to be measured, it is possible to select light that can be used in the step of using a photosensitive material, so that the present invention can be adopted in a yellow room. .
【0034】請求項2記載の発明によれば、可視光のう
ち第1の波長領域で光透過率が高い第1の部分と、上記
第1の部分上に積層され、可視光のうち第2の波長領域
で光透過率が高い第2の色フィルタ層とから成る色フィ
ルタ基板の一方の面に光を照射し、上記色フィルタ基板
の他方の面側に配置された受光手段により、上記色フィ
ルタ基板を通過した光のうち上記第1の部分の光透過率
の低い波長の光の光量を測定し、上記受光手段に接続さ
れた演算手段により上記受光手段の出力から上記第1の
部分の色の濃さを演算するように構成したので、色の濃
さの変化に対して極めて高感度に検出できる効果があ
る。また、測定したいフィルタ色と同様の色の光源を必
要としないので感光性の材料を使用する工程で使用可能
な光を選択することができるのでイエロールームでも本
発明は採用できる。さらに、異なる色フィルタ層が二重
になった状態にあっても測定対象とする色フィルタ層の
色の濃さを正確に測定できるなどの効果がある。According to the second aspect of the present invention, the first portion of the visible light having a high light transmittance in the first wavelength region and the second portion of the visible light which is laminated on the first portion are laminated. Of the second color filter layer having a high light transmittance in the wavelength region of irradiating light to one surface of the color filter substrate, and the light receiving means arranged on the other surface side of the color filter substrate Of the light that has passed through the filter substrate, the light quantity of the light of the wavelength having the low light transmittance of the first portion is measured, and the calculation means connected to the light receiving means measures the output of the light receiving means to obtain the light of the first portion. Since it is configured to calculate the color intensity, there is an effect that it can be detected with extremely high sensitivity to a change in color intensity. Further, since a light source having the same color as the filter color to be measured is not required, light usable in the step of using a photosensitive material can be selected, so that the present invention can be adopted in the yellow room. Further, even if the different color filter layers are doubled, there is an effect that the color density of the color filter layer to be measured can be accurately measured.
【0035】請求項3記載の発明によれば、可視光のう
ち第1の波長領域で光透過率が高い第1の部分と、上記
第1の部分上に積層され、可視光のうち第2の波長領域
で光透過率が高い第2の色フィルタ層とから成る色フィ
ルタ基板の一方の面に光を照射し、上記色フィルタ基板
の他方の面側に配置された受光手段により、上記色フィ
ルタ基板を通過した光のうち上記第1の波長領域以外
で、且つ上記第2の波長領域以外の波長の光の光量を測
定し、上記受光手段に接続された演算手段により上記受
光手段の出力から上記第1の部分の色の濃さを演算する
ように構成したので、色の濃さの変化に対して極めて高
感度な出力が得られる。また、測定したいフィルタ色と
同様の色の光源を必要としないので感光性の材料を使用
する工程で使用可能な光を選択することができるのでイ
エロールームでも本発明は採用できる。さらに、請求項
3と同様に、異なる色フィルタ層が二重になった状態に
あっても測定対象とする色フィルタ層の色の濃さを正確
に測定できるなどの効果がある。According to the third aspect of the present invention, the first portion of the visible light having a high light transmittance in the first wavelength region and the second portion of the visible light which is laminated on the first portion are laminated. Of the second color filter layer having a high light transmittance in the wavelength region of irradiating light to one surface of the color filter substrate, and the light receiving means arranged on the other surface side of the color filter substrate Of the light that has passed through the filter substrate, the amount of light having a wavelength other than the first wavelength region and a wavelength other than the second wavelength region is measured, and the output of the light receiving unit is output by the computing unit connected to the light receiving unit. Therefore, since the color intensity of the first portion is calculated, an output with extremely high sensitivity to a change in color intensity can be obtained. Further, since a light source having the same color as the filter color to be measured is not required, light usable in the step of using a photosensitive material can be selected, so that the present invention can be adopted in the yellow room. Further, similarly to the third aspect, there is an effect that the color density of the color filter layer to be measured can be accurately measured even when the different color filter layers are duplicated.
【0036】請求項4記載の発明によれば、可視光のう
ち第1の波長領域で光透過率が高い第1の部分と、可視
光のうち第2の波長領域で光透過率が高い第2の部分
と、上記第1の部分及び第2の部分上に積層され、可視
光のうち第3の波長領域で光透過率が高い第3の色フィ
ルタ層とから成る色フィルタ基板の一方の面に光を照射
し、上記色フィルタ基板の他方の面側に配置された受光
手段により、上記色フィルタ基板を通過した光のうち上
記第1の波長領域以外の波長の光の光量を測定し、上記
受光手段に接続された演算手段により上記受光手段の出
力から上記第1の部分の色の濃さを演算するように構成
したので、色の濃さの変化に対して極めて高感度な出力
が得られる。また、測定したいフィルタ色と同様の色の
光源を必要としないので感光性の材料を使用する工程で
使用可能な光を選択することができるのでイエロールー
ムでも本発明は採用できる。さらに、異なる二色のフィ
ルタ画素上に測定したい色フィルタ層が重なった状態に
あっても測定対象とする色フィルタ層の色の濃さを正確
に測定できるなどの効果がある。According to the invention of claim 4, the first portion of the visible light having a high light transmittance in the first wavelength region and the first portion of the visible light having a high light transmittance in the second wavelength region. One part of a color filter substrate, which is composed of a second part and a third color filter layer laminated on the first part and the second part and having a high light transmittance in the third wavelength region of visible light. The surface is irradiated with light, and the amount of light having a wavelength other than the first wavelength region of the light passing through the color filter substrate is measured by the light receiving means arranged on the other surface side of the color filter substrate. Since the calculation means connected to the light receiving means calculates the color density of the first portion from the output of the light receiving means, the output is extremely sensitive to the change in color density. Is obtained. Further, since a light source having the same color as the filter color to be measured is not required, light usable in the step of using a photosensitive material can be selected, so that the present invention can be adopted in the yellow room. Further, even when the color filter layers to be measured are overlaid on the filter pixels of two different colors, the color density of the color filter layer to be measured can be accurately measured.
【0037】請求項5記載の発明によれば、可視光のう
ち第1の波長領域で光透過率が高い第1の部分と、可視
光のうち第2の波長領域で光透過率が高い第2の部分
と、可視光のうち第3の波長領域で光透過率が高い第3
の部分とから成る色フィルタ基板の一方の面に光を照射
し、上記色フィルタ基板の他方の面側に配置され、上記
第1の部分(又は第2の部分若しくは第3の部分)に対
応する位置に透孔を有するマスク板により上記第1の部
分(又は第2の部分若しくは第3の部分)を通過する光
のみ通過させ、上記色フィルタ基板の他方の面側に配置
された受光手段により、上記色フィルタ基板を通過した
光のうち上記第1の波長領域(又は第2の波長領域若し
くは第3の波長領域)以外の波長の光の光量を測定し、
上記受光手段に接続された演算手段により上記受光手段
の出力から上記第1の部分(又は第2の部分若しくは第
3の部分)の色の濃さを演算するよう構成したので、色
の濃さの変化に対して極めて高感度に検出できる効果が
ある。また、測定したいフィルタ色と同様の色の光源を
必要としないので感光性の材料を使用する工程で使用可
能な光を選択することができるのでイエロールームでも
本発明は採用できる。According to the fifth aspect of the invention, the first portion having a high light transmittance in the first wavelength region of visible light and the first portion having a high light transmittance in the second wavelength region of visible light. 2 and the third portion of the visible light which has a high light transmittance in the third wavelength region.
And irradiating light to one surface of the color filter substrate, which is disposed on the other surface side of the color filter substrate, and corresponds to the first portion (or the second portion or the third portion). A light receiving means that allows only light passing through the first portion (or the second portion or the third portion) to pass through by a mask plate having a through hole at a position to be placed and is arranged on the other surface side of the color filter substrate. The amount of light having a wavelength other than the first wavelength region (or the second wavelength region or the third wavelength region) of the light passing through the color filter substrate is measured by
Since the calculation means connected to the light receiving means is configured to calculate the color density of the first portion (or the second portion or the third portion) from the output of the light receiving means, the color depth There is an effect that it can be detected with extremely high sensitivity to changes in. Further, since a light source having the same color as the filter color to be measured is not required, light usable in the step of using a photosensitive material can be selected, so that the present invention can be adopted in the yellow room.
【0038】請求項6記載の発明によれば、可視光のう
ち所定の波長領域の光透過率が高い色フィルタ層を有す
る色フィルタ基板の一方の面に光を照射する投光手段
と、上記色フィルタ基板の他方の面側に配され、上記色
フィルタ基板を通過する光のうち上記色フィルタ層の透
過率の低い波長の光の光量を測定する受光手段と、この
受光手段に接続され上記受光手段の出力から上記色フィ
ルタ層の色の濃さを演算する演算手段とを備えるよう構
成したので、色の濃さの変化に対して極めて高感度に検
出できる効果がある。また、測定したいフィルタ色と同
様の色の光源を必要としないので感光性の材料を使用す
る工程で使用可能な光を選択することができるのでイエ
ロールームでも本発明は採用できるなどの効果がある。According to the sixth aspect of the invention, a light projecting means for irradiating light to one surface of the color filter substrate having the color filter layer having a high light transmittance in a predetermined wavelength region of visible light, Light receiving means arranged on the other surface side of the color filter substrate for measuring the amount of light of a wavelength having a low transmittance of the color filter layer among the light passing through the color filter substrate, and the light receiving means connected to the light receiving means. Since the calculating means for calculating the color depth of the color filter layer from the output of the light receiving means is provided, there is an effect that it is possible to detect the change in color depth with extremely high sensitivity. Further, since it is not necessary to use a light source having the same color as the filter color to be measured, it is possible to select light that can be used in the step of using a photosensitive material, so that the present invention can be adopted in a yellow room. .
【0039】請求項7記載の発明によれば、可視光のう
ち所定の波長領域の光透過率が高い色フィルタ層を有す
る色フィルタ基板の一方の面に光を照射する投光手段
と、上記色フィルタ基板の他方の面側に配され、上記色
フィルタ基板を通過する光のうち上記色フィルタ層の透
過率の低い波長の光のみを通過させる光フィルタと、こ
の光フィルタを通過した波長の光の光量を測定する受光
手段と、この受光手段に接続され上記受光手段の出力か
ら上記色フィルタ層の色の濃さを演算する演算手段とを
備えるよう構成したので、光源は広帯域波長に光が放射
されていてもよいのでそれだけ光源の選択の自由度が広
い。さらに、請求項1と同様に、色フィルタ基板の色の
濃さの変化に対して極めて高感度な出力が得られる、こ
のセンサシステムは感光性材料を扱う環境に設置しても
なんら光学的な悪影響を周囲に及ぼさないのでイエロー
ルームでも本発明は採用できるなどの効果がある。According to a seventh aspect of the invention, a light projecting means for irradiating light to one surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light, An optical filter that is arranged on the other surface side of the color filter substrate and that passes only light having a wavelength with a low transmittance of the color filter layer among the lights that pass through the color filter substrate, and a wavelength of light that has passed through this optical filter. Since the light receiving means for measuring the amount of light and the calculating means connected to the light receiving means for calculating the color density of the color filter layer from the output of the light receiving means are provided, the light source emits light in a wide band wavelength. May be radiated, so the degree of freedom in selecting the light source is wide. Further, similarly to the first aspect, an output having extremely high sensitivity to a change in color density of the color filter substrate can be obtained. This sensor system has no optical property even when installed in an environment handling a photosensitive material. Since the adverse effect is not exerted on the surroundings, the present invention can be adopted even in the yellow room.
【0040】請求項8記載の発明によれば、投光手段は
特定の波長領域の光のみ照射し、受光手段は上記波長領
域の光の光量を測定するようにしたので、受光手段は特
定波長の光フィルタ機能が不要なため受光手段の選択の
自由度が広がり、請求項1と同様に、色フィルタ基板の
色の濃さの変化に対して極めて高感度な出力が得られ、
しかもこのセンサシステムは感光性材料を扱う環境に設
置してもなんら光学的な悪影響を周囲に及ぼさないので
イエロールームでも本発明は採用できるなどの効果があ
る。According to the invention described in claim 8, since the light projecting means irradiates only the light in the specific wavelength range and the light receiving means measures the light quantity of the light in the wavelength range, the light receiving means is in the specific wavelength range. Since the optical filter function of 1 is unnecessary, the degree of freedom in selecting the light receiving means is widened, and similarly to claim 1, an output having extremely high sensitivity to a change in the color density of the color filter substrate can be obtained.
Moreover, even if this sensor system is installed in an environment in which a photosensitive material is handled, it has no optical adverse effect on the surroundings, so that the present invention can be adopted in a yellow room.
【図1】この発明の実施の形態1による色フィルタの濃
度測定方法およびその装置の構成を示す正面図である。FIG. 1 is a front view showing the configuration of a color filter density measuring method and apparatus according to a first embodiment of the present invention.
【図2】この発明の実施の形態1による色フィルタの濃
度測定装置の構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of a color filter density measuring device according to a first embodiment of the present invention.
【図3】この発明の実施の形態1による色フィルタの濃
度測定装置の具体的構成図である。FIG. 3 is a specific configuration diagram of the color filter density measuring device according to the first embodiment of the present invention.
【図4】この発明の実施の形態1による色濃度測定のフ
ローチャートである。FIG. 4 is a flowchart of color density measurement according to the first embodiment of the present invention.
【図5】この発明の実施の形態4による色フィルタの濃
度測定装置の構成を示す正面図である。FIG. 5 is a front view showing the configuration of a color filter density measuring device according to a fourth embodiment of the present invention.
【図6】この発明の実施の形態6によるマスク板を示す
構成図である。FIG. 6 is a configuration diagram showing a mask plate according to a sixth embodiment of the present invention.
【図7】液晶用色フィルタ基板の製造工程を説明する図
である。FIG. 7 is a diagram illustrating a manufacturing process of a liquid crystal color filter substrate.
【図8】液晶用色フィルタ基板のR−G−B各色の画素
の光透過率を説明するための特性図である。FIG. 8 is a characteristic diagram for explaining the light transmittances of pixels of R, G, and B colors of a liquid crystal color filter substrate.
1 色フィルタ基板 2 投光手段 3 受光手段 4 演算手段 5 光学フィルタ 6 マスク板 13 R色フィルタ層(色フィルタ層,第1の色フィル
タ層) 14 G色フィルタ層(色フィルタ層,第2の色フィル
タ層) 15 B色フィルタ層(色フィルタ部,第3の色フィル
タ層) 23 R色画素(第1の部分) 24 G色画素(第2の部分) 25 B色画素(第3の部分)1 Color filter substrate 2 Light emitting means 3 Light receiving means 4 Computing means 5 Optical filter 6 Mask plate 13 R color filter layer (color filter layer, first color filter layer) 14 G color filter layer (color filter layer, second color filter layer) Color filter layer) 15 B color filter layer (color filter portion, third color filter layer) 23 R color pixel (first portion) 24 G color pixel (second portion) 25 B color pixel (third portion) )
Claims (8)
が高い色フィルタ層を有する色フィルタ基板の一方の面
に光を照射し、上記色フィルタ基板の他方の面側に配置
された受光手段により、上記色フィルタ基板を通過した
光のうち上記色フィルタ層の光透過率の低い波長の光の
光量を測定し、上記受光手段に接続された演算手段によ
り上記受光手段の出力から上記色フィルタ層の色の濃さ
を演算することを特徴とする色フィルタの濃度測定方
法。1. A surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light is irradiated with light, and the color filter substrate is arranged on the other surface side of the color filter substrate. The light receiving means measures the amount of light of a wavelength having a low light transmittance of the color filter layer out of the light passing through the color filter substrate, and the calculating means connected to the light receiving means measures the output of the light receiving means. A method for measuring the density of a color filter, which comprises calculating the color density of a color filter layer.
が高い第1の部分と、上記第1の部分上に積層され、可
視光のうち第2の波長領域で光透過率が高い第2の色フ
ィルタ層とから成る色フィルタ基板の一方の面に光を照
射し、上記色フィルタ基板の他方の面側に配置された受
光手段により、上記色フィルタ基板を通過した光のうち
上記第1の部分の光透過率の低い波長の光の光量を測定
し、上記受光手段に接続された演算手段により上記受光
手段の出力から上記第1の部分の色の濃さを演算するこ
とを特徴とする色フィルタの濃度測定方法。2. A first portion having a high light transmittance in a first wavelength region of visible light, and a first portion laminated on the first portion and having a light transmittance in a second wavelength region of visible light. Of the light that has passed through the color filter substrate, the one surface of the color filter substrate including the high second color filter layer is irradiated with light, and the light receiving means arranged on the other surface side of the color filter substrate Measuring the amount of light of a wavelength having a low light transmittance of the first portion, and calculating the color intensity of the first portion from the output of the light receiving means by the calculating means connected to the light receiving means. A method for measuring the density of a color filter, characterized by:
が高い第1の部分と、上記第1の部分上に積層され、可
視光のうち第2の波長領域で光透過率が高い第2の色フ
ィルタ層とから成る色フィルタ基板の一方の面に光を照
射し、上記色フィルタ基板の他方の面側に配置された受
光手段により、上記色フィルタ基板を通過した光のうち
上記第1の波長領域以外で、且つ上記第2の波長領域以
外の波長の光の光量を測定し、上記受光手段に接続され
た演算手段により上記受光手段の出力から上記第1の部
分の色の濃さを演算することを特徴とする色フィルタの
濃度測定方法。3. A first portion of the visible light having a high light transmittance in the first wavelength region, and a first portion laminated on the first portion and having a light transmittance of the visible light in the second wavelength region. Of the light that has passed through the color filter substrate, the one surface of the color filter substrate including the high second color filter layer is irradiated with light, and the light receiving means arranged on the other surface side of the color filter substrate The amount of light having a wavelength other than the first wavelength range and other than the second wavelength range is measured, and the color of the first portion is output from the output of the light receiving unit by the calculating unit connected to the light receiving unit. A method of measuring the density of a color filter, which comprises calculating the density of
が高い第1の部分と、可視光のうち第2の波長領域で光
透過率が高い第2の部分と、上記第1の部分及び第2の
部分上に積層され、可視光のうち第3の波長領域で光透
過率が高い第3の色フィルタ層とから成る色フィルタ基
板の一方の面に光を照射し、上記色フィルタ基板の他方
の面側に配置された受光手段により、上記色フィルタ基
板を通過した光のうち上記第1の波長領域以外の波長の
光の光量を測定し、上記受光手段に接続された演算手段
により上記受光手段の出力から上記第1の部分の色の濃
さを演算することを特徴とする色フィルタの濃度測定方
法。4. A first portion having high light transmittance in the first wavelength region of visible light, a second portion having high light transmittance in the second wavelength region of visible light, and the first portion. And irradiating light on one surface of a color filter substrate formed on the second part and the third color filter layer having a high light transmittance in the third wavelength region of visible light. By the light receiving means arranged on the other surface side of the color filter substrate, the amount of light having a wavelength other than the first wavelength region of the light passing through the color filter substrate was measured and connected to the light receiving means. A method for measuring the density of a color filter, wherein the calculating means calculates the color density of the first portion from the output of the light receiving means.
が高い第1の部分と、可視光のうち第2の波長領域で光
透過率が高い第2の部分と、可視光のうち第3の波長領
域で光透過率が高い第3の部分とから成る色フィルタ基
板の一方の面に光を照射し、上記色フィルタ基板の他方
の面側に配置され、上記第1の部分(又は第2の部分若
しくは第3の部分)に対応する位置に透孔を有するマス
ク板により上記第1の部分(又は第2の部分若しくは第
3の部分)を通過する光のみ通過させ、上記色フィルタ
基板の他方の面側に配置された受光手段により、上記色
フィルタ基板を通過した光のうち上記第1の波長領域
(又は第2の波長領域若しくは第3の波長領域)以外の
波長の光の光量を測定し、上記受光手段に接続された演
算手段により上記受光手段の出力から上記第1の部分
(又は第2の部分若しくは第3の部分)の色の濃さを演
算することを特徴とする色フィルタの濃度測定方法。5. A first portion of visible light having a high light transmittance in a first wavelength region, a second portion of visible light having a high light transmittance in a second wavelength region, and a visible light One surface of the color filter substrate, which is composed of a third portion having a high light transmittance in the third wavelength region, is irradiated with light, and is arranged on the other surface side of the color filter substrate, and the first portion is provided. (Or the second portion or the third portion) is made to pass only the light passing through the first portion (or the second portion or the third portion) by a mask plate having a through hole at a position corresponding to Light having a wavelength other than the first wavelength region (or the second wavelength region or the third wavelength region) of the light that has passed through the color filter substrate is received by the light receiving means arranged on the other surface side of the color filter substrate. The amount of light is measured and the above-mentioned light is received by the calculation means connected to the above light-receiving means. A density measuring method of a color filter, wherein the color density of the first portion (or the second portion or the third portion) is calculated from the output of the means.
が高い色フィルタ層を有する色フィルタ基板の一方の面
に光を照射する投光手段と、上記色フィルタ基板の他方
の面側に配され、上記色フィルタ基板を通過する光のう
ち上記色フィルタ層の透過率の低い波長の光の光量を測
定する受光手段と、この受光手段に接続され上記受光手
段の出力から上記色フィルタ層の色の濃さを演算する演
算手段とを備えたことを特徴とする色フィルタの濃度測
定装置。6. A light projecting means for irradiating light to one surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light, and the other surface side of the color filter substrate. And a light receiving means for measuring the amount of light of a wavelength having a low transmittance of the color filter layer among the light passing through the color filter substrate, and the color filter connected to the light receiving means from the output of the light receiving means. A density measuring device for a color filter, comprising: a calculating means for calculating the color density of a layer.
が高い色フィルタ層を有する色フィルタ基板の一方の面
に光を照射する投光手段と、上記色フィルタ基板の他方
の面側に配され、上記色フィルタ基板を通過する光のう
ち上記色フィルタ層の透過率の低い波長の光のみを通過
させる光フィルタと、この光フィルタを通過した波長の
光の光量を測定する受光手段と、この受光手段に接続さ
れ上記受光手段の出力から上記色フィルタ層の色の濃さ
を演算する演算手段とを備えたことを特徴とする色フィ
ルタの濃度測定装置。7. A light projecting means for irradiating one surface of a color filter substrate having a color filter layer having a high light transmittance in a predetermined wavelength region of visible light, and the other surface side of the color filter substrate. An optical filter that passes only the light having a wavelength having a low transmittance of the color filter layer among the light that passes through the color filter substrate, and a light receiving unit that measures the amount of light having the wavelength that has passed through the optical filter. A density measuring device for a color filter, comprising: and a calculating means which is connected to the light receiving means and calculates the color density of the color filter layer from the output of the light receiving means.
し、受光手段は上記波長領域の光の光量を測定すること
を特徴とする請求項5記載の色フィルタの濃度測定装
置。8. The density measuring device for a color filter according to claim 5, wherein the light projecting means irradiates only the light in a specific wavelength range, and the light receiving means measures the light quantity of the light in the wavelength range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4340496A JP3242830B2 (en) | 1996-02-29 | 1996-02-29 | Color filter density measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4340496A JP3242830B2 (en) | 1996-02-29 | 1996-02-29 | Color filter density measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09236490A true JPH09236490A (en) | 1997-09-09 |
JP3242830B2 JP3242830B2 (en) | 2001-12-25 |
Family
ID=12662835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4340496A Expired - Fee Related JP3242830B2 (en) | 1996-02-29 | 1996-02-29 | Color filter density measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3242830B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6540346B1 (en) * | 1998-11-27 | 2003-04-01 | Canon Kabushiki Kaisha | Color filter manufacturing apparatus and method, color filter, display device, apparatus having the display device, and method of reducing unevenness of discharge volume in plural nozzles by ink circulation |
-
1996
- 1996-02-29 JP JP4340496A patent/JP3242830B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6540346B1 (en) * | 1998-11-27 | 2003-04-01 | Canon Kabushiki Kaisha | Color filter manufacturing apparatus and method, color filter, display device, apparatus having the display device, and method of reducing unevenness of discharge volume in plural nozzles by ink circulation |
Also Published As
Publication number | Publication date |
---|---|
JP3242830B2 (en) | 2001-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100400893B1 (en) | Position detection device | |
KR101294915B1 (en) | Micro-mirror device sorting method, micro-mirror device sorting apparatus, and maskless exposure apparatus | |
TWI545314B (en) | Method and method for checking unevenness of film thickness | |
JP3944693B2 (en) | Film thickness measuring device | |
US7440118B2 (en) | Apparatus and method for color filter inspection | |
JP4248364B2 (en) | Film thickness inspection system for three primary color layers | |
JP2003248107A (en) | Nd filter, its manufacturing method, and multi-display device and image generation device using the same | |
JP3242830B2 (en) | Color filter density measurement method | |
US5773173A (en) | Film thickness inspection method and apparatus | |
JP4857917B2 (en) | Color filter appearance inspection method and appearance inspection apparatus | |
JPWO2007113941A1 (en) | Display panel substrate, display panel including the substrate, display panel substrate manufacturing method, and display panel manufacturing method | |
KR20150057255A (en) | Transmittance inspection device for printed pattern for ir sensor | |
JP4531186B2 (en) | Plasma display panel back plate inspection apparatus and manufacturing method | |
JP4484531B2 (en) | Film thickness pass / fail inspection method and apparatus | |
JP2993772B2 (en) | Common defect inspection method for color filters | |
JP2004117241A (en) | Method and apparatus for measuring color of display member | |
JPH10232113A (en) | Method for measuring gap between electrodes of liquid crystal cell | |
JP4203290B2 (en) | Display member color measuring method and apparatus | |
TWI405962B (en) | A stain detection method and a device thereof | |
JPH1038753A (en) | Method for inspecting transparent film | |
TWI849658B (en) | Composite calibration plate | |
WO2024014273A1 (en) | Inspection system, and method for correcting angle of inclination of object surface using same | |
JP2005148637A (en) | Display device manufacturing method, image pickup device manufacturing method and inspection device for color filter substrate used for these | |
JPH0621771B2 (en) | Transparent electrode film pattern detection method | |
JP2006201142A (en) | Inspecting apparatus, inspecting method and manufacturing method for color filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |