[go: up one dir, main page]

JPH09232675A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH09232675A
JPH09232675A JP3168496A JP3168496A JPH09232675A JP H09232675 A JPH09232675 A JP H09232675A JP 3168496 A JP3168496 A JP 3168496A JP 3168496 A JP3168496 A JP 3168496A JP H09232675 A JPH09232675 A JP H09232675A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
refractive index
active layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3168496A
Other languages
Japanese (ja)
Other versions
JP3653843B2 (en
Inventor
Toshiaki Tanaka
俊明 田中
Satoshi Kawanaka
敏 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3168496A priority Critical patent/JP3653843B2/en
Publication of JPH09232675A publication Critical patent/JPH09232675A/en
Application granted granted Critical
Publication of JP3653843B2 publication Critical patent/JP3653843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

(57)【要約】 【課題】半導体レーザのBHストライプ構造を精度良く
かつ歩留良く形成し、さらに利得領域を広くすることに
より高出力化を図る。 【解決手段】サファイア基板1上に半導体層3まで結晶
成長した後、絶縁膜マスクを形成し、光導波層5を洗濯
成長し不純物をドープした発光活性層を設け、次に超格
子構造の光導波層13を設ける。その後、コンタクト層
8を設け絶縁膜9を形成した後、p側電極10及びn側
電極11を蒸着する。最後に、劈開して共振器面を切り
出し、スクライブにより素子を分離する。 【効果】本発明によれば、活性層ストライプ幅を従来の
2倍以上に拡大して設定できるため、活性層の体積の増
大による利得領域の拡大及び素子の高出力化が可能とな
る。これにより、青紫色波長域の短波長まで発振する窒
化物半導体レーザにおいて低閾値化及び高出力化を達成
した。
(57) Abstract: A BH stripe structure of a semiconductor laser is formed with high accuracy and a high yield, and a gain region is widened to achieve high output. SOLUTION: After crystal growth up to a semiconductor layer 3 on a sapphire substrate 1, an insulating film mask is formed, an optical waveguide layer 5 is washed and grown, and a light emitting active layer doped with impurities is provided. The wave layer 13 is provided. Then, after forming the contact layer 8 and forming the insulating film 9, the p-side electrode 10 and the n-side electrode 11 are vapor-deposited. Finally, cleavage is performed to cut out the resonator surface, and the elements are separated by scribing. According to the present invention, since the active layer stripe width can be set to be twice as large as that in the conventional case, the gain region can be expanded and the device output can be increased by increasing the volume of the active layer. As a result, a low threshold and high output have been achieved in a nitride semiconductor laser that oscillates up to a short wavelength in the blue-violet wavelength range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光情報処理或は光
応用計測光源に適する半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device suitable for optical information processing or optical measurement light source.

【0002】[0002]

【従来の技術】従来技術では、窒化物系半導体を用い
た、青色から黄色の波長領域で発光するダイオ−ドにお
いて、発光活性層や異種二重接合導波路構造の構成が公
知例1)ジャパン・ジャ−ナル・アプライド・フィジッ
クス1995年,34巻,L797-L799頁(Jpn J. Appl. Phys., 6
4, L797-L799(1995).)において述べられている。
2. Description of the Related Art In the prior art, in a diode which uses a nitride-based semiconductor and emits light in the wavelength range from blue to yellow, the structure of a light emitting active layer and a heterojunction double-junction waveguide structure is known 1) Japan・ Journal Applied Physics 1995, 34, L797-L799 (Jpn J. Appl. Phys., 6
4, L797-L799 (1995).).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、発
光活性層や光導波層に関する構造や窒化物系材料の異種
二重接合の構成について述べているが、レーザ素子にお
いて横モードを制御するための導波路構造や活性層の形
状については言及していない。
In the above-mentioned prior art, the structure related to the light emitting active layer and the optical waveguide layer and the structure of the heterojunction of different nitride materials are described. However, in order to control the transverse mode in the laser device. No mention is made of the waveguide structure and the shape of the active layer.

【0004】本発明の目的は、基本横モードに制御でき
る半導体レーザの埋め込みBHストライプ構造を選択成
長技術に基づいて形成するが、BHストライプ構造設計
における基本横モード制御条件に関して、設計裕度をも
たせストライプ幅を広く設定できるようにすることによ
り、従来精度良く作製することが困難であったBHスト
ライプ構造を歩留良く形成し、かつ利得領域を広くする
ことにより高出力特性を得やすくしたレ−ザ素子を達成
することにある。また、本発明の選択成長技術による
と、格段に結晶欠陥密度を低減した低光損失の導波路構
造を作製できるので、低閾値かつ高効率で動作できる、
青紫波長域の窒化物半導体レーザの素子構造を提供する
ことが可能となる。
An object of the present invention is to form a buried BH stripe structure of a semiconductor laser which can be controlled in a fundamental transverse mode based on a selective growth technique, but to provide a design margin with respect to a fundamental transverse mode control condition in BH stripe structure design. By allowing the stripe width to be set wide, a BH stripe structure, which has been difficult to manufacture with high precision in the past, can be formed with a high yield, and the gain region can be widened to easily obtain high output characteristics. To achieve the element. Further, according to the selective growth technique of the present invention, since it is possible to fabricate a waveguide structure with a low optical loss in which the crystal defect density is remarkably reduced, it is possible to operate with a low threshold value and high efficiency.
It is possible to provide a device structure of a nitride semiconductor laser in the blue-violet wavelength region.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の手段を以下に説明する。
Means for achieving the above object will be described below.

【0006】本発明は、半導体レーザの基本横モードを
制御するための基本構造である、埋め込みBHストライ
プ構造の設計を改善する内容に関する。従来のBHスト
ライプ構造では、基本横モード制御条件として最大でも
1〜2μm範囲の非常に狭いストライプ幅が要求されて
おり、精度良くかつ高い歩留りで作製することは困難で
あり、また利得領域を広く設定できないために高出力特
性を望めなかった。そこで、利得領域である活性層のス
トライプ幅を拡大するために、活性層横方向の実屈折率
差をできるだけ小さく設定できる構造を考案した。本質
的には、発光活性層と光導波層の屈折率差を小さくする
手法を適用できればよい。しかしながら、活性層におけ
るキャリア閉じ込めを考慮すると、活性層と光導波層の
禁制帯幅を大きく保つ必要がある。
The present invention relates to improving the design of a buried BH stripe structure, which is a basic structure for controlling the basic transverse mode of a semiconductor laser. In the conventional BH stripe structure, a very narrow stripe width in the range of 1 to 2 μm at the maximum is required as a basic transverse mode control condition, and it is difficult to manufacture the BH stripe structure with high accuracy and high yield, and the gain region is wide. High output characteristics could not be expected because it could not be set. Therefore, in order to increase the stripe width of the active layer, which is the gain region, we devised a structure in which the difference in the actual refractive index in the lateral direction of the active layer can be set as small as possible. Essentially, it is sufficient to apply a method for reducing the difference in refractive index between the light emitting active layer and the optical waveguide layer. However, considering the carrier confinement in the active layer, it is necessary to keep the forbidden band width of the active layer and the optical waveguide layer large.

【0007】本発明では、活性層の禁制帯幅を大きく変
えずに、屈折率を低減し光導波層の屈折率に近づけるた
め、活性層に不純物をドープする手法をまず提案する。
さらに、光導波層の禁制帯幅を大きく変えずに、屈折率
を大きくすることにより活性層の屈折率に近づけるた
め、禁制帯幅が小さく屈折率の大きな材料と禁制帯幅が
大きく屈折率の小さな材料を原子層オーダで繰り返す超
格子構造として光導波層を形成する手法を提案する。こ
れらの手法では、禁制帯幅の設計に大きな変動はなく、
活性層と光導波層の屈折率差設計が可能となる。活性層
に不純物をドープする手法では、ドープする不純物量が
多く活性化したキャリア濃度が高いほど、活性層の屈折
率減少の割合が大きくなる。また、光導波層に超格子構
造を導入する手法では、屈折率の大きな材料を使用する
繰り返し数や全体の膜厚によって、光導波層の屈折率増
大の割合が大きくなる。さらに、これら二つの手法を組
み合わせると、ストライプ幅を拡大できる効果が格段に
大きくなる。少なくとも活性層縦方向においては、活性
層と光導波層の禁制帯幅をできるだけ大きく設けるダブ
ルヘテロ構造とし、活性層横方向では実屈折率差ができ
るだけ小さくなるBH構造の設計が望ましい。活性層と
光導波層の実屈折率差は0.05から0.40の範囲であるもの
とし、望ましくは0.10から0.30の範囲に設定することに
より、従来構造のストライプ幅よりも広く形成できる。
In the present invention, a method of doping impurities into the active layer is first proposed in order to reduce the refractive index and bring it closer to the refractive index of the optical waveguide layer without largely changing the forbidden band width of the active layer.
Furthermore, since the refractive index is increased to approach the refractive index of the active layer without largely changing the forbidden band width of the optical waveguide layer, a material having a small forbidden band width and a large refractive index and a large forbidden band width are used. We propose a method for forming an optical waveguide layer as a superlattice structure in which small materials are repeated in the atomic layer order. With these methods, there is no big change in the design of the forbidden band,
This makes it possible to design the refractive index difference between the active layer and the optical waveguide layer. In the method of doping the active layer with impurities, the rate of decrease in the refractive index of the active layer increases as the amount of doped impurities increases and the activated carrier concentration increases. In addition, in the method of introducing the superlattice structure into the optical waveguide layer, the rate of increase in the refractive index of the optical waveguide layer increases depending on the number of repetitions using a material having a large refractive index and the total film thickness. Furthermore, when these two methods are combined, the effect of increasing the stripe width is significantly increased. At least in the vertical direction of the active layer, it is preferable to design the double hetero structure in which the forbidden band width of the active layer and the optical waveguide layer is provided as large as possible, and to design the BH structure in which the real refractive index difference is as small as possible in the horizontal direction of the active layer. The actual refractive index difference between the active layer and the optical waveguide layer is set to be in the range of 0.05 to 0.40, and is preferably set to be in the range of 0.10 to 0.30, whereby the stripe width can be formed wider than that of the conventional structure.

【0008】特に本発明では、窒化物半導体の結晶成長
に対して選択成長技術を適用することにより、矩形状断
面の光導波路をもとにBHストライプ構造を作製する。
図6に、GaInN活性層とGaN光導波層からなるBH構造の
矩形状導波路において、基本横モ−ドが達成できるGaIn
N活性層の膜厚とストライプ幅の関係を示す。この時のG
aInN活性層とGaN光導波層の屈折率は、それぞれ2.5及び
2.2である。GaInN活性層の膜厚が約0.01μmのとき、基
本横モ−ドの得られる最大のストライプ幅は1〜2μm
範囲である。本計算によると、ストライプ幅をさらに拡
大するためには、少なくとも活性層と光導波層の屈折率
差を0.3以下にする必要がある。上記手法を適用する
と、GaInN活性層にn型又はp型の不純物を導入し、ま
たはGaN光導波層を置き換えて、屈折率の大きなGaInN層
と屈折率の小さいGaN層を原子層オーダで繰り返した超
格子構造とするか、それらの組合せによって、禁制帯幅
を大きく変化させずに、活性層と光導波層の屈折率差を
上記0.3よりも小さく設計可能であった。
In particular, in the present invention, the BH stripe structure is produced based on the optical waveguide having a rectangular cross section by applying the selective growth technique to the crystal growth of the nitride semiconductor.
Fig. 6 shows a GaInN active layer and a GaN optical waveguide layer having a BH-shaped rectangular waveguide that can achieve the basic lateral mode GaIn.
The relationship between the film thickness of the N active layer and the stripe width is shown. G at this time
The refractive indices of the aInN active layer and the GaN optical waveguide layer are 2.5 and
2.2. When the thickness of GaInN active layer is about 0.01 μm, the maximum stripe width that can obtain the basic lateral mode is 1 to 2 μm.
Range. According to this calculation, in order to further increase the stripe width, at least the difference in refractive index between the active layer and the optical waveguide layer needs to be 0.3 or less. When the above method is applied, an n-type or p-type impurity is introduced into the GaInN active layer, or the GaN optical waveguide layer is replaced, and the GaInN layer having a large refractive index and the GaN layer having a small refractive index are repeated in the atomic layer order. It was possible to design the difference in refractive index between the active layer and the optical waveguide layer to be smaller than 0.3 above without changing the forbidden band width significantly by adopting a superlattice structure or a combination thereof.

【0009】上記手法のうち、光導波層を超格子構造と
したときには、例えば屈折率の大きいGaInN層と屈折率
の小さいGaN層で構成するとき、光導波層の平均屈折率
はGaN層単体のときよりも大きく設定できると共に、GaI
nN層におけるp型不純物の活性化率が大きく取れるため
に、光導波層全体では正孔キャリア濃度を高く設定でき
抵抗率を低減することが可能となる。その結果、素子の
低抵抗低動作電圧が図れることになる。
Of the above methods, when the optical waveguide layer has a superlattice structure, for example, when it is composed of a GaInN layer having a large refractive index and a GaN layer having a small refractive index, the average refractive index of the optical waveguide layer is that of the GaN layer alone. It can be set larger than when
Since the activation rate of the p-type impurity in the nN layer can be made large, the hole carrier concentration can be set high in the entire optical waveguide layer, and the resistivity can be reduced. As a result, a low resistance and low operating voltage of the device can be achieved.

【0010】また本発明によると、上記不純物ド−プ活
性層や超格子構造光導波層を容易に作製できるだけでな
く、選択成長用の絶縁膜マスク上に設けた光導波層や活
性層では結晶転位密度を格段に低減できる。従来の報告
では、実用化レベルにある発光ダイオ−ドにおいても、
結晶転位密度が1010〜1011/cm2範囲の高い値にあるが、
本発明の技術によると転位密度を103〜104/cm2範囲の低
いレベルにできている。これは、光散乱による光損失を
軽減するので内部光損失を小さくでき、素子の低閾値高
効率動作をもたらす。
Further, according to the present invention, not only the impurity doped active layer and the superlattice structure optical waveguide layer can be easily produced, but also the optical waveguide layer and the active layer provided on the insulating film mask for selective growth are crystallized. The dislocation density can be significantly reduced. According to the conventional reports, even in the light emitting diode which is at a practical level,
Although the crystal dislocation density is high in the range of 10 10 to 10 11 / cm 2 ,
According to the technique of the present invention, the dislocation density can be made as low as in the range of 10 3 to 10 4 / cm 2 . This reduces the light loss due to light scattering, so that the internal light loss can be reduced, resulting in low threshold and high efficiency operation of the device.

【0011】以上により、選択成長技術を適用して作製
した矩形状導波路において、基本横モードが得られるB
H構造の活性層ストライプ幅を拡大した構造設計を可能
とし、利得領域を増大することにより高出力化を図り、
かつ低欠陥低損失の導波路により低閾値高効率で動作す
る半導体レーザを達成できる。
As described above, the fundamental transverse mode can be obtained in the rectangular waveguide manufactured by applying the selective growth technique.
It enables the structural design of the active layer stripe width of the H structure to be expanded, and increases the output by increasing the gain region.
In addition, a semiconductor laser that operates with low threshold and high efficiency can be achieved by a waveguide with low defects and low loss.

【0012】[0012]

【発明の実施の形態】本発明の詳細を、以下の実施例及
び関連図面に記載の形態を以て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described in detail with reference to the following embodiments and the accompanying drawings.

【0013】<実施例1>本発明の一実施例を図1によ
り説明する。図1において、(0001)C面を有するサファ
イア(α-Al2O3)単結晶基板1上に、GaNバッファ層2,
n型GaN光導波層3をまず有機金属気相成長法により結
晶成長する。次に、絶縁膜マスクパターン4をストライ
プ窓開口部をもつ形状にして形成する。このとき、絶縁
膜マスクのストライプ方向を該サファイア基板1の(11-
20)A面と平行な方向に設定しておく。さらに、n型GaN
光導波層5,AlGaN光分離閉じ込め層とGaN量子障壁層及
びGaInN圧縮歪量子井戸層からなり、全体にn型又はp
型の不純物を一様にドープするか量子障壁層に変調ドー
プしてキャリア濃度を少なくとも5×1017/cm3以上設定
してある圧縮歪多重量子井戸活性層6,p型GaN光導波
層7,p型GaInNコンタクト層8を選択成長する。その
後、リソグラフィーにより絶縁膜9を形成した後、p側
電極10とn側電極11を蒸着する。最後に、ストライ
プに垂直な方向に劈開して共振器面を切り出し、スクラ
イブにより素子を分離して図1に示す素子縦断面を得
る。
<Embodiment 1> An embodiment of the present invention will be described with reference to FIG. In FIG. 1, a GaN buffer layer 2 is formed on a sapphire (α-Al 2 O 3 ) single crystal substrate 1 having a (0001) C plane.
First, the n-type GaN optical waveguide layer 3 is crystal-grown by the metal organic chemical vapor deposition method. Next, the insulating film mask pattern 4 is formed in a shape having a stripe window opening. At this time, the stripe direction of the insulating film mask is set to (11-
20) Set in the direction parallel to the A surface. Furthermore, n-type GaN
An optical waveguide layer 5, an AlGaN optical isolation confinement layer, a GaN quantum barrier layer, and a GaInN compressive strain quantum well layer.
Compression-strained multi-quantum well active layer 6, p-type GaN optical waveguide layer 7 in which carrier concentration is set to at least 5 × 10 17 / cm 3 by uniformly doping a quantum barrier layer or by modulation-doping the quantum barrier layer. , P-type GaInN contact layer 8 is selectively grown. Then, after forming the insulating film 9 by lithography, the p-side electrode 10 and the n-side electrode 11 are vapor-deposited. Finally, cleavage is performed in a direction perpendicular to the stripe to cut out the resonator surface, and the elements are separated by scribing to obtain the element vertical section shown in FIG.

【0014】本実施例では、屈折率導波により基本横モ
ードに制御するBHストライプ構造において、発光活性
層の屈折率を不純物ドープにより低減し、光導波層の屈
折率に近づけることが可能であった。このため、アンド
ープ活性層の素子に比べて、基本横モードを達成できる
最大の活性層ストライプ幅を従来よりも拡大できた。従
来のアンドープ活性層では上記ストライプ幅が1〜2μ
mの範囲であったのに対し、本素子では1.5〜3μm
の範囲に広く設定できた。本実施例における素子では、
利得の得られる領域を拡大できたので、最大光出力を
1.5倍から2倍以上に向上させることが可能であっ
た。本素子は、従来のバルク成長により形成した素子よ
りも低閾値高効率でレ−ザ動作し、室温における発振波
長は410〜430nmの範囲であった。
In the present embodiment, in the BH stripe structure in which the fundamental transverse mode is controlled by refractive index guiding, it is possible to reduce the refractive index of the light emitting active layer by doping impurities so as to approach the refractive index of the optical waveguide layer. It was Therefore, the maximum active layer stripe width that can achieve the fundamental transverse mode can be increased as compared with the conventional undoped active layer device. In the conventional undoped active layer, the stripe width is 1-2 μm.
The range of m was 1.5 to 3 μm in this device.
It was possible to set a wide range. In the device of this example,
Since the region where the gain can be obtained was expanded, it was possible to improve the maximum optical output from 1.5 times to 2 times or more. This device operates at a lower threshold and a higher efficiency than the device formed by conventional bulk growth, and the oscillation wavelength at room temperature is in the range of 410 to 430 nm.

【0015】<実施例2>本発明の他実施例を図2によ
り説明する。実施例1と同様に素子を作製するが、n型
GaN光導波層3まで設けた後、絶縁膜マスクパターンを
図2に示すように、2つのストライプ窓開口部を形成す
る。次に、2つのストライプ窓開口部に選択成長し、中
央部の絶縁膜マスク上で横方向にホモエピタキシャル成
長し合体させることにより、一つの結晶層としてn型Ga
N光導波層5を形成する。その後、実施例1と全く同様
にして、図2に示す素子断面を得る。
<Second Embodiment> Another embodiment of the present invention will be described with reference to FIG. An element is manufactured in the same manner as in Example 1, but the n-type
After providing up to the GaN optical waveguide layer 3, an insulating film mask pattern is formed with two stripe window openings as shown in FIG. Next, selective growth is performed in the two stripe window openings, and homoepitaxial growth is performed in the lateral direction on the insulating film mask in the central portion to combine them, thereby forming n-type Ga as one crystal layer.
The N optical waveguide layer 5 is formed. Then, the element cross section shown in FIG. 2 is obtained in exactly the same manner as in Example 1.

【0016】本実施例では、絶縁膜マスク上に低結晶欠
陥密度の結晶層からなる低光損失の導波路構造を作製す
ることが可能となった。従来技術では、結晶欠陥密度が
109〜1011/cm2範囲のレベルであるのに対し、本手法に
よる横方向ホモエピタキシャル成長では、絶縁膜マスク
上において結晶欠陥密度を103〜104/cm2範囲のレベルに
低減した光導波層を形成できた。これにより、結晶欠陥
による光散乱損失によって生ずる、内部光損失を格段に
低減できた。このため、実施例1よりも低閾値動作が可
能となり、実施例3より少なくとも閾値電流を1/5から1
/10に低減することが可能であった。本素子は、従来の
バルク成長により形成した素子よりも低閾値高効率でレ
ーザ動作し、室温における発振波長は410〜430n
mの範囲であった。
In this embodiment, it is possible to manufacture a waveguide structure having a low optical loss, which is composed of a crystal layer having a low crystal defect density on an insulating film mask. In the conventional technology, the crystal defect density is
While the level is in the range of 10 9 to 10 11 / cm 2, in the lateral homoepitaxial growth by this method, the crystal defect density on the insulating film mask is reduced to the level of 10 3 to 10 4 / cm 2. A wave layer could be formed. As a result, the internal light loss caused by the light scattering loss due to crystal defects could be significantly reduced. For this reason, it becomes possible to perform a lower threshold operation than that of the first embodiment, and at least a threshold current of 1/5 to 1
It was possible to reduce to / 10. This device operates with a lower threshold and a higher efficiency than a device formed by conventional bulk growth, and has an oscillation wavelength of 410 to 430n at room temperature.
m.

【0017】<実施例3>本発明の他実施例を図3によ
り説明する。実施例2と同様に素子を作製するが、層5
まで成長した後に、全体をアンドープとしたAlGaN光分
離閉じ込め層とGaN量子障壁層及びGaInN圧縮歪
量子井戸層からなる、圧縮歪多重量子井戸活性層12,
少なくとも1×1018/cm3以上の正孔キャリア濃度を設定
したp型GaInN層と少なくとも5×1017/cm3以上の正孔キ
ャリア濃度を設定したp型GaN層からなる超格子構造GaI
nN/GaN光導波層13,p型GaInNコンタクト層8を選択
成長する。その後、実施例2と全く同様にして、図3に
示す素子縦断面を得る。
<Embodiment 3> Another embodiment of the present invention will be described with reference to FIG. Prepare the device as in Example 2, but in layer 5
After the growth, the compressive strained multiple quantum well active layer 12, which is composed of an AlGaN optical separation confinement layer which is entirely undoped, a GaN quantum barrier layer and a GaInN compressive strained quantum well layer 12,
Superlattice structure GaI composed of a p-type GaInN layer having a hole carrier concentration of at least 1 × 10 18 / cm 3 or more and a p-type GaN layer having a hole carrier concentration of at least 5 × 10 17 / cm 3 or more
The nN / GaN optical waveguide layer 13 and the p-type GaInN contact layer 8 are selectively grown. Then, the element vertical section shown in FIG. 3 is obtained in exactly the same manner as in Example 2.

【0018】本実施例によると、p型光導波層全体にお
ける平均屈折率を実施例1や2より高く設定でき、発光
活性層の屈折率に近づけることが可能であった。従来の
単層からなる光導波層では、基本横モードを達成できる
最大の活性層ストライプ幅が1〜2μmの範囲であった
のに対し、本素子では2.5〜4μmの範囲に広く設定
できた。本実施例における素子では、利得の得られる領
域をさらに拡大できたため、最大光出力を2倍から3倍
以上に向上させることが可能であった。また、超格子構
造光導波層のGaInN層には正孔キャリア濃度をGaN層に比
べて高く設定できるので、超格子構造にすることによっ
てp型光導波層の抵抗率を低減できた。これにより、素
子の低抵抗低動作電圧化を図り、素子抵抗を上記実施例
よりも1/3から1/5に低減可能であった。本素子は、従来
のバルク成長により形成した素子よりも低閾値高効率で
レーザ動作し、室温における発振波長は410〜430
nmの範囲であった。
According to this embodiment, the average refractive index of the entire p-type optical waveguide layer can be set higher than those of the first and second embodiments, and it is possible to approach the refractive index of the light emitting active layer. In the conventional optical waveguide layer consisting of a single layer, the maximum active layer stripe width that can achieve the fundamental transverse mode is in the range of 1 to 2 μm, whereas in this device, it can be widely set in the range of 2.5 to 4 μm. It was In the device of this example, the region where the gain was obtained could be further expanded, so that it was possible to improve the maximum optical output from 2 times to 3 times or more. In addition, since the hole carrier concentration can be set higher in the GaInN layer of the superlattice structure optical waveguide layer than in the GaN layer, the resistivity of the p-type optical waveguide layer can be reduced by adopting the superlattice structure. As a result, it was possible to reduce the resistance and operating voltage of the element and reduce the element resistance from 1/3 to 1/5 of that in the above-mentioned embodiment. This device operates with a lower threshold and a higher efficiency than a device formed by conventional bulk growth, and has an oscillation wavelength of 410 to 430 at room temperature.
It was in the range of nm.

【0019】<実施例4>本発明の他実施例を図4によ
り説明する。実施例2の不純物ドープ発光活性層と実施
例3の超格子構造p型光導波層を組み合わせることによ
り、素子を作製する。即ち、層6までは実施例2と同様
に作製し、層13からは実施例3と同様にして、図4に
示す素子縦断面を得る。
<Embodiment 4> Another embodiment of the present invention will be described with reference to FIG. An element is manufactured by combining the impurity-doped light emitting active layer of Example 2 and the superlattice structure p-type optical waveguide layer of Example 3. That is, the layers up to the layer 6 were formed in the same manner as in Example 2, and the layers 13 were formed in the same manner as in Example 3 to obtain the element vertical section shown in FIG.

【0020】本実施例では、発光活性層とp型光導波層
の屈折率を互いに近づけることが可能であり、実屈折率
差を0.10から0.30の小さい範囲に設定できた。本素子で
は、実施例2や3よりも基本横モードを達成できる最大
の活性層ストライプ幅を拡大でき、3〜5μmの範囲に
広く設定することが可能であった。本実施例における素
子では、利得の得られる領域をさらに拡大できたため、
最大光出力を3倍から4倍以上に向上させることが可能
であった。本素子は、従来のバルク成長により形成した
素子よりも低閾値高効率でレーザ動作し、室温における
発振波長は410〜430nmの範囲であった。
In this embodiment, it is possible to make the refractive indices of the light emitting active layer and the p-type optical waveguide layer close to each other, and the actual refractive index difference can be set to a small range of 0.10 to 0.30. In this device, the maximum active layer stripe width that can achieve the basic transverse mode can be expanded more than in Examples 2 and 3, and it was possible to set it to a wide range of 3 to 5 μm. In the element of this example, the region where the gain can be obtained can be further expanded,
It was possible to improve the maximum light output from 3 times to 4 times or more. This device operates with a lower threshold and a higher efficiency than the device formed by conventional bulk growth, and the oscillation wavelength at room temperature was in the range of 410 to 430 nm.

【0021】<実施例5>本発明の他実施例を図5によ
り説明する。実施例4と同様に素子を作製するが、層8
まで選択成長した後に、リソグラフィと絶縁膜をマスク
としたエッチング加工により図5に示すリッジストライ
プを形成する。リッジストライプの底部幅は2〜9μm
の範囲に設定する。さらに、絶縁膜を利用して選択成長
したn型GaN電流狭窄層または誘電体絶縁膜を埋め込ん
だ電流狭窄層14を設ける。その後、絶縁膜層9を設
け、その後他の実施例と全く同様して、図5に示す素子
縦断面を得る。
<Embodiment 5> Another embodiment of the present invention will be described with reference to FIG. A device is prepared as in Example 4, but with layer 8
After selective growth, the ridge stripe shown in FIG. 5 is formed by lithography and etching using the insulating film as a mask. The bottom width of the ridge stripe is 2-9 μm
Set to the range. Further, an n-type GaN current confinement layer selectively grown using an insulating film or a current confinement layer 14 having a dielectric insulating film embedded therein is provided. After that, the insulating film layer 9 is provided, and the element vertical section shown in FIG. 5 is obtained in exactly the same manner as the other examples.

【0022】本実施例によると、実施例4と同様に、基
本横モードを達成できる最大の活性層ストライプ幅を拡
大でき、実施例4と同じ範囲のストライプ幅を設定する
ことが可能であった。また、高出力特性も実施例4とほ
ぼ同程度のレベルを得た。本素子では、リッジストライ
プを形成することにより、BHストライプ構造の内側に
さらに電流狭窄機能をもたせることができ、かつ中央の
絶縁膜上に形成した低欠陥低光損失の導波路と発光活性
層にキャリアを注入することになるので、さらに効率の
よい光閉じ込めと電流注入が達成できた。これにより、
実施例4よりも一層低閾値高効率化が図れた。本素子
は、従来のバルク成長により形成した素子よりも低閾値
高効率でレーザ動作し、室温における発振波長は410
〜430nmの範囲であった。
According to the present embodiment, the maximum active layer stripe width capable of achieving the basic transverse mode can be expanded and the stripe width in the same range as that of the embodiment 4 can be set similarly to the embodiment 4. . Also, the high output characteristics were at the same level as in Example 4. In this device, by forming the ridge stripe, the current confinement function can be further provided inside the BH stripe structure, and the low defect low optical loss waveguide and the light emitting active layer formed on the central insulating film are formed. Since carriers will be injected, more efficient optical confinement and current injection could be achieved. This allows
A higher threshold and higher efficiency were achieved compared to the fourth embodiment. This device operates at a lower threshold and a higher efficiency than a device formed by conventional bulk growth, and has an oscillation wavelength of 410 at room temperature.
Was in the range of ˜430 nm.

【0023】<実施例6>本発明の他実施例を説明す
る。実施例1から5と同様な素子をそれぞれ作製する
が、サファイア(α-Al2O3)基板の代わりに、基板1に六
方晶系Wurtzite構造であり基板面方位(0001)C面のn型
炭化珪素(α-SiC)を用いる。その上にn型GaNバッファ
層を設けて、実施例1から5までの素子構造を同様にし
て作製した後、n側電極を基板裏面に蒸着した後、劈開
スクライブしてそれぞれの素子断面を得た。
<Embodiment 6> Another embodiment of the present invention will be described. Devices similar to those in Examples 1 to 5 are produced, respectively, except that the substrate 1 has a hexagonal Wurtzite structure instead of a sapphire (α-Al 2 O 3 ) substrate and has a substrate plane orientation (0001) C-plane n-type. Silicon carbide (α-SiC) is used. An n-type GaN buffer layer was provided thereon, and the element structures of Examples 1 to 5 were prepared in the same manner. Then, the n-side electrode was vapor-deposited on the back surface of the substrate, and cleavage scribing was performed to obtain respective element cross sections. It was

【0024】本実施例によると、基板が導電性を有して
いるので、基板側を上にして接合面を下にした素子のマ
ウント実装が可能となった。基板側のn側電極から、電
子キャリアを注入し、基板上面に結晶成長した窒化物半
導体の接合面を通してp側電極へ通すことができた。さ
らにSiC基板では、その熱伝導度がサファイア基板より
も大きく、基板への放熱性が優れている。これらによ
り、熱放散性を格段に向上させることができたため、本
実施例では他の実施例よりも高い温度で動作するレーザ
素子を得た。本素子は、室温において発振波長410〜
430nmの範囲でレーザ動作した。
According to this embodiment, since the substrate has conductivity, it is possible to mount and mount the device with the substrate side facing up and the bonding surface facing down. It was possible to inject electron carriers from the n-side electrode on the substrate side and pass them to the p-side electrode through the bonding surface of the nitride semiconductor crystal-grown on the upper surface of the substrate. Furthermore, the SiC substrate has a higher thermal conductivity than the sapphire substrate, and is excellent in heat dissipation to the substrate. With these, the heat dissipation property could be remarkably improved, so that in this example, a laser element which operates at a higher temperature than the other examples was obtained. This device has an oscillation wavelength of 410-410 at room temperature.
Laser operation was performed in the range of 430 nm.

【0025】[0025]

【発明の効果】本発明により、半導体レーザの基本横モ
ードを制御するための基本構造である、埋め込みBHス
トライプ構造において、ストライプ幅に設計裕度をもた
せる手法を考案した。本手法である、発光活性層への不
純物ドープと超格子構造光導波層を適用することによ
り、活性層ストライプ幅を2倍以上に拡大することが可
能であった。従来BHストライプ構造では、活性層幅が
1〜2μmであったのに対し、本手法では2〜5μmの
範囲に設定できた。このため、活性層の体積を増大させ
利得領域を拡大できるので、高出力特性が得やすいスト
ライプ構造を形成できた。本手法を適用したストライプ
構造では、2倍から4倍の高出力化を図ることが可能で
あった。また、p型光導波層を超格子構造にすることに
より、正孔キャリア濃度を従来よりも高く設定できるの
で、素子の低抵抗低動作電圧化に有効であり、改善を図
ることができた。選択成長によって絶縁膜上に形成した
導波路構造では、低欠陥密度の光導波層や発光活性層を
作製でき、転位密度を103〜104/cm2範囲の低いレベルに
設定できた。このため、従来よりも格段に低損失の導波
路となり、より低い光学利得によってレーザ発振が可能
となる素子の低閾値動作が可能であった。本発明では、
従来のバルク成長により形成した素子より低閾値高効率
でレーザ動作し、かつ2倍から4倍の高出力特性が得ら
れ、紫外や青紫色波長域の短波長まで発振する窒化物半
導体レーザを達成した。
According to the present invention, a method of giving a design margin to the stripe width in a buried BH stripe structure, which is a basic structure for controlling the basic transverse mode of a semiconductor laser, was devised. By applying the impurity doping to the light emitting active layer and the superlattice structure optical waveguide layer, which is the present technique, the stripe width of the active layer could be more than doubled. In the conventional BH stripe structure, the width of the active layer was 1 to 2 μm, but in the present method, it could be set in the range of 2 to 5 μm. Therefore, the volume of the active layer can be increased and the gain region can be expanded, so that a stripe structure in which high output characteristics are easily obtained can be formed. With the stripe structure to which the present method is applied, it was possible to increase the output by 2 to 4 times. Further, by making the p-type optical waveguide layer have a superlattice structure, the hole carrier concentration can be set higher than before, which is effective for lowering the resistance and operating voltage of the device, and the improvement can be achieved. In the waveguide structure formed on the insulating film by selective growth, an optical waveguide layer and a light emitting active layer with a low defect density could be produced, and the dislocation density could be set to a low level in the range of 10 3 to 10 4 / cm 2 . Therefore, the waveguide has a much lower loss than the conventional one, and the low threshold operation of the element that enables laser oscillation with a lower optical gain was possible. In the present invention,
Achieves a nitride semiconductor laser that operates at a lower threshold and a higher efficiency than conventional devices formed by bulk growth, and that has high output characteristics that are 2 to 4 times higher and that oscillates to short wavelengths in the ultraviolet and blue-violet wavelength range. did.

【0026】本発明の実施例では、Wurtzite構造である
サファイア基板やSiC基板上に作製したAlGaInN半導体レ
ーザについて説明したが、その他(111)面を有したZinc
Blende構造であるGaAs,InP,InAs,GaSb,GaAsP,GaInAs,Zn
Se,ZnS等の基板上に作製した半導体レーザに対しても本
発明の内容を適用できることは言うまでもない。
In the embodiment of the present invention, the AlGaInN semiconductor laser manufactured on the sapphire substrate or the SiC substrate having the Wurtzite structure has been described, but Zinc having the other (111) plane is also described.
Blende structure GaAs, InP, InAs, GaSb, GaAsP, GaInAs, Zn
It goes without saying that the contents of the present invention can also be applied to a semiconductor laser manufactured on a substrate such as Se or ZnS.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す素子構造縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view of a device structure showing an embodiment of the present invention.

【図2】本発明の他実施例における素子構造縦断面図で
ある。
FIG. 2 is a vertical cross-sectional view of a device structure according to another embodiment of the present invention.

【図3】本発明の他実施例を示す素子構造縦断面図であ
る。
FIG. 3 is a vertical cross-sectional view of an element structure showing another embodiment of the present invention.

【図4】本発明の他実施例を示す素子構造縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view of an element structure showing another embodiment of the present invention.

【図5】本発明の他実施例における素子構造縦断面図で
ある。
FIG. 5 is a vertical cross-sectional view of a device structure according to another embodiment of the present invention.

【図6】本発明の素子における基本横モード条件となる
活性層膜厚と幅の関係を示す図である。
FIG. 6 is a diagram showing a relationship between an active layer film thickness and a width which are basic transverse mode conditions in the device of the present invention.

【符号の説明】[Explanation of symbols]

1…(0001)C面サファイア単結晶基板、2…GaNバッファ
層、3…n型GaN光導波層、4…絶縁膜マスク、5…n
型GaN光導波層、6…不純物ドープ多重量子井戸構造活
性層、7…p型GaN光導波層、8…p型GaInNコンタクト
層、9…絶縁膜、10…p側電極、11…n側電極、1
2…アンドープ多重量子井戸構造活性層、13…超格子
構造p型GaInN/GaN光導波層、14…n型GaN埋め込み又
は誘電体絶縁膜電流狭窄層。
1 ... (0001) C-plane sapphire single crystal substrate, 2 ... GaN buffer layer, 3 ... n-type GaN optical waveguide layer, 4 ... Insulating film mask, 5 ... n
-Type GaN optical waveguide layer, 6 ... Impurity-doped multiple quantum well structure active layer, 7 ... p-type GaN optical waveguide layer, 8 ... p-type GaInN contact layer, 9 ... Insulating film, 10 ... P-side electrode, 11 ... N-side electrode 1
2 ... Undoped multiple quantum well structure active layer, 13 ... Superlattice structure p-type GaInN / GaN optical waveguide layer, 14 ... N-type GaN buried or dielectric insulating film current constriction layer.

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】単結晶基板上に設けた発光素子において、
禁制帯幅が大きく屈折率の小さな材料により光導波層を
構成し、禁制帯幅が小さく屈折率の大きな材料により発
光活性層を構成しておき、該発光活性層は基板面に対し
て垂直方向においても水平方向においても該光導波層に
埋め込まれた、活性層横方向に設けた実屈折率差によっ
て導波される埋め込み型(BH: Buried Heterostructure)
屈折率導波路構造を形成し、活性層横方向の実屈折率差
が0.05から0.40の範囲であり、望ましくは0.10から0.30
の範囲に設定してあり、この範囲において活性層横方向
において該発光活性層と該光導波層の屈折率差を望まし
くはできるだけ小さく設けておき、かつ少なくとも活性
層縦方向において該発光活性層と該光導波層の禁制帯幅
を望ましくはできるだけ大きく設けておき、特に伝導帯
のポテンシャル深さを望ましくはできるだけ深くとって
ある異種二重ヘテロ接合構造としてあることを特徴とす
る半導体レーザ素子。
1. A light emitting device provided on a single crystal substrate, comprising:
The optical waveguide layer is made of a material having a large forbidden band width and a small refractive index, and the light emitting active layer is made of a material having a small forbidden band width and a large refractive index. The light emitting active layer is perpendicular to the substrate surface. Embedded type (BH: Buried Heterostructure) that is embedded in the optical waveguide layer both in the horizontal direction and in the horizontal direction and is guided by the real refractive index difference provided in the horizontal direction of the active layer.
Forming a refractive index waveguide structure, the actual refractive index difference in the lateral direction of the active layer is in the range of 0.05 to 0.40, preferably 0.10 to 0.30.
Is set in the range, and the refractive index difference between the light emitting active layer and the optical waveguide layer in the horizontal direction of the active layer is desirably set to be as small as possible, and the light emitting active layer is formed at least in the vertical direction of the active layer. A semiconductor laser device having a heterogeneous double heterojunction structure in which a forbidden band width of the optical waveguide layer is preferably set as large as possible, and particularly, a potential depth of a conduction band is preferably set as deep as possible.
【請求項2】請求項1記載の半導体レーザ素子におい
て、上記光導波層が屈折率の小さな材料と屈折率の大き
な材料の周期構造からなり、それぞれ原子層オーダの膜
厚を周期的に設けた超格子構造を形成しており、少なく
とも屈折率の小さな材料よりも該超格子構造の平均屈折
率を大きくし、該超格子構造を導入することにより光導
波層の屈折率を該発光活性層の屈折率に近づけて第1項
記載の屈折率差の条件を満足することができ、かつ該超
格子構造は屈折率の小さな材料とほぼ同等の禁制帯幅を
有していることを特徴とする半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein the optical waveguide layer is composed of a periodic structure of a material having a small refractive index and a material having a large refractive index, each of which has a periodical atomic layer thickness. The superlattice structure is formed, and the average refractive index of the superlattice structure is made larger than that of a material having at least a small refractive index, and by introducing the superlattice structure, the refractive index of the optical waveguide layer of the light emitting active layer is increased. It is characterized in that the refractive index difference can be made close to the refractive index and the condition of the refractive index difference described in the first paragraph can be satisfied, and that the superlattice structure has a forbidden band width almost equal to that of a material having a small refractive index. Semiconductor laser device.
【請求項3】請求項2記載の半導体レーザ素子におい
て、上記超格子構造は少なくともp型光導波層に導入
し、該超格子構造を構成する材料に一様に不純物をドー
プするか、屈折率が大きく禁制帯幅の小さな材料に不純
物を変調ドープし、少なくとも屈折率が大きく禁制帯幅
の小さな材料には相対的に高濃度にドープしておくこと
を特徴とする半導体レーザ素子。
3. The semiconductor laser device according to claim 2, wherein the superlattice structure is introduced into at least a p-type optical waveguide layer, and a material forming the superlattice structure is uniformly doped with impurities or has a refractive index. A semiconductor laser device characterized in that a material having a large band gap and a small forbidden band is modulated and doped with impurities, and at least a material having a large refractive index and a small band gap is doped at a relatively high concentration.
【請求項4】請求項3記載の半導体レーザ素子におい
て、上記超格子構造光導波層に導入する、屈折率が大き
く禁制帯幅の小さな材料には不純物を高濃度ドープし、
不純物ドープにより活性化して発生したキャリア濃度は
少なくとも1×1018/cm3以上に設定してあることを特徴
とする半導体レーザ素子。
4. The semiconductor laser device according to claim 3, wherein the material having a large refractive index and a small forbidden band, which is introduced into the optical waveguide layer of the superlattice structure, is heavily doped with impurities.
A semiconductor laser device characterized in that the carrier concentration generated by activation by impurity doping is set to at least 1 × 10 18 / cm 3 or more.
【請求項5】請求項1記載の半導体レーザ素子におい
て、上記発光活性層には少なくともn型或いはp型の不
純物をドープしておき、不純物をドープすることにより
該発光活性層の屈折率を上記光導波層の屈折率に近づけ
て上記屈折率差の条件を満足することができ、少なくと
もアンドープの発光活性層よりも屈折率が小さくなって
いることを特徴とする半導体レーザ素子。
5. The semiconductor laser device according to claim 1, wherein the light emitting active layer is doped with at least an n-type or p-type impurity, and the refractive index of the light emitting active layer is adjusted by doping the impurity. A semiconductor laser device having a refractive index smaller than that of an undoped light emitting active layer, the refractive index difference being closer to the refractive index of the optical waveguide layer and satisfying the condition of the refractive index difference.
【請求項6】請求項5記載の半導体レーザ素子におい
て、上記発光活性層は量子井戸層により構成した単一或
は多重量子井戸構造であることを特徴とする半導体レー
ザ素子。
6. The semiconductor laser device according to claim 5, wherein the light emitting active layer has a single or multiple quantum well structure formed of quantum well layers.
【請求項7】請求項6記載の半導体レーザ素子におい
て、上記発光活性層は格子歪を導入した歪量子井戸層に
より構成した単一或は多重歪量子井戸構造であることを
特徴とする半導体レーザ素子。
7. The semiconductor laser device according to claim 6, wherein the light emitting active layer has a single or multiple strained quantum well structure constituted by a strained quantum well layer having lattice strain introduced therein. element.
【請求項8】請求項5記載の半導体レーザ素子におい
て、上記発光活性層には少なくともn型或いはp型の不
純物をドープし、活性層がダブルヘテロ構造或いは量子
井戸構造を有する場合に活性層全体に一様に不純物をド
ープするか、又は多重量子井戸構造の場合には量子障壁
層にのみ不純物を変調ドープすることを特徴とする半導
体レーザ素子。
8. The semiconductor laser device according to claim 5, wherein the light emitting active layer is doped with at least n-type or p-type impurities, and when the active layer has a double hetero structure or a quantum well structure, the entire active layer. A semiconductor laser device characterized in that an impurity is uniformly doped in the substrate, or in the case of a multiple quantum well structure, only the quantum barrier layer is modulation-doped.
【請求項9】請求項8記載の半導体レーザ素子におい
て、上記発光活性層には少なくともn型或いはp型の不
純物をドープし、不純物ドープにより活性化して発生し
たキャリア濃度が少なくとも5×1017/cm3以上に設定し
てあることを特徴とする半導体レーザ素子。
9. The semiconductor laser device according to claim 8, wherein the light emitting active layer is doped with at least n-type or p-type impurities, and the carrier concentration generated by activation by impurity doping is at least 5 × 10 17 / A semiconductor laser device characterized by being set to cm 3 or more.
【請求項10】請求項1記載の半導体レーザ素子におい
て、上記BHストライプ構造は矩形状の断面からなり、
屈折率の大きな薄膜発光活性層が矩形状断面を有した光
導波層に埋め込まれていることにより構成してあること
を特徴とする半導体レーザ素子。
10. The semiconductor laser device according to claim 1, wherein the BH stripe structure has a rectangular cross section,
A semiconductor laser device comprising a thin-film light emitting active layer having a large refractive index and being embedded in an optical waveguide layer having a rectangular cross section.
【請求項11】請求項10記載の半導体レーザ素子にお
いて、上記BHストライプ構造における上記発光活性層
の上部光導波層に超格子構造を導入し、活性層の下部に
位置する光導波層よりも上部光導波層の屈折率が大きい
ことを特徴とする半導体レーザ素子。
11. The semiconductor laser device according to claim 10, wherein a superlattice structure is introduced into an upper optical waveguide layer of the light emitting active layer in the BH stripe structure, and the superlattice structure is provided above the optical waveguide layer located below the active layer. A semiconductor laser device characterized in that the optical waveguide layer has a large refractive index.
【請求項12】請求項1乃至11のいずれかに記載の半
導体レーザ素子において、上記BHストライプ構造は選
択成長技術を用いて形成してあることを特徴とする半導
体レーザ素子。
12. The semiconductor laser device according to claim 1, wherein the BH stripe structure is formed using a selective growth technique.
【請求項13】請求項1乃至12のいずれかに記載の半
導体レーザ素子において、上記BHストライプ構造にお
ける発光活性層は選択成長に用いる絶縁膜マスク上に設
けてあることを特徴とする半導体レーザ素子。
13. The semiconductor laser device according to claim 1, wherein the light emitting active layer in the BH stripe structure is provided on an insulating film mask used for selective growth. .
【請求項14】請求項13記載の半導体レーザ素子にお
いて、上記BHストライプ構造は、選択成長技術を用い
ることにより、絶縁膜マスク上にまず下部光導波層を横
方向にホモエピタキシャル成長させて設けておき、下部
光導波層の上に該発光活性層を設けた後、上部光導波層
を設けることによって構成してあることを特徴とする半
導体レーザ素子。
14. The semiconductor laser device according to claim 13, wherein the BH stripe structure is formed by first performing a lateral epitaxial homoepitaxial growth of a lower optical waveguide layer on an insulating film mask by using a selective growth technique. A semiconductor laser device characterized in that the light emitting active layer is provided on the lower optical waveguide layer and then the upper optical waveguide layer is provided.
【請求項15】請求項12乃至14のいずれかに記載の
半導体レーザ素子において、選択成長用に設ける絶縁膜
マスクは、光導波路構造に対して注入した電流を制限す
る作用を有した電流狭窄層としても機能するように設け
てあることを特徴とする半導体レーザ素子。
15. The semiconductor laser device according to claim 12, wherein the insulating film mask provided for selective growth has a function of limiting a current injected into the optical waveguide structure. A semiconductor laser device characterized by being provided so as to also function as.
【請求項16】請求項12乃至15のいずれかに記載の
半導体レーザ素子において、基本横モードのみを安定に
導波できる屈折率導波構造として、活性層横方向に複素
屈折率差を設けて形成できるリッジストライプ構造をこ
とを特徴とする半導体レーザ素子。
16. The semiconductor laser device according to claim 12, wherein a complex refractive index difference is provided in a lateral direction of the active layer as a refractive index guiding structure capable of stably guiding only a fundamental transverse mode. A semiconductor laser device having a ridge stripe structure that can be formed.
【請求項17】請求項1乃至16のいずれかに項記載の
半導体レーザ素子において、上記導波路構造は窒化物半
導体AlGaInN材料からなる光導波層や発光活性層により
構成してあることを特徴とする半導体レーザ素子。
17. The semiconductor laser device according to claim 1, wherein the waveguide structure is composed of an optical waveguide layer and a light emitting active layer made of a nitride semiconductor AlGaInN material. Semiconductor laser device.
【請求項18】請求項17記載の半導体レーザ素子にお
いて、上記導波路構造において電極と接触するコンタク
ト層にはGaInN結晶層を用いてあることを特徴とする半
導体レーザ素子。
18. The semiconductor laser device according to claim 17, wherein a GaInN crystal layer is used as a contact layer in contact with the electrode in the waveguide structure.
【請求項19】請求項1乃至18のいずれかに記載の半
導体レーザ素子において、上記単結晶基板は、六方晶系
のWurtzite構造であって基板面方位が(0001)C面か或は
(11-20)A面を有する基板であることを特徴とする半導体
レ−ザ素子。
19. The semiconductor laser device according to claim 1, wherein the single crystal substrate has a hexagonal Wurtzite structure and a substrate plane orientation is a (0001) C plane.
A semiconductor laser device, which is a substrate having a (11-20) A plane.
【請求項20】請求項19記載の半導体レーザ素子にお
いて、面方位が(0001)C面である基板上に該光導波路構
造を設ける場合には、導波路を形成する方向を該基板の
(11-20)A面に平行か垂直である方向に設定し、面方位が
(11-20)A面である基板上に該光導波路構造を設ける場合
には、導波路を形成する方向を該基板の(1-100)M面に平
行か垂直である方向に設定することを特徴とする半導体
レーザ素子。
20. In the semiconductor laser device according to claim 19, when the optical waveguide structure is provided on a substrate whose plane orientation is the (0001) C plane, the direction in which the waveguide is formed is set to the direction of the substrate.
(11-20) Set the direction to be parallel or perpendicular to plane A and set the plane orientation to
When the optical waveguide structure is provided on the (11-20) A plane substrate, the direction in which the waveguide is formed should be set parallel or perpendicular to the (1-100) M plane of the substrate. A semiconductor laser device characterized by:
【請求項21】請求項19又は20に記載の半導体レー
ザ素子において、該単結晶基板が(0001)C面か或いは(11
-20)A面を有する単結晶サファイア(α-Al2O3)または炭
化珪素(α-SiC)であることを特徴とする半導体レーザ素
子。
21. The semiconductor laser device according to claim 19 or 20, wherein the single crystal substrate is a (0001) C plane or (11)
-20) A semiconductor laser device characterized by being single crystal sapphire (α-Al 2 O 3 ) or silicon carbide (α-SiC) having an A plane.
JP3168496A 1996-02-20 1996-02-20 Semiconductor laser element Expired - Lifetime JP3653843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168496A JP3653843B2 (en) 1996-02-20 1996-02-20 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168496A JP3653843B2 (en) 1996-02-20 1996-02-20 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPH09232675A true JPH09232675A (en) 1997-09-05
JP3653843B2 JP3653843B2 (en) 2005-06-02

Family

ID=12337921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168496A Expired - Lifetime JP3653843B2 (en) 1996-02-20 1996-02-20 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JP3653843B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330614A (en) * 1998-05-13 1999-11-30 Nichia Chem Ind Ltd Nitride semiconductor element
JP2002246641A (en) * 2001-02-13 2002-08-30 Seiwa Electric Mfg Co Ltd Gallium nitride compound semiconductor light emitting element and method of manufacturing gallium nitride compound semiconductor
US6657234B1 (en) 1999-06-07 2003-12-02 Nichia Corporation Nitride semiconductor device
WO2009082121A2 (en) 2007-12-20 2009-07-02 Lg Innotek Co., Ltd Semiconductor light emitting device and method of fabricating the same
JP2011066456A (en) * 2002-07-30 2011-03-31 Philips Lumileds Lightng Co Llc Group-iii nitride light-emitting device having p-type active layer
EP2315276A1 (en) * 2009-10-22 2011-04-27 LG Innotek Co., Ltd. Light emitting diode, LED package, and lighting system
JP2014112695A (en) * 1998-07-31 2014-06-19 Sharp Corp Nitride semiconductor light-emitting diode element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330614A (en) * 1998-05-13 1999-11-30 Nichia Chem Ind Ltd Nitride semiconductor element
JP2014112695A (en) * 1998-07-31 2014-06-19 Sharp Corp Nitride semiconductor light-emitting diode element
US6657234B1 (en) 1999-06-07 2003-12-02 Nichia Corporation Nitride semiconductor device
USRE42008E1 (en) 1999-06-07 2010-12-28 Nichia Corporation Nitride semiconductor device
USRE46444E1 (en) 1999-06-07 2017-06-20 Nichia Corporation Nitride semiconductor device
USRE45672E1 (en) 1999-06-07 2015-09-22 Nichia Corporation Nitride semiconductor device
JP2002246641A (en) * 2001-02-13 2002-08-30 Seiwa Electric Mfg Co Ltd Gallium nitride compound semiconductor light emitting element and method of manufacturing gallium nitride compound semiconductor
JP2011066456A (en) * 2002-07-30 2011-03-31 Philips Lumileds Lightng Co Llc Group-iii nitride light-emitting device having p-type active layer
WO2009082121A2 (en) 2007-12-20 2009-07-02 Lg Innotek Co., Ltd Semiconductor light emitting device and method of fabricating the same
US8772815B2 (en) 2007-12-20 2014-07-08 Lg Innotek Co., Ltd. Semiconductor light emitting device having a protecting member and method of fabricating the same
EP2232594A4 (en) * 2007-12-20 2011-08-10 Lg Innotek Co Ltd SEMICONDUCTOR ELECTROLUMINESCENT DEVICE AND METHOD FOR MANUFACTURING THE SAME
US8669586B2 (en) 2009-10-22 2014-03-11 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
EP2315276A1 (en) * 2009-10-22 2011-04-27 LG Innotek Co., Ltd. Light emitting diode, LED package, and lighting system

Also Published As

Publication number Publication date
JP3653843B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US7417258B2 (en) Semiconductor light-emitting device, and a method of manufacture of a semiconductor device
US20080217632A1 (en) Gan-Based III-V Compound Semiconductor Light-Emitting Element and Method for Manufacturing Thereof
WO1997011518A1 (en) Semiconductor material, method of producing the semiconductor material, and semiconductor device
KR100272155B1 (en) Gallium nitride-based compound semiconductor laser and method of manufacturing the same.
JP2003332697A (en) Nitride semiconductor element and its manufacturing method
JPH08111558A (en) Semiconductor laser device
JPH09139543A (en) Semiconductor laser device
JPH09129974A (en) Semiconductor laser device
JPH1051070A (en) Semiconductor laser
JPH0653602A (en) Semiconductor laser device
JPH09298341A (en) Semiconductor laser device
JPH06237039A (en) Semiconductor laser
JP3653843B2 (en) Semiconductor laser element
JP3864634B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6639926B1 (en) Semiconductor light-emitting device
JP4178807B2 (en) Semiconductor light emitting device and manufacturing method thereof
EP1201012A1 (en) Semiconductor structures using a group iii-nitride quaternary material system
JP2000151023A (en) Semiconductor light emitting device
JP4078891B2 (en) Compound semiconductor epitaxial wafer manufacturing method and compound semiconductor epitaxial wafer
JPH11340559A (en) Semiconductor light emitting device
JP4179280B2 (en) Manufacturing method of semiconductor light emitting device
JP2002124738A (en) Semiconductor optical device and method of manufacturing the same
JP4163321B2 (en) Semiconductor light emitting device
JPH05160504A (en) Semiconductor laser device
JP2003008147A (en) Semiconductor laser device and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term